16 KiB
Arrays
{{#include ../links.md}}
Arrays are first-class citizens in Rhai. Like C, arrays are accessed with zero-based, non-negative integer indices:
array
[
index]
Array literals are built within square brackets '[
' ... ']
' and separated by commas ',
':
[
value,
value,
...
,
value]
[
value,
value,
...
,
value,
]
// trailing comma is OK
All elements stored in an array are [Dynamic
], and the array can freely grow or shrink with elements added or removed.
The Rust type of a Rhai array is rhai::Array
.
[type_of()
] an array returns "array"
.
Arrays are disabled via the [no_index
] feature.
The maximum allowed size of an array can be controlled via Engine::set_max_array_size
(see [maximum size of arrays].
Built-in Functions
The following methods (mostly defined in the [BasicArrayPackage
][packages] but excluded if using a [raw Engine
]) operate on arrays:
Function | Parameter(s) | Description |
---|---|---|
push |
element to insert | inserts an element at the end |
append |
array to append | concatenates the second array to the end of the first |
+= operator |
1) array 2) element to insert (not another array) |
inserts an element at the end |
+= operator |
1) array 2) array to append |
concatenates the second array to the end of the first |
+ operator |
1) first array 2) second array |
concatenates the first array with the second |
insert |
1) element to insert 2) position, beginning if < 0, end if > length |
inserts an element at a certain index |
pop |
none | removes the last element and returns it ([() ] if empty) |
shift |
none | removes the first element and returns it ([() ] if empty) |
extract |
1) start position, beginning if < 0, end if > length, 2) (optional) number of items to extract, none if < 0 |
extracts a portion of the array into a new array |
remove |
index | removes an element at a particular index and returns it ([() ] if the index is not valid) |
reverse |
none | reverses the array |
len method and property |
none | returns the number of elements |
pad |
1) target length 2) element to pad |
pads the array with an element to at least a specified length |
clear |
none | empties the array |
truncate |
target length | cuts off the array at exactly a specified length (discarding all subsequent elements) |
chop |
target length | cuts off the head of the array, leaving the tail at exactly a specified length |
splice |
1) start position, beginning if < 0, end if > length, 2) number of items to remove, none if < 0, 3) array to insert |
replaces a portion of the array with another (not necessarily of the same length as the replaced portion) |
filter |
[function pointer] to predicate (usually a [closure]) | constructs a new array with all items that returns true when called with the predicate function:1st parameter: array item, 2nd parameter: (optional) offset index |
map |
[function pointer] to conversion function (usually a [closure]) | constructs a new array with all items mapped to the result of applying the conversion function: 1st parameter: array item, 2nd parameter: (optional) offset index |
reduce |
1) [function pointer] to accumulator function (usually a [closure]), 2) (optional) [function pointer] to function (usually a [closure]) that provides the initial value |
reduces the array into a single value via the accumulator function: 1st parameter: accumulated value ([ () ] initially),2nd parameter: array item, 3rd parameter: (optional) offset index |
reduce_rev |
1) [function pointer] to accumulator function (usually a [closure]), 2) (optional) [function pointer] to function (usually a [closure]) that provides the initial value |
reduces the array (in reverse order) into a single value via the accumulator function: 1st parameter: accumulated value ([ () ] initially),2nd parameter: array item, 3rd parameter: (optional) offset index |
some |
[function pointer] to predicate (usually a [closure]) | returns true if any item returns true when called with the predicate function:1st parameter: array item, 2nd parameter: (optional) offset index |
none |
[function pointer] to predicate (usually a [closure]) | returns true if no item returns true when called with the predicate function:1st parameter: array item, 2nd parameter: (optional) offset index |
all |
[function pointer] to predicate (usually a [closure]) | returns true if all items return true when called with the predicate function:1st parameter: array item, 2nd parameter: (optional) offset index |
sort |
[function pointer] to a comparison function (usually a [closure]) | sorts the array with a comparison function: 1st parameter: first item, 2nd parameter: second item, return value: INT < 0 if first < second, > 0 if first > second, 0 if first == second |
Use Custom Types With Arrays
To use a [custom type] with arrays, a number of array functions need to be manually implemented,
in particular push
, insert
, pad
and the +=
operator. In addition, the ==
operator must be
implemented for the [custom type] in order to support the in
operator which uses ==
to
compare elements.
See the section on [custom types] for more details.
Examples
let y = [2, 3]; // y == [2, 3]
let y = [2, 3,]; // y == [2, 3]
y.insert(0, 1); // y == [1, 2, 3]
y.insert(999, 4); // y == [1, 2, 3, 4]
y.len == 4;
y[0] == 1;
y[1] == 2;
y[2] == 3;
y[3] == 4;
(1 in y) == true; // use 'in' to test if an item exists in the array
(42 in y) == false; // 'in' uses the '==' operator (which users can override)
// to check if the target item exists in the array
y[1] = 42; // y == [1, 42, 3, 4]
(42 in y) == true;
y.remove(2) == 3; // y == [1, 42, 4]
y.len == 3;
y[2] == 4; // elements after the removed element are shifted
ts.list = y; // arrays can be assigned completely (by value copy)
ts.list[1] == 42;
[1, 2, 3][0] == 1; // indexing on array literal
fn abc() {
[42, 43, 44] // a function returning an array
}
abc()[0] == 42;
y.push(4); // y == [1, 42, 4, 4]
y += 5; // y == [1, 42, 4, 4, 5]
y.len == 5;
y.shift() == 1; // y == [42, 4, 4, 5]
y.chop(3); // y == [4, 4, 5]
y.len == 3;
y.pop() == 5; // y == [4, 4]
y.len == 2;
for item in y { // arrays can be iterated with a 'for' statement
print(item);
}
y.pad(6, "hello"); // y == [4, 4, "hello", "hello", "hello", "hello"]
y.len == 6;
y.truncate(4); // y == [4, 4, "hello", "hello"]
y.len == 4;
y.clear(); // y == []
y.len == 0;
let a = [42, 123, 99];
a.map(|v| v + 1); // returns [43, 124, 100]
a.map(|v, i| v + i); // returns [42, 124, 101]
a.filter(|v| v > 50); // returns [123, 99]
a.filter(|v, i| i == 1); // returns [123]
// Use a closure to provide the initial value
a.reduce(|sum, v| sum + v, || 0) == 264;
// Detect the initial value of '()'
a.reduce(
|sum, v| if sum.type_of() == "()" { v } else { sum + v }
) == 264;
// Detect the initial value via index
a.reduce(|sum, v, i|
if i == 0 { v } else { sum + v }
) == 264;
// Use a closure to provide the initial value
a.reduce_rev(|sum, v| sum + v, || 0) == 264;
// Detect the initial value of '()'
a.reduce_rev(
|sum, v| if sum.type_of() == "()" { v } else { sum + v }
) == 264;
// Detect the initial value via index
a.reduce_rev(|sum, v, i|
if i == 2 { v } else { sum + v }
) == 264;
a.some(|v| v > 50); // returns true
a.some(|v, i| v < i); // returns false
a.none(|v| v != 0); // returns false
a.none(|v, i| v == i); // returns true
a.all(|v| v > 50); // returns false
a.all(|v, i| v > i); // returns true
a.splice(1, 1, [1, 3, 2]); // a == [42, 1, 3, 2, 99]
a.extract(1, 3); // returns [1, 3, 2]
a.sort(|x, y| x - y); // a == [1, 2, 3, 42, 99]