134 KiB
Rhai - Embedded Scripting for Rust
Rhai is an embedded scripting language and evaluation engine for Rust that gives a safe and easy way to add scripting to any application.
Features
- Easy-to-use language similar to JS+Rust with dynamic typing.
- Tight integration with native Rust functions and types, including getters/setters, methods and indexers.
- Freely pass Rust variables/constants into a script via an external
Scope
. - Easily call a script-defined function from Rust.
- Fairly low compile-time overhead.
- Fairly efficient evaluation (1 million iterations in 0.25 sec on a single core, 2.3 GHz Linux VM).
- Relatively little
unsafe
code (yes there are some for performance reasons, and mostunsafe
code is limited to one single source file, all with names starting with"unsafe_"
). - Re-entrant scripting
Engine
can be madeSend + Sync
(via thesync
feature). - Sand-boxed - the scripting
Engine
, if declared immutable, cannot mutate the containing environment unless explicitly permitted (e.g. via aRefCell
). - Rugged - protection against malicious attacks (such as stack-overflow, over-sized data, and runaway scripts etc.) that may come from untrusted third-party user-land scripts.
- Track script evaluation progress and manually terminate a script run.
no-std
support.- Function overloading.
- Operator overloading.
- Organize code base with dynamically-loadable modules.
- Scripts are optimized (useful for template-based machine-generated scripts) for repeated evaluations.
- Support for minimal builds by excluding unneeded language features.
- Very few additional dependencies (right now only
num-traits
to do checked arithmetic operations); forno-std
builds, a number of additional dependencies are pulled in to provide for functionalities that used to be instd
.
Note: Currently, the version is 0.15.1
, so the language and API's may change before they stabilize.
What Rhai doesn't do
Rhai's purpose is to provide a dynamic layer over Rust code, in the same spirit of zero cost abstractions. It doesn't attempt to be a new language. For example:
- No classes. Well, Rust doesn't either. On the other hand...
- No traits... so it is also not Rust. Do your Rusty stuff in Rust.
- No structures/records - define your types in Rust instead; Rhai can seamlessly work with any Rust type. There is, however, a built-in object map type which is adequate for most uses.
- No first-class functions - Code your functions in Rust instead, and register them with Rhai.
- No garbage collection - this should be expected, so...
- No closures - do your closure magic in Rust instead; turn a Rhai scripted function into a Rust closure.
- No byte-codes/JIT - Rhai has an AST-walking interpreter which will not win any speed races. The purpose of Rhai is not to be extremely fast, but to make it as easy as possible to integrate with native Rust programs.
Due to this intended usage, Rhai deliberately keeps the language simple and small by omitting advanced language features such as classes, inheritance, first-class functions, closures, concurrency, byte-codes, JIT etc. Avoid the temptation to write full-fledge program logic entirely in Rhai - that use case is best fulfilled by more complete languages such as JS or Lua.
Therefore, in actual practice, it is usually best to expose a Rust API into Rhai for scripts to call. All your core functionalities should be in Rust. This is similar to some dynamic languages where most of the core functionalities reside in a C/C++ standard library.
Installation
Install the Rhai crate on crates.io
by adding this line to dependencies
:
[dependencies]
rhai = "0.15.1"
Use the latest released crate version on crates.io
:
[dependencies]
rhai = "*"
Crate versions are released on crates.io
infrequently, so to track the
latest features, enhancements and bug fixes, pull directly from GitHub:
[dependencies]
rhai = { git = "https://github.com/jonathandturner/rhai" }
Beware that in order to use pre-releases (e.g. alpha and beta), the exact version must be specified in the Cargo.toml
.
Optional features
Feature | Description |
---|---|
unchecked |
Disable arithmetic checking (such as over-flows and division by zero), call stack depth limit, operations count limit and modules loading limit. Beware that a bad script may panic the entire system! |
sync |
Restrict all values types to those that are Send + Sync . Under this feature, all Rhai types, including Engine , Scope and AST , are all Send + Sync . |
no_optimize |
Disable the script optimizer. |
no_float |
Disable floating-point numbers and math. |
only_i32 |
Set the system integer type to i32 and disable all other integer types. INT is set to i32 . |
only_i64 |
Set the system integer type to i64 and disable all other integer types. INT is set to i64 . |
no_index |
Disable arrays and indexing features. |
no_object |
Disable support for custom types and object maps. |
no_function |
Disable script-defined functions. |
no_module |
Disable loading external modules. |
no_std |
Build for no-std . Notice that additional dependencies will be pulled in to replace std features. |
By default, Rhai includes all the standard functionalities in a small, tight package. Most features are here to opt-out of certain functionalities that are not needed. Excluding unneeded functionalities can result in smaller, faster builds as well as more control over what a script can (or cannot) do.
Performance builds
Some features are for performance. For example, using only_i32
or only_i64
disables all other integer types (such as u16
).
If only a single integer type is needed in scripts - most of the time this is the case - it is best to avoid registering
lots of functions related to other integer types that will never be used. As a result, performance will improve.
If only 32-bit integers are needed - again, most of the time this is the case - using only_i32
disables also i64
.
On 64-bit targets this may not gain much, but on some 32-bit targets this improves performance due to 64-bit arithmetic
requiring more CPU cycles to complete.
Also, turning on no_float
, and only_i32
makes the key Dynamic
data type only 8 bytes small on 32-bit targets
while normally it can be up to 16 bytes (e.g. on x86/x64 CPU's) in order to hold an i64
or f64
.
Making Dynamic
small helps performance due to better cache efficiency.
Minimal builds
In order to compile a _minimal_build - i.e. a build optimized for size - perhaps for embedded targets, it is essential that
the correct linker flags are used in cargo.toml
:
[profile.release]
lto = "fat" # turn on Link-Time Optimizations
codegen-units = 1 # trade compile time with maximum optimization
opt-level = "z" # optimize for size
Opt out of as many features as possible, if they are not needed, to reduce code size because, remember, by default all code is compiled in as what a script requires cannot be predicted. If a language feature is not needed, omitting them via special features is a prudent strategy to optimize the build for size.
Omitting arrays (no_index
) yields the most code-size savings, followed by floating-point support
(no_float
), checked arithmetic (unchecked
) and finally object maps and custom types (no_object
).
Disable script-defined functions (no_function
) only when the feature is not needed because code size savings is minimal.
Engine::new_raw
creates a raw engine.
A raw engine supports, out of the box, only a very restricted set of basic arithmetic and logical operators.
Selectively include other necessary functionalities by loading specific packages to minimize the footprint.
Packages are sharable (even across threads via the sync
feature), so they only have to be created once.
Related
Other cool projects to check out:
- ChaiScript - A strong inspiration for Rhai. An embedded scripting language for C++ that I helped created many moons ago, now being led by my cousin.
- Check out the list of scripting languages for Rust on awesome-rust
Examples
A number of examples can be found in the examples
folder:
Example | Description |
---|---|
arrays_and_structs |
shows how to register a custom Rust type and using arrays on it |
custom_types_and_methods |
shows how to register a custom Rust type and methods for it |
hello |
simple example that evaluates an expression and prints the result |
no_std |
example to test out no-std builds |
reuse_scope |
evaluates two pieces of code in separate runs, but using a common Scope |
rhai_runner |
runs each filename passed to it as a Rhai script |
simple_fn |
shows how to register a simple function |
strings |
shows different ways to register functions taking string arguments |
repl |
a simple REPL, interactively evaluate statements from stdin |
Examples can be run with the following command:
cargo run --example {example_name}
The repl
example is a particularly good one as it allows one to interactively try out Rhai's
language features in a standard REPL (Read-Eval-Print Loop).
Example scripts
There are also a number of examples scripts that showcase Rhai's features, all in the scripts
folder:
Language feature scripts | Description |
---|---|
array.rhai |
arrays in Rhai |
assignment.rhai |
variable declarations |
comments.rhai |
just comments |
for1.rhai |
for loops |
for2.rhai |
for loops on arrays |
function_decl1.rhai |
a function without parameters |
function_decl2.rhai |
a function with two parameters |
function_decl3.rhai |
a function with many parameters |
if1.rhai |
if example |
loop.rhai |
count-down loop in Rhai, emulating a do .. while loop |
op1.rhai |
just simple addition |
op2.rhai |
simple addition and multiplication |
op3.rhai |
change evaluation order with parenthesis |
string.rhai |
string operations |
strings_map.rhai |
string and object map operations |
while.rhai |
while loop |
Example scripts | Description |
---|---|
speed_test.rhai |
a simple program to measure the speed of Rhai's interpreter (1 million iterations) |
primes.rhai |
use Sieve of Eratosthenes to find all primes smaller than a limit |
fibonacci.rhai |
calculate the n-th Fibonacci number using a really dumb algorithm |
mat_mul.rhai |
matrix multiplication test to measure the speed of Rhai's interpreter |
To run the scripts, either make a tiny program or use of the rhai_runner
example:
cargo run --example rhai_runner scripts/any_script.rhai
Hello world
To get going with Rhai, create an instance of the scripting engine via Engine::new
and then call the eval
method:
use rhai::{Engine, EvalAltResult};
fn main() -> Result<(), Box<EvalAltResult>>
{
let engine = Engine::new();
let result = engine.eval::<i64>("40 + 2")?;
// ^^^^^^^ cast the result to an 'i64', this is required
println!("Answer: {}", result); // prints 42
Ok(())
}
EvalAltResult
is a Rust enum
containing all errors encountered during the parsing or evaluation process.
Script evaluation
The type parameter is used to specify the type of the return value, which must match the actual type or an error is returned.
Rhai is very strict here. Use Dynamic
for uncertain return types.
There are two ways to specify the return type - turbofish notation, or type inference.
let result = engine.eval::<i64>("40 + 2")?; // return type is i64, specified using 'turbofish' notation
let result: i64 = engine.eval("40 + 2")?; // return type is inferred to be i64
result.is::<i64>() == true;
let result: Dynamic = engine.eval("boo()")?; // use 'Dynamic' if you're not sure what type it'll be!
let result = engine.eval::<String>("40 + 2")?; // returns an error because the actual return type is i64, not String
Evaluate a script file directly:
let result = engine.eval_file::<i64>("hello_world.rhai".into())?; // 'eval_file' takes a 'PathBuf'
Compiling scripts (to AST)
To repeatedly evaluate a script, compile it first into an AST (abstract syntax tree) form:
// Compile to an AST and store it for later evaluations
let ast = engine.compile("40 + 2")?;
for _ in 0..42 {
let result: i64 = engine.eval_ast(&ast)?;
println!("Answer #{}: {}", i, result); // prints 42
}
Compiling a script file is also supported:
let ast = engine.compile_file("hello_world.rhai".into())?;
Calling Rhai functions from Rust
Rhai also allows working backwards from the other direction - i.e. calling a Rhai-scripted function from Rust via Engine::call_fn
.
Functions declared with private
are hidden and cannot be called from Rust (see also modules).
// Define functions in a script.
let ast = engine.compile(true,
r#"
// a function with two parameters: string and i64
fn hello(x, y) {
x.len + y
}
// functions can be overloaded: this one takes only one parameter
fn hello(x) {
x * 2
}
// this one takes no parameters
fn hello() {
42
}
// this one is private and cannot be called by 'call_fn'
private hidden() {
throw "you shouldn't see me!";
}
"#)?;
// A custom scope can also contain any variables/constants available to the functions
let mut scope = Scope::new();
// Evaluate a function defined in the script, passing arguments into the script as a tuple.
// Beware, arguments must be of the correct types because Rhai does not have built-in type conversions.
// If arguments of the wrong types are passed, the Engine will not find the function.
let result: i64 = engine.call_fn(&mut scope, &ast, "hello", ( String::from("abc"), 123_i64 ) )?;
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// put arguments in a tuple
let result: i64 = engine.call_fn(&mut scope, &ast, "hello", (123_i64,) )?;
// ^^^^^^^^^^ tuple of one
let result: i64 = engine.call_fn(&mut scope, &ast, "hello", () )?;
// ^^ unit = tuple of zero
// The following call will return a function-not-found error because
// 'hidden' is declared with 'private'.
let result: () = engine.call_fn(&mut scope, &ast, "hidden", ())?;
For more control, construct all arguments as Dynamic
values and use Engine::call_fn_dynamic
, passing it
anything that implements IntoIterator<Item = Dynamic>
(such as a simple Vec<Dynamic>
):
let result: Dynamic = engine.call_fn_dynamic(&mut scope, &ast, "hello",
vec![ String::from("abc").into(), 123_i64.into() ])?;
Creating Rust anonymous functions from Rhai script
It is possible to further encapsulate a script in Rust such that it becomes a normal Rust function.
Such an anonymous function is basically a boxed closure, very useful as call-back functions.
Creating them is accomplished via the Func
trait which contains create_from_script
(as well as its companion method create_from_ast
):
use rhai::{Engine, Func}; // use 'Func' for 'create_from_script'
let engine = Engine::new(); // create a new 'Engine' just for this
let script = "fn calc(x, y) { x + y.len < 42 }";
// Func takes two type parameters:
// 1) a tuple made up of the types of the script function's parameters
// 2) the return type of the script function
//
// 'func' will have type Box<dyn Fn(i64, String) -> Result<bool, Box<EvalAltResult>>> and is callable!
let func = Func::<(i64, String), bool>::create_from_script(
// ^^^^^^^^^^^^^ function parameter types in tuple
engine, // the 'Engine' is consumed into the closure
script, // the script, notice number of parameters must match
"calc" // the entry-point function name
)?;
func(123, "hello".to_string())? == false; // call the anonymous function
schedule_callback(func); // pass it as a callback to another function
// Although there is nothing you can't do by manually writing out the closure yourself...
let engine = Engine::new();
let ast = engine.compile(script)?;
schedule_callback(Box::new(move |x: i64, y: String| -> Result<bool, Box<EvalAltResult>> {
engine.call_fn(&mut Scope::new(), &ast, "calc", (x, y))
}));
Raw Engine
Engine::new
creates a scripting Engine
with common functionalities (e.g. printing to the console via print
).
In many controlled embedded environments, however, these are not needed.
Use Engine::new_raw
to create a raw Engine
, in which only a minimal set of basic arithmetic and logical operators
are supported.
Built-in operators
Operators | Assignment operators | Supported for type (see standard types) |
---|---|---|
+ , |
+= |
INT , FLOAT (if not no_float ), ImmutableString |
- , * , / , % , ~ , |
-= , *= , /= , %= , ~= |
INT , FLOAT (if not no_float ) |
<< , >> , ^ , |
<<= , >>= , ^= |
INT |
& , | , |
&= , |= |
INT , bool |
&& , || |
bool |
|
== , != |
INT , FLOAT (if not no_float ), bool , char , () , ImmutableString |
|
> , >= , < , <= |
INT , FLOAT (if not no_float ), char , () , ImmutableString |
Packages
Rhai functional features are provided in different packages that can be loaded via a call to Engine::load_package
.
Packages reside under rhai::packages::*
and the trait rhai::packages::Package
must be loaded in order for
packages to be used.
use rhai::Engine;
use rhai::packages::Package // load the 'Package' trait to use packages
use rhai::packages::CorePackage; // the 'core' package contains basic functionalities (e.g. arithmetic)
let mut engine = Engine::new_raw(); // create a 'raw' Engine
let package = CorePackage::new(); // create a package - can be shared among multiple `Engine` instances
engine.load_package(package.get()); // load the package manually. 'get' returns a reference to the shared package
The follow packages are available:
Package | Description | In CorePackage |
In StandardPackage |
---|---|---|---|
ArithmeticPackage |
Arithmetic operators (e.g. + , - , * , / ) for numeric types that are not built in (e.g. u16 ) |
Yes | Yes |
BasicIteratorPackage |
Numeric ranges (e.g. range(1, 10) ) |
Yes | Yes |
LogicPackage |
Logical and comparison operators (e.g. == , > ) for numeric types that are not built in (e.g. u16 ) |
Yes | Yes |
BasicStringPackage |
Basic string functions (e.g. print , debug , len ) that are not built in |
Yes | Yes |
BasicTimePackage |
Basic time functions (e.g. timestamps) | Yes | Yes |
MoreStringPackage |
Additional string functions, including converting common types to string | No | Yes |
BasicMathPackage |
Basic math functions (e.g. sin , sqrt ) |
No | Yes |
BasicArrayPackage |
Basic array functions (not available under no_index ) |
No | Yes |
BasicMapPackage |
Basic object map functions (not available under no_object ) |
No | Yes |
EvalPackage |
Disable eval |
No | No |
CorePackage |
Basic essentials | Yes | Yes |
StandardPackage |
Standard library | No | Yes |
Packages typically contain Rust functions that are callable within a Rhai script.
All functions registered in a package is loaded under the global namespace (i.e. they're available without module qualifiers).
Once a package is created (e.g. via new
), it can be shared (via get
) among multiple instances of Engine
,
even across threads (under sync
). Therefore, a package only has to be created once.
Packages are actually implemented as modules, so they share a lot of behavior and characteristics.
The main difference is that a package loads under the global namespace, while a module loads under its own
namespace alias specified in an import
statement (see also modules).
A package is static (i.e. pre-loaded into an Engine
), while a module is dynamic (i.e. loaded with
the import
statement).
Custom packages can also be created. See the macro def_package!
.
Evaluate expressions only
Sometimes a use case does not require a full-blown scripting language, but only needs to evaluate expressions.
In these cases, use the compile_expression
and eval_expression
methods or their _with_scope
variants.
let result = engine.eval_expression::<i64>("2 + (10 + 10) * 2")?;
When evaluating expressions, no full-blown statement (e.g. if
, while
, for
) - not even variable assignments -
is supported and will be considered parse errors when encountered.
// The following are all syntax errors because the script is not an expression.
engine.eval_expression::<()>("x = 42")?;
let ast = engine.compile_expression("let x = 42")?;
let result = engine.eval_expression_with_scope::<i64>(&mut scope, "if x { 42 } else { 123 }")?;
Values and types
The following primitive types are supported natively:
Category | Equivalent Rust types | type_of() |
to_string() |
---|---|---|---|
Integer number | u8 , i8 , u16 , i16 , u32 , i32 (default for only_i32 ),u64 , i64 (default) |
"i32" , "u64" etc. |
"42" , "123" etc. |
Floating-point number (disabled with no_float ) |
f32 , f64 (default) |
"f32" or "f64" |
"123.4567" etc. |
Boolean value | bool |
"bool" |
"true" or "false" |
Unicode character | char |
"char" |
"A" , "x" etc. |
Immutable Unicode string | rhai::ImmutableString (implemented as Rc<String> or Arc<String> ) |
"string" |
"hello" etc. |
Array (disabled with no_index ) |
rhai::Array |
"array" |
"[ ?, ?, ? ]" |
Object map (disabled with no_object ) |
rhai::Map |
"map" |
#{ "a": 1, "b": 2 } |
Timestamp (implemented in the BasicTimePackage ) |
std::time::Instant |
"timestamp" |
not supported |
Dynamic value (i.e. can be anything) | rhai::Dynamic |
the actual type | actual value |
System integer (current configuration) | rhai::INT (i32 or i64 ) |
"i32" or "i64" |
"42" , "123" etc. |
System floating-point (current configuration, disabled with no_float ) |
rhai::FLOAT (f32 or f64 ) |
"f32" or "f64" |
"123.456" etc. |
Nothing/void/nil/null (or whatever it is called) | () |
"()" |
"" (empty string) |
All types are treated strictly separate by Rhai, meaning that i32
and i64
and u32
are completely different -
they even cannot be added together. This is very similar to Rust.
The default integer type is i64
. If other integer types are not needed, it is possible to exclude them and make a
smaller build with the only_i64
feature.
If only 32-bit integers are needed, enabling the only_i32
feature will remove support for all integer types other than i32
, including i64
.
This is useful on some 32-bit targets where using 64-bit integers incur a performance penalty.
If no floating-point is needed or supported, use the no_float
feature to remove it.
Strings in Rhai are immutable, meaning that they can be shared but not modified. In actual, the ImmutableString
type
is an alias to Rc<String>
or Arc<String>
(depending on the sync
feature).
Any modification done to a Rhai string will cause the string to be cloned and the modifications made to the copy.
The to_string
function converts a standard type into a string for display purposes.
The type_of
function detects the actual type of a value. This is useful because all variables are Dynamic
in nature.
// Use 'type_of()' to get the actual types of values
type_of('c') == "char";
type_of(42) == "i64";
let x = 123;
x.type_of() == "i64"; // method-call style is also OK
type_of(x) == "i64";
x = 99.999;
type_of(x) == "f64";
x = "hello";
if type_of(x) == "string" {
do_something_with_string(x);
}
Dynamic
values
A Dynamic
value can be any type. However, under sync
, all types must be Send + Sync
.
Because type_of()
a Dynamic
value returns the type of the actual value, it is usually used to perform type-specific
actions based on the actual value's type.
let mystery = get_some_dynamic_value();
if type_of(mystery) == "i64" {
print("Hey, I got an integer here!");
} else if type_of(mystery) == "f64" {
print("Hey, I got a float here!");
} else if type_of(mystery) == "string" {
print("Hey, I got a string here!");
} else if type_of(mystery) == "bool" {
print("Hey, I got a boolean here!");
} else if type_of(mystery) == "array" {
print("Hey, I got an array here!");
} else if type_of(mystery) == "map" {
print("Hey, I got an object map here!");
} else if type_of(mystery) == "TestStruct" {
print("Hey, I got the TestStruct custom type here!");
} else {
print("I don't know what this is: " + type_of(mystery));
}
In Rust, sometimes a Dynamic
forms part of a returned value - a good example is an array with Dynamic
elements,
or an object map with Dynamic
property values. To get the real values, the actual value types must be known in advance.
There is no easy way for Rust to decide, at run-time, what type the Dynamic
value is (short of using the type_name
function and match against the name).
A Dynamic
value's actual type can be checked via the is
method.
The cast
method then converts the value into a specific, known type.
Alternatively, use the try_cast
method which does not panic but returns None
when the cast fails.
let list: Array = engine.eval("...")?; // return type is 'Array'
let item = list[0]; // an element in an 'Array' is 'Dynamic'
item.is::<i64>() == true; // 'is' returns whether a 'Dynamic' value is of a particular type
let value = item.cast::<i64>(); // if the element is 'i64', this succeeds; otherwise it panics
let value: i64 = item.cast(); // type can also be inferred
let value = item.try_cast::<i64>().unwrap(); // 'try_cast' does not panic when the cast fails, but returns 'None'
The type_name
method gets the name of the actual type as a static string slice, which can be match
-ed against.
let list: Array = engine.eval("...")?; // return type is 'Array'
let item = list[0]; // an element in an 'Array' is 'Dynamic'
match item.type_name() { // 'type_name' returns the name of the actual Rust type
"i64" => ...
"alloc::string::String" => ...
"bool" => ...
"path::to::module::TestStruct" => ...
}
The following conversion traits are implemented for Dynamic
:
From<i64>
(i32
ifonly_i32
)From<f64>
(if notno_float
)From<bool>
From<rhai::ImmutableString>
From<String>
From<char>
From<Vec<T>>
(into an array)From<HashMap<String, T>>
(into an object map).
Value conversions
The to_float
function converts a supported number to FLOAT
(f32
or f64
),
and the to_int
function converts a supported number to INT
(i32
or i64
).
That's about it. For other conversions, register custom conversion functions.
let x = 42;
let y = x * 100.0; // <- error: cannot multiply i64 with f64
let y = x.to_float() * 100.0; // works
let z = y.to_int() + x; // works
let c = 'X'; // character
print("c is '" + c + "' and its code is " + c.to_int()); // prints "c is 'X' and its code is 88"
Traits
A number of traits, under the rhai::
module namespace, provide additional functionalities.
Trait | Description | Methods |
---|---|---|
RegisterFn |
Trait for registering functions | register_fn |
RegisterResultFn |
Trait for registering fallible functions returning Result<Dynamic, Box<EvalAltResult>> |
register_result_fn |
Func |
Trait for creating anonymous functions from script | create_from_ast , create_from_script |
ModuleResolver |
Trait implemented by module resolution services | resolve |
Working with functions
Rhai's scripting engine is very lightweight. It gets most of its abilities from functions.
To call these functions, they need to be registered with the Engine
.
use rhai::{Dynamic, Engine, EvalAltResult, ImmutableString};
use rhai::RegisterFn; // use 'RegisterFn' trait for 'register_fn'
use rhai::RegisterResultFn; // use 'RegisterResultFn' trait for 'register_result_fn'
// Normal function that returns a standard type
// Remember to use 'ImmutableString' and not 'String'
fn add_len(x: i64, s: ImmutableString) -> i64 {
x + s.len()
}
// Alternatively, '&str' maps directly to 'ImmutableString'
fn add_len_str(x: i64, s: &str) -> i64 {
x + s.len()
}
// Function that returns a 'Dynamic' value - must return a 'Result'
fn get_any_value() -> Result<Dynamic, Box<EvalAltResult>> {
Ok((42_i64).into()) // standard types can use 'into()'
}
fn main() -> Result<(), Box<EvalAltResult>>
{
let engine = Engine::new();
engine.register_fn("add", add_len);
engine.register_fn("add_str", add_len_str);
let result = engine.eval::<i64>(r#"add(40, "xx")"#)?;
println!("Answer: {}", result); // prints 42
let result = engine.eval::<i64>(r#"add_str(40, "xx")"#)?;
println!("Answer: {}", result); // prints 42
// Functions that return Dynamic values must use register_result_fn()
engine.register_result_fn("get_any_value", get_any_value);
let result = engine.eval::<i64>("get_any_value()")?;
println!("Answer: {}", result); // prints 42
Ok(())
}
To create a Dynamic
value, use the Dynamic::from
method.
Standard types in Rhai can also use into()
.
use rhai::Dynamic;
let x = (42_i64).into(); // 'into()' works for standard types
let y = Dynamic::from("hello!".to_string()); // remember &str is not supported by Rhai
Functions registered with the Engine
can be overloaded as long as the signature is unique,
i.e. different functions can have the same name as long as their parameters are of different types
and/or different number.
New definitions overwrite previous definitions of the same name and same number/types of parameters.
String
parameters
Functions accepting a parameter of String
should use &str
instead because it maps directly to ImmutableString
which is the type that Rhai uses to represent strings internally.
fn get_len1(s: String) -> i64 { s.len() as i64 } // <- Rhai will not find this function
fn get_len2(s: &str) -> i64 { s.len() as i64 } // <- Rhai finds this function fine
fn get_len3(s: ImmutableString) -> i64 { s.len() as i64 } // <- the above is equivalent to this
engine.register_fn("len1", get_len1);
engine.register_fn("len2", get_len2);
engine.register_fn("len3", get_len3);
let len = engine.eval::<i64>("x.len1()")?; // error: function 'len1 (string)' not found
let len = engine.eval::<i64>("x.len2()")?; // works fine
let len = engine.eval::<i64>("x.len3()")?; // works fine
Generic functions
Rust generic functions can be used in Rhai, but separate instances for each concrete type must be registered separately. This essentially overloads the function with different parameter types (Rhai does not natively support generics).
use std::fmt::Display;
use rhai::{Engine, RegisterFn};
fn show_it<T: Display>(x: &mut T) -> () {
println!("put up a good show: {}!", x)
}
fn main()
{
let engine = Engine::new();
engine.register_fn("print", show_it as fn(x: &mut i64)->());
engine.register_fn("print", show_it as fn(x: &mut bool)->());
engine.register_fn("print", show_it as fn(x: &mut String)->());
}
The above example shows how to register multiple functions (or, in this case, multiple overloaded versions of the same function) under the same name.
Fallible functions
If a function is fallible (i.e. it returns a Result<_, Error>
), it can be registered with register_result_fn
(using the RegisterResultFn
trait).
The function must return Result<Dynamic, Box<EvalAltResult>>
. Box<EvalAltResult>
implements From<&str>
and From<String>
etc.
and the error text gets converted into Box<EvalAltResult::ErrorRuntime>
.
The error values are Box
-ed in order to reduce memory footprint of the error path, which should be hit rarely.
use rhai::{Engine, EvalAltResult, Position};
use rhai::RegisterResultFn; // use 'RegisterResultFn' trait for 'register_result_fn'
// Function that may fail - the result type must be 'Dynamic'
fn safe_divide(x: i64, y: i64) -> Result<Dynamic, Box<EvalAltResult>> {
if y == 0 {
// Return an error if y is zero
Err("Division by zero!".into()) // short-cut to create Box<EvalAltResult::ErrorRuntime>
} else {
Ok((x / y).into()) // convert result into 'Dynamic'
}
}
fn main()
{
let engine = Engine::new();
// Fallible functions that return Result values must use register_result_fn()
engine.register_result_fn("divide", safe_divide);
if let Err(error) = engine.eval::<i64>("divide(40, 0)") {
println!("Error: {:?}", *error); // prints ErrorRuntime("Division by zero detected!", (1, 1)")
}
}
Overriding built-in functions
Any similarly-named function defined in a script overrides any built-in function and any registered native Rust function of the same name and number of parameters.
// Override the built-in function 'to_int'
fn to_int(num) {
print("Ha! Gotcha! " + num);
}
print(to_int(123)); // what happens?
A registered function, in turn, overrides any built-in function of the same name and number/types of parameters.
Operator overloading
In Rhai, a lot of functionalities are actually implemented as functions, including basic operations such as arithmetic calculations.
For example, in the expression "a + b
", the +
operator is not built in, but calls a function named "+
" instead!
let x = a + b;
let x = +(a, b); // <- the above is equivalent to this function call
Similarly, comparison operators including ==
, !=
etc. are all implemented as functions, with the stark exception of &&
and ||
.
Because they short-circuit, &&
and ||
are handled specially and not via a function; as a result,
overriding them has no effect at all.
Operator functions cannot be defined as a script function (because operators syntax are not valid function names).
However, operator functions can be registered to the Engine
via the methods Engine::register_fn
, Engine::register_result_fn
etc.
When a custom operator function is registered with the same name as an operator, it overrides the built-in version.
use rhai::{Engine, EvalAltResult, RegisterFn};
let mut engine = Engine::new();
fn strange_add(a: i64, b: i64) -> i64 { (a + b) * 42 }
engine.register_fn("+", strange_add); // overload '+' operator for two integers!
let result: i64 = engine.eval("1 + 0"); // the overloading version is used
println!("result: {}", result); // prints 42
let result: f64 = engine.eval("1.0 + 0.0"); // '+' operator for two floats not overloaded
println!("result: {}", result); // prints 1.0
fn mixed_add(a: i64, b: f64) -> f64 { (a as f64) + b }
engine.register_fn("+", mixed_add); // register '+' operator for an integer and a float
let result: i64 = engine.eval("1 + 1.0"); // prints 2.0 (normally an error)
Use operator overloading for custom types (described below) only.
Be very careful when overriding built-in operators because script authors expect standard operators to behave in a
consistent and predictable manner, and will be annoyed if a calculation for '+
' turns into a subtraction, for example.
Operator overloading also impacts script optimization when using OptimizationLevel::Full
.
See the relevant section for more details.
Custom types and methods
A more complete example of working with Rust:
use rhai::{Engine, EvalAltResult};
use rhai::RegisterFn;
#[derive(Clone)]
struct TestStruct {
field: i64
}
impl TestStruct {
fn update(&mut self) {
self.field += 41;
}
fn new() -> Self {
TestStruct { field: 1 }
}
}
fn main() -> Result<(), Box<EvalAltResult>>
{
let engine = Engine::new();
engine.register_type::<TestStruct>();
engine.register_fn("update", TestStruct::update);
engine.register_fn("new_ts", TestStruct::new);
let result = engine.eval::<TestStruct>("let x = new_ts(); x.update(); x")?;
println!("result: {}", result.field); // prints 42
Ok(())
}
All custom types must implement Clone
as this allows the Engine
to pass by value.
Support for custom types can be turned off via the no_object
feature.
#[derive(Clone)]
struct TestStruct {
field: i64
}
Next, create a few methods for later use in scripts.
Notice that the custom type needs to be registered with the Engine
.
impl TestStruct {
fn update(&mut self) { // methods take &mut as first parameter
self.field += 41;
}
fn new() -> Self {
TestStruct { field: 1 }
}
}
let engine = Engine::new();
engine.register_type::<TestStruct>();
To use native types, methods and functions with the Engine
, simply register them using one of the Engine::register_XXX
API.
Below, the update
and new
methods are registered using Engine::register_fn
.
Note: Rhai follows the convention that methods of custom types take a &mut
first parameter so that invoking methods
can update the custom types. All other parameters in Rhai are passed by value (i.e. clones).
engine.register_fn("update", TestStruct::update); // registers 'update(&mut TestStruct)'
engine.register_fn("new_ts", TestStruct::new); // registers 'new()'
The custom type is then ready for use in scripts. Scripts can see the functions and methods registered earlier. Get the evaluation result back out from script-land just as before, this time casting to the custom type:
let result = engine.eval::<TestStruct>("let x = new_ts(); x.update(); x")?;
println!("result: {}", result.field); // prints 42
In fact, any function with a first argument that is a &mut
reference can be used as method calls because
internally they are the same thing: methods on a type is implemented as a functions taking a &mut
first argument.
fn foo(ts: &mut TestStruct) -> i64 {
ts.field
}
engine.register_fn("foo", foo); // register ad hoc function with correct signature
let result = engine.eval::<i64>(
"let x = new_ts(); x.foo()" // 'foo' can be called like a method on 'x'
)?;
println!("result: {}", result); // prints 1
Under no_object
, however, the method style of function calls (i.e. calling a function as an object-method)
is no longer supported.
// Below is a syntax error under 'no_object' because 'clear' cannot be called in method style.
let result = engine.eval::<()>("let x = [1, 2, 3]; x.clear()")?;
type_of()
works fine with custom types and returns the name of the type.
If Engine::register_type_with_name
is used to register the custom type
with a special "pretty-print" name, type_of()
will return that name instead.
engine.register_type::<TestStruct>();
engine.register_fn("new_ts", TestStruct::new);
let x = new_ts();
print(x.type_of()); // prints "path::to::module::TestStruct"
engine.register_type_with_name::<TestStruct>("Hello");
engine.register_fn("new_ts", TestStruct::new);
let x = new_ts();
print(x.type_of()); // prints "Hello"
Getters and setters
Similarly, custom types can expose members by registering a get
and/or set
function.
#[derive(Clone)]
struct TestStruct {
field: String
}
impl TestStruct {
// Returning a 'String' is OK - Rhai converts it into 'ImmutableString'
fn get_field(&mut self) -> String {
self.field.clone()
}
// Remember Rhai uses 'ImmutableString' or '&str' instead of 'String'
fn set_field(&mut self, new_val: ImmutableString) {
// Get a 'String' from an 'ImmutableString'
self.field = (*new_val).clone();
}
fn new() -> Self {
TestStruct { field: "hello" }
}
}
let engine = Engine::new();
engine.register_type::<TestStruct>();
engine.register_get_set("xyz", TestStruct::get_field, TestStruct::set_field);
engine.register_fn("new_ts", TestStruct::new);
// Return result can be 'String' - Rhai will automatically convert it from 'ImmutableString'
let result = engine.eval::<String>(r#"let a = new_ts(); a.xyz = "42"; a.xyz"#)?;
println!("Answer: {}", result); // prints 42
Indexers
Custom types can also expose an indexer by registering an indexer function.
A custom type with an indexer function defined can use the bracket '[]
' notation to get a property value
#[derive(Clone)]
struct TestStruct {
fields: Vec<i64>
}
impl TestStruct {
fn get_field(&mut self, index: i64) -> i64 {
self.fields[index as usize]
}
fn set_field(&mut self, index: i64, value: i64) {
self.fields[index as usize] = value
}
fn new() -> Self {
TestStruct { fields: vec![1, 2, 3, 4, 5] }
}
}
let engine = Engine::new();
engine.register_type::<TestStruct>();
engine.register_fn("new_ts", TestStruct::new);
// Shorthand: engine.register_indexer_get_set(TestStruct::get_field, TestStruct::set_field);
engine.register_indexer_get(TestStruct::get_field);
engine.register_indexer_set(TestStruct::set_field);
let result = engine.eval::<i64>("let a = new_ts(); a[2] = 42; a[2]")?;
println!("Answer: {}", result); // prints 42
For efficiency reasons, indexers cannot be used to overload (i.e. override) built-in indexing operations for arrays and object maps.
Disabling custom types
The custom types API register_type
, register_type_with_name
, register_get
, register_set
, register_get_set
,
register_indexer_get
, register_indexer_set
and register_indexer_get_set
are not available under no_object
.
The indexers API register_indexer_get
, register_indexer_set
and register_indexer_get_set
are also
not available under no_index
.
Printing for custom types
To use custom types for print
and debug
, or convert its value into a string, it is necessary that the following
functions be registered (assuming the custom type is T : Display + Debug
):
Function | Signature | Typical implementation | Usage |
---|---|---|---|
to_string |
` | s: &mut T | -> ImmutableString` |
print |
` | s: &mut T | -> ImmutableString` |
debug |
` | s: &mut T | -> ImmutableString` |
+ |
` | s1: ImmutableString, s: T | -> ImmutableString` |
+ |
` | s: T, s2: ImmutableString | -> ImmutableString` |
+= |
` | s1: &mut ImmutableString, s: T | ` |
Scope
- Initializing and maintaining state
By default, Rhai treats each Engine
invocation as a fresh one, persisting only the functions that have been defined
but no global state. This gives each evaluation a clean starting slate. In order to continue using the same global state
from one invocation to the next, such a state must be manually created and passed in.
All Scope
variables are Dynamic
, meaning they can store values of any type. Under sync
, however,
only types that are Send + Sync
are supported, and the entire Scope
itself will also be Send + Sync
.
This is extremely useful in multi-threaded applications.
In this example, a global state object (a Scope
) is created with a few initialized variables, then the same state is
threaded through multiple invocations:
use rhai::{Engine, Scope, EvalAltResult};
fn main() -> Result<(), Box<EvalAltResult>>
{
let engine = Engine::new();
// First create the state
let mut scope = Scope::new();
// Then push (i.e. add) some initialized variables into the state.
// Remember the system number types in Rhai are i64 (i32 if 'only_i32') ond f64.
// Better stick to them or it gets hard working with the script.
scope.push("y", 42_i64);
scope.push("z", 999_i64);
// 'set_value' adds a variable when one doesn't exist
scope.set_value("s", "hello, world!".to_string()); // remember to use 'String', not '&str'
// First invocation
engine.eval_with_scope::<()>(&mut scope, r"
let x = 4 + 5 - y + z + s.len;
y = 1;
")?;
// Second invocation using the same state
let result = engine.eval_with_scope::<i64>(&mut scope, "x")?;
println!("result: {}", result); // prints 979
// Variable y is changed in the script - read it with 'get_value'
assert_eq!(scope.get_value::<i64>("y").expect("variable y should exist"), 1);
// We can modify scope variables directly with 'set_value'
scope.set_value("y", 42_i64);
assert_eq!(scope.get_value::<i64>("y").expect("variable y should exist"), 42);
Ok(())
}
Engine configuration options
Method | Not available under | Description |
---|---|---|
set_optimization_level |
no_optimize |
Set the amount of script optimizations performed. See script optimization. |
set_max_expr_depths |
unchecked |
Set the maximum nesting levels of an expression/statement. See maximum statement depth. |
set_max_call_levels |
unchecked |
Set the maximum number of function call levels (default 50) to avoid infinite recursion. See maximum call stack depth. |
set_max_operations |
unchecked |
Set the maximum number of operations that a script is allowed to consume. See maximum number of operations. |
set_max_modules |
unchecked |
Set the maximum number of modules that a script is allowed to load. See maximum number of modules. |
set_max_string_size |
unchecked |
Set the maximum length (in UTF-8 bytes) for strings. See maximum length of strings. |
set_max_array_size |
unchecked , no_index |
Set the maximum size for arrays. See maximum size of arrays. |
set_max_map_size |
unchecked , no_object |
Set the maximum number of properties for object maps. See maximum size of object maps. |
Rhai Language Guide
Comments
Comments are C-style, including '/*
... */
' pairs and '//
' for comments to the end of the line.
Comments can be nested.
let /* intruder comment */ name = "Bob";
// This is a very important comment
/* This comment spans
multiple lines, so it
only makes sense that
it is even more important */
/* Fear not, Rhai satisfies all nesting needs with nested comments:
/*/*/*/*/**/*/*/*/*/
*/
Keywords
The following are reserved keywords in Rhai:
Keywords | Usage | Not available under feature |
---|---|---|
true , false |
Boolean constants | |
let , const |
Variable declarations | |
if , else |
Control flow | |
while , loop , for , in , continue , break |
Looping | |
fn , private |
Functions | no_function |
return |
Return values | |
throw |
Return errors | |
import , export , as |
Modules | no_module |
Keywords cannot be the name of a function or variable, unless the relevant exclusive feature is enabled.
For example, fn
is a valid variable name under no_function
.
Statements
Statements are terminated by semicolons ';
' and they are mandatory,
except for the last statement in a block (enclosed by '{
' .. '}
' pairs) where it can be omitted.
A statement can be used anywhere where an expression is expected. These are called, for lack of a more
creative name, "statement expressions." The last statement of a statement block is always the block's
return value when used as a statement.
If the last statement has no return value (e.g. variable definitions, assignments) then it is assumed to be ()
.
let a = 42; // normal assignment statement
let a = foo(42); // normal function call statement
foo < 42; // normal expression as statement
let a = { 40 + 2 }; // 'a' is set to the value of the statement block, which is the value of the last statement
// ^ the last statement does not require a terminating semicolon (although it also works with it)
// ^ semicolon required here to terminate the assignment statement; it is a syntax error without it
4 * 10 + 2 // a statement which is just one expression; no ending semicolon is OK
// because it is the last statement of the whole block
Variables
Variables in Rhai follow normal C naming rules (i.e. must contain only ASCII letters, digits and underscores '_
').
Variable names must start with an ASCII letter or an underscore '_
', must contain at least one ASCII letter,
and must start with an ASCII letter before a digit.
Therefore, names like '_
', '_42
', '3a
' etc. are not legal variable names, but '_c3po
' and 'r2d2
' are.
Variable names are also case sensitive.
Variables are defined using the let
keyword. A variable defined within a statement block is local to that block.
let x = 3; // ok
let _x = 42; // ok
let x_ = 42; // also ok
let _x_ = 42; // still ok
let _ = 123; // <- syntax error: illegal variable name
let _9 = 9; // <- syntax error: illegal variable name
let x = 42; // variable is 'x', lower case
let X = 123; // variable is 'X', upper case
x == 42;
X == 123;
{
let x = 999; // local variable 'x' shadows the 'x' in parent block
x == 999; // access to local 'x'
}
x == 42; // the parent block's 'x' is not changed
Constants
Constants can be defined using the const
keyword and are immutable. Constants follow the same naming rules as variables.
const x = 42;
print(x * 2); // prints 84
x = 123; // <- syntax error: cannot assign to constant
Constants must be assigned a value, not an expression.
const x = 40 + 2; // <- syntax error: cannot assign expression to constant
Numbers
Integer numbers follow C-style format with support for decimal, binary ('0b
'), octal ('0o
') and hex ('0x
') notations.
The default system integer type (also aliased to INT
) is i64
. It can be turned into i32
via the only_i32
feature.
Floating-point numbers are also supported if not disabled with no_float
. The default system floating-point type is i64
(also aliased to FLOAT
).
'_
' separators can be added freely and are ignored within a number.
Format | Type |
---|---|
123_345 , -42 |
i64 in decimal |
0o07_76 |
i64 in octal |
0xabcd_ef |
i64 in hex |
0b0101_1001 |
i64 in binary |
123_456.789 |
f64 |
Numeric operators
Numeric operators generally follow C styles.
Operator | Description | Integers only |
---|---|---|
+ |
Plus | |
- |
Minus | |
* |
Multiply | |
/ |
Divide (integer division if acting on integer types) | |
% |
Modulo (remainder) | |
~ |
Power | |
& |
Binary And bit-mask | Yes |
| |
Binary Or bit-mask | Yes |
^ |
Binary Xor bit-mask | Yes |
<< |
Left bit-shift | Yes |
>> |
Right bit-shift | Yes |
let x = (1 + 2) * (6 - 4) / 2; // arithmetic, with parentheses
let reminder = 42 % 10; // modulo
let power = 42 ~ 2; // power (i64 and f64 only)
let left_shifted = 42 << 3; // left shift
let right_shifted = 42 >> 3; // right shift
let bit_op = 42 | 99; // bit masking
Unary operators
Operator | Description |
---|---|
+ |
Plus |
- |
Negative |
let number = -5;
number = -5 - +5;
Numeric functions
The following standard functions (defined in the BasicMathPackage
but excluded if using a raw Engine
) operate on
i8
, i16
, i32
, i64
, f32
and f64
only:
Function | Description |
---|---|
abs |
absolute value |
to_float |
converts an integer type to f64 |
Floating-point functions
The following standard functions (defined in the BasicMathPackage
but excluded if using a raw Engine
) operate on f64
only:
Category | Functions |
---|---|
Trigonometry | sin , cos , tan , sinh , cosh , tanh in degrees |
Arc-trigonometry | asin , acos , atan , asinh , acosh , atanh in degrees |
Square root | sqrt |
Exponential | exp (base e) |
Logarithmic | ln (base e), log10 (base 10), log (any base) |
Rounding | floor , ceiling , round , int , fraction methods and properties |
Conversion | to_int |
Testing | is_nan , is_finite , is_infinite methods and properties |
Strings and Chars
All strings in Rhai are implemented as ImmutableString
(see standard types).
ImmutableString
should be used in place of the standard Rust type String
when registering functions.
String and character literals follow C-style formatting, with support for Unicode ('\u
xxxx' or '\U
xxxxxxxx')
and hex ('\x
xx') escape sequences.
Hex sequences map to ASCII characters, while '\u
' maps to 16-bit common Unicode code points and '\U
' maps the full,
32-bit extended Unicode code points.
Standard escape sequences:
Escape sequence | Meaning |
---|---|
\\ |
back-slash \ |
\t |
tab |
\r |
carriage-return CR |
\n |
line-feed LF |
\" |
double-quote " in strings |
\' |
single-quote ' in characters |
\x xx |
Unicode in 2-digit hex |
\u xxxx |
Unicode in 4-digit hex |
\U xxxxxxxx |
Unicode in 8-digit hex |
Internally Rhai strings are stored as UTF-8 just like Rust (they are Rust String
's!), but there are major differences.
In Rhai a string is the same as an array of Unicode characters and can be directly indexed (unlike Rust).
This is similar to most other languages where strings are internally represented not as UTF-8 but as arrays of multi-byte
Unicode characters.
Individual characters within a Rhai string can also be replaced just as if the string is an array of Unicode characters.
In Rhai, there is also no separate concepts of String
and &str
as in Rust.
Rhai strings are immutable and can be shared. Modifying a Rhai string actually causes it first to be cloned, and then the modification made to the copy.
Strings can be built up from other strings and types via the +
operator (provided by the MoreStringPackage
but excluded if using a raw Engine
). This is particularly useful when printing output.
type_of()
a string returns "string"
.
let name = "Bob";
let middle_initial = 'C';
let last = "Davis";
let full_name = name + " " + middle_initial + ". " + last;
full_name == "Bob C. Davis";
// String building with different types
let age = 42;
let record = full_name + ": age " + age;
record == "Bob C. Davis: age 42";
// Unlike Rust, Rhai strings can be indexed to get a character
// (disabled with 'no_index')
let c = record[4];
c == 'C';
ts.s = record; // custom type properties can take strings
let c = ts.s[4];
c == 'C';
let c = "foo"[0]; // indexing also works on string literals...
c == 'f';
let c = ("foo" + "bar")[5]; // ... and expressions returning strings
c == 'r';
// Escape sequences in strings
record += " \u2764\n"; // escape sequence of '❤' in Unicode
record == "Bob C. Davis: age 42 ❤\n"; // '\n' = new-line
// Unlike Rust, Rhai strings can be directly modified character-by-character
// (disabled with 'no_index')
record[4] = '\x58'; // 0x58 = 'X'
record == "Bob X. Davis: age 42 ❤\n";
// Use 'in' to test if a substring (or character) exists in a string
"Davis" in record == true;
'X' in record == true;
'C' in record == false;
// Strings can be iterated with a 'for' statement, yielding characters
for ch in record {
print(ch);
}
The maximum allowed length of a string can be controlled via Engine::set_max_string_size
(see maximum length of strings).
Built-in functions
The following standard methods (mostly defined in the MoreStringPackage
but excluded if using a raw Engine
) operate on strings:
Function | Parameter(s) | Description |
---|---|---|
len method and property |
none | returns the number of characters (not number of bytes) in the string |
pad |
character to pad, target length | pads the string with an character to at least a specified length |
+= operator, append |
character/string to append | Adds a character or a string to the end of another string |
clear |
none | empties the string |
truncate |
target length | cuts off the string at exactly a specified number of characters |
contains |
character/sub-string to search for | checks if a certain character or sub-string occurs in the string |
index_of |
character/sub-string to search for, start index (optional) | returns the index that a certain character or sub-string occurs in the string, or -1 if not found |
sub_string |
start index, length (optional) | extracts a sub-string (to the end of the string if length is not specified) |
crop |
start index, length (optional) | retains only a portion of the string (to the end of the string if length is not specified) |
replace |
target character/sub-string, replacement character/string | replaces a sub-string with another |
trim |
none | trims the string of whitespace at the beginning and end |
Examples
let full_name == " Bob C. Davis ";
full_name.len == 14;
full_name.trim();
full_name.len == 12;
full_name == "Bob C. Davis";
full_name.pad(15, '$');
full_name.len == 15;
full_name == "Bob C. Davis$$$";
let n = full_name.index_of('$');
n == 12;
full_name.index_of("$$", n + 1) == 13;
full_name.sub_string(n, 3) == "$$$";
full_name.truncate(6);
full_name.len == 6;
full_name == "Bob C.";
full_name.replace("Bob", "John");
full_name.len == 7;
full_name == "John C.";
full_name.contains('C') == true;
full_name.contains("John") == true;
full_name.crop(5);
full_name == "C.";
full_name.crop(0, 1);
full_name == "C";
full_name.clear();
full_name.len == 0;
Arrays
Arrays are first-class citizens in Rhai. Like C, arrays are accessed with zero-based, non-negative integer indices.
Array literals are built within square brackets '[
' ... ']
' and separated by commas ',
'.
All elements stored in an array are Dynamic
, and the array can freely grow or shrink with elements added or removed.
The Rust type of a Rhai array is rhai::Array
. type_of()
an array returns "array"
.
Arrays are disabled via the no_index
feature.
Built-in functions
The following methods (mostly defined in the BasicArrayPackage
but excluded if using a raw Engine
) operate on arrays:
Function | Parameter(s) | Description |
---|---|---|
push |
element to insert | inserts an element at the end |
+= operator, append |
array to append | concatenates the second array to the end of the first |
+ operator |
first array, second array | concatenates the first array with the second |
insert |
element to insert, position (beginning if <= 0, end if >= length) |
insert an element at a certain index |
pop |
none | removes the last element and returns it (() if empty) |
shift |
none | removes the first element and returns it (() if empty) |
remove |
index | removes an element at a particular index and returns it, or returns () if the index is not valid |
len method and property |
none | returns the number of elements |
pad |
element to pad, target length | pads the array with an element to at least a specified length |
clear |
none | empties the array |
truncate |
target length | cuts off the array at exactly a specified length (discarding all subsequent elements) |
Examples
let y = [2, 3]; // array literal with 2 elements
y.insert(0, 1); // insert element at the beginning
y.insert(999, 4); // insert element at the end
y.len == 4;
y[0] == 1;
y[1] == 2;
y[2] == 3;
y[3] == 4;
(1 in y) == true; // use 'in' to test if an item exists in the array
(42 in y) == false; // 'in' uses the '==' operator (which users can override)
// to check if the target item exists in the array
y[1] = 42; // array elements can be reassigned
(42 in y) == true;
y.remove(2) == 3; // remove element
y.len == 3;
y[2] == 4; // elements after the removed element are shifted
ts.list = y; // arrays can be assigned completely (by value copy)
let foo = ts.list[1];
foo == 42;
let foo = [1, 2, 3][0];
foo == 1;
fn abc() {
[42, 43, 44] // a function returning an array
}
let foo = abc()[0];
foo == 42;
let foo = y[0];
foo == 1;
y.push(4); // 4 elements
y.push(5); // 5 elements
y.len == 5;
let first = y.shift(); // remove the first element, 4 elements remaining
first == 1;
let last = y.pop(); // remove the last element, 3 elements remaining
last == 5;
y.len == 3;
for item in y { // arrays can be iterated with a 'for' statement
print(item);
}
y.pad(10, "hello"); // pad the array up to 10 elements
y.len == 10;
y.truncate(5); // truncate the array to 5 elements
y.len == 5;
y.clear(); // empty the array
y.len == 0;
push
and pad
are only defined for standard built-in types. For custom types, type-specific versions must be registered:
engine.register_fn("push", |list: &mut Array, item: MyType| list.push(Box::new(item)) );
The maximum allowed size of an array can be controlled via Engine::set_max_array_size
(see maximum size of arrays).
Object maps
Object maps are dictionaries. Properties are all Dynamic
and can be freely added and retrieved.
Object map literals are built within braces '#{
' ... '}
' (name :
value syntax similar to Rust)
and separated by commas ',
'. The property name can be a simple variable name following the same
naming rules as variables, or an arbitrary string literal.
Property values can be accessed via the dot notation (object .
property) or index notation (object [
property ]
).
The dot notation allows only property names that follow the same naming rules as variables.
The index notation allows setting/getting properties of arbitrary names (even the empty string).
Important: Trying to read a non-existent property returns ()
instead of causing an error.
The Rust type of a Rhai object map is rhai::Map
. type_of()
an object map returns "map"
.
Object maps are disabled via the no_object
feature.
Built-in functions
The following methods (defined in the BasicMapPackage
but excluded if using a raw Engine
) operate on object maps:
Function | Parameter(s) | Description |
---|---|---|
has |
property name | does the object map contain a property of a particular name? |
len |
none | returns the number of properties |
clear |
none | empties the object map |
remove |
property name | removes a certain property and returns it (() if the property does not exist) |
+= operator, mixin |
second object map | mixes in all the properties of the second object map to the first (values of properties with the same names replace the existing values) |
+ operator |
first object map, second object map | merges the first object map with the second |
keys |
none | returns an array of all the property names (in random order), not available under no_index |
values |
none | returns an array of all the property values (in random order), not available under no_index |
Examples
let y = #{ // object map literal with 3 properties
a: 1,
bar: "hello",
"baz!$@": 123.456, // like JS, you can use any string as property names...
"": false, // even the empty string!
a: 42 // <- syntax error: duplicated property name
};
y.a = 42; // access via dot notation
y.baz!$@ = 42; // <- syntax error: only proper variable names allowed in dot notation
y."baz!$@" = 42; // <- syntax error: strings not allowed in dot notation
y.a == 42;
y["baz!$@"] == 123.456; // access via index notation
"baz!$@" in y == true; // use 'in' to test if a property exists in the object map
("z" in y) == false;
ts.obj = y; // object maps can be assigned completely (by value copy)
let foo = ts.list.a;
foo == 42;
let foo = #{ a:1, b:2, c:3 }["a"];
foo == 1;
fn abc() {
#{ a:1, b:2, c:3 } // a function returning an object map
}
let foo = abc().b;
foo == 2;
let foo = y["a"];
foo == 42;
y.has("a") == true;
y.has("xyz") == false;
y.xyz == (); // a non-existing property returns '()'
y["xyz"] == ();
y.len() == 3;
y.remove("a") == 1; // remove property
y.len() == 2;
y.has("a") == false;
for name in keys(y) { // get an array of all the property names via the 'keys' function
print(name);
}
for val in values(y) { // get an array of all the property values via the 'values' function
print(val);
}
y.clear(); // empty the object map
y.len() == 0;
The maximum allowed size of an object map can be controlled via Engine::set_max_map_size
(see maximum size of object maps).
Parsing from JSON
The syntax for an object map is extremely similar to JSON, with the exception of null
values which can
technically be mapped to ()
. A valid JSON string does not start with a hash character #
while a
Rhai object map does - that's the major difference!
JSON numbers are all floating-point while Rhai supports integers (INT
) and floating-point (FLOAT
) if
the no_float
feature is not enabled. Most common generators of JSON data distinguish between
integer and floating-point values by always serializing a floating-point number with a decimal point
(i.e. 123.0
instead of 123
which is assumed to be an integer). This style can be used successfully
with Rhai object maps.
Use the parse_json
method to parse a piece of JSON into an object map:
// JSON string - notice that JSON property names are always quoted
// notice also that comments are acceptable within the JSON string
let json = r#"{
"a": 1, // <- this is an integer number
"b": true,
"c": 123.0, // <- this is a floating-point number
"$d e f!": "hello", // <- any text can be a property name
"^^^!!!": [1,42,"999"], // <- value can be array or another hash
"z": null // <- JSON 'null' value
}
"#;
// Parse the JSON expression as an object map
// Set the second boolean parameter to true in order to map 'null' to '()'
let map = engine.parse_json(json, true)?;
map.len() == 6; // 'map' contains all properties in the JSON string
// Put the object map into a 'Scope'
let mut scope = Scope::new();
scope.push("map", map);
let result = engine.eval_with_scope::<INT>(r#"map["^^^!!!"].len()"#)?;
result == 3; // the object map is successfully used in the script
timestamp
's
Timestamps are provided by the BasicTimePackage
(excluded if using a raw Engine
) via the timestamp
function.
The Rust type of a timestamp is std::time::Instant
. type_of()
a timestamp returns "timestamp"
.
Built-in functions
The following methods (defined in the BasicTimePackage
but excluded if using a raw Engine
) operate on timestamps:
Function | Parameter(s) | Description |
---|---|---|
elapsed method and property |
none | returns the number of seconds since the timestamp |
- operator |
later timestamp, earlier timestamp | returns the number of seconds between the two timestamps |
Examples
let now = timestamp();
// Do some lengthy operation...
if now.elapsed > 30.0 {
print("takes too long (over 30 seconds)!")
}
Comparison operators
Comparing most values of the same data type work out-of-the-box for all standard types supported by the system.
However, if using a raw Engine
without loading any packages, comparisons can only be made between a limited
set of types (see built-in operators).
42 == 42; // true
42 > 42; // false
"hello" > "foo"; // true
"42" == 42; // false
Comparing two values of different data types, or of unknown data types, always results in false
,
except for '!=
' (not equals) which results in true
. This is in line with intuition.
42 == 42.0; // false - i64 cannot be compared with f64
42 != 42.0; // true - i64 cannot be compared with f64
42 > "42"; // false - i64 cannot be compared with string
42 <= "42"; // false - i64 cannot be compared with string
let ts = new_ts(); // custom type
ts == 42; // false - types cannot be compared
ts != 42; // true - types cannot be compared
Boolean operators
Operator | Description |
---|---|
! |
Boolean Not |
&& |
Boolean And (short-circuits) |
|| |
Boolean Or (short-circuits) |
& |
Boolean And (doesn't short-circuit) |
| |
Boolean Or (doesn't short-circuit) |
Double boolean operators &&
and ||
short-circuit, meaning that the second operand will not be evaluated
if the first one already proves the condition wrong.
Single boolean operators &
and |
always evaluate both operands.
this() || that(); // that() is not evaluated if this() is true
this() && that(); // that() is not evaluated if this() is false
this() | that(); // both this() and that() are evaluated
this() & that(); // both this() and that() are evaluated
Compound assignment operators
let number = 5;
number += 4; // number = number + 4
number -= 3; // number = number - 3
number *= 2; // number = number * 2
number /= 1; // number = number / 1
number %= 3; // number = number % 3
number <<= 2; // number = number << 2
number >>= 1; // number = number >> 1
The +=
operator can also be used to build strings:
let my_str = "abc";
my_str += "ABC";
my_str += 12345;
my_str == "abcABC12345"
if
statement
if foo(x) {
print("It's true!");
} else if bar == baz {
print("It's true again!");
} else if ... {
:
} else if ... {
:
} else {
print("It's finally false!");
}
All branches of an if
statement must be enclosed within braces '{
' .. '}
', even when there is only one statement.
Like Rust, there is no ambiguity regarding which if
clause a statement belongs to.
if (decision) print("I've decided!");
// ^ syntax error, expecting '{' in statement block
Like Rust, if
statements can also be used as expressions, replacing the ? :
conditional operators in other C-like languages.
// The following is equivalent to C: int x = 1 + (decision ? 42 : 123) / 2;
let x = 1 + if decision { 42 } else { 123 } / 2;
x == 22;
let x = if decision { 42 }; // no else branch defaults to '()'
x == ();
while
loop
let x = 10;
while x > 0 {
x = x - 1;
if x < 6 { continue; } // skip to the next iteration
print(x);
if x == 5 { break; } // break out of while loop
}
Infinite loop
let x = 10;
loop {
x = x - 1;
if x > 5 { continue; } // skip to the next iteration
print(x);
if x == 0 { break; } // break out of loop
}
for
loop
Iterating through a range or an array is provided by the for
... in
loop.
// Iterate through string, yielding characters
let s = "hello, world!";
for ch in s {
if ch > 'z' { continue; } // skip to the next iteration
print(ch);
if x == '@' { break; } // break out of for loop
}
// Iterate through array
let array = [1, 3, 5, 7, 9, 42];
for x in array {
if x > 10 { continue; } // skip to the next iteration
print(x);
if x == 42 { break; } // break out of for loop
}
// The 'range' function allows iterating from first to last-1
for x in range(0, 50) {
if x > 10 { continue; } // skip to the next iteration
print(x);
if x == 42 { break; } // break out of for loop
}
// The 'range' function also takes a step
for x in range(0, 50, 3) { // step by 3
if x > 10 { continue; } // skip to the next iteration
print(x);
if x == 42 { break; } // break out of for loop
}
// Iterate through object map
let map = #{a:1, b:3, c:5, d:7, e:9};
// Property names are returned in random order
for x in keys(map) {
if x > 10 { continue; } // skip to the next iteration
print(x);
if x == 42 { break; } // break out of for loop
}
// Property values are returned in random order
for val in values(map) {
print(val);
}
return
-ing values
return; // equivalent to return ();
return 123 + 456; // returns 579
Errors and throw
-ing exceptions
All of Engine
's evaluation/consuming methods return Result<T, Box<rhai::EvalAltResult>>
with EvalAltResult
holding error information. To deliberately return an error during an evaluation, use the throw
keyword.
if some_bad_condition_has_happened {
throw error; // 'throw' takes a string as the exception text
}
throw; // defaults to empty exception text: ""
Exceptions thrown via throw
in the script can be captured by matching Err(EvalAltResult::ErrorRuntime(
reason ,
position ))
with the exception text captured by the first parameter.
let result = engine.eval::<i64>(r#"
let x = 42;
if x > 0 {
throw x + " is too large!";
}
"#);
println!(result); // prints "Runtime error: 42 is too large! (line 5, position 15)"
Functions
Rhai supports defining functions in script (unless disabled with no_function
):
fn add(x, y) {
return x + y;
}
print(add(2, 3));
Implicit return
Just like in Rust, an implicit return can be used. In fact, the last statement of a block is always the block's return value
regardless of whether it is terminated with a semicolon ';'
. This is different from Rust.
fn add(x, y) { // implicit return:
x + y; // value of the last statement (no need for ending semicolon)
// is used as the return value
}
fn add2(x) {
return x + 2; // explicit return
}
print(add(2, 3)); // prints 5
print(add2(42)); // prints 44
No access to external scope
Functions are not closures. They do not capture the calling environment and can only access their own parameters. They cannot access variables external to the function itself.
let x = 42;
fn foo() { x } // <- syntax error: variable 'x' doesn't exist
Passing arguments by value
Functions defined in script always take Dynamic
parameters (i.e. the parameter can be of any type).
It is important to remember that all arguments are passed by value, so all functions are pure
(i.e. they never modify their arguments).
Any update to an argument will not be reflected back to the caller.
This can introduce subtle bugs, if not careful, especially when using the method-call style.
fn change(s) { // 's' is passed by value
s = 42; // only a COPY of 's' is changed
}
let x = 500;
x.change(); // de-sugars to 'change(x)'
x == 500; // 'x' is NOT changed!
Global definitions only
Functions can only be defined at the global level, never inside a block or another function.
// Global level is OK
fn add(x, y) {
x + y
}
// The following will not compile
fn do_addition(x) {
fn add_y(n) { // <- syntax error: functions cannot be defined inside another function
n + y
}
add_y(x)
}
Unlike C/C++, functions can be defined anywhere within the global level. A function does not need to be defined prior to being used in a script; a statement in the script can freely call a function defined afterwards. This is similar to Rust and many other modern languages.
Function overloading
Functions defined in script can be overloaded by arity (i.e. they are resolved purely upon the function's name
and number of parameters, but not parameter types since all parameters are the same type - Dynamic
).
New definitions overwrite previous definitions of the same name and number of parameters.
fn foo(x,y,z) { print("Three!!! " + x + "," + y + "," + z) }
fn foo(x) { print("One! " + x) }
fn foo(x,y) { print("Two! " + x + "," + y) }
fn foo() { print("None.") }
fn foo(x) { print("HA! NEW ONE! " + x) } // overwrites previous definition
foo(1,2,3); // prints "Three!!! 1,2,3"
foo(42); // prints "HA! NEW ONE! 42"
foo(1,2); // prints "Two!! 1,2"
foo(); // prints "None."
Members and methods
Properties and methods in a Rust custom type registered with the Engine
can be called just like in Rust.
Unlike functions defined in script (for which all arguments are passed by value),
native Rust functions may mutate the object (or the first argument if called in normal function call style).
let a = new_ts(); // constructor function
a.field = 500; // property setter
a.update(); // method call, 'a' can be modified
update(a); // <- this de-sugars to 'a.update()' thus if 'a' is a simple variable
// unlike scripted functions, 'a' can be modified and is not a copy
let array = [ a ];
update(array[0]); // <- 'array[0]' is an expression returning a calculated value,
// a transient (i.e. a copy) so this statement has no effect
// except waste a lot of time cloning
array[0].update(); // <- call this method-call style will update 'a'
Custom types, properties and methods can be disabled via the no_object
feature.
print
and debug
The print
and debug
functions default to printing to stdout
, with debug
using standard debug formatting.
print("hello"); // prints hello to stdout
print(1 + 2 + 3); // prints 6 to stdout
print("hello" + 42); // prints hello42 to stdout
debug("world!"); // prints "world!" to stdout using debug formatting
Overriding print
and debug
with callback functions
When embedding Rhai into an application, it is usually necessary to trap print
and debug
output
(for logging into a tracking log, for example) with the Engine::on_print
and Engine::on_debug
methods:
// Any function or closure that takes an '&str' argument can be used to override
// 'print' and 'debug'
engine.on_print(|x| println!("hello: {}", x));
engine.on_debug(|x| println!("DEBUG: {}", x));
// Example: quick-'n-dirty logging
let logbook = Arc::new(RwLock::new(Vec::<String>::new()));
// Redirect print/debug output to 'log'
let log = logbook.clone();
engine.on_print(move |s| log.write().unwrap().push(format!("entry: {}", s)));
let log = logbook.clone();
engine.on_debug(move |s| log.write().unwrap().push(format!("DEBUG: {}", s)));
// Evaluate script
engine.eval::<()>(script)?;
// 'logbook' captures all the 'print' and 'debug' output
for entry in logbook.read().unwrap().iter() {
println!("{}", entry);
}
Modules
Rhai allows organizing code (functions, both Rust-based or script-based, and variables) into modules.
Modules can be disabled via the no_module
feature.
Exporting variables and functions from modules
A module is a single script (or pre-compiled AST
) containing global variables and functions.
The export
statement, which can only be at global level, exposes selected variables as members of a module.
Variables not exported are private and invisible to the outside.
On the other hand, all functions are automatically exported, unless it is explicitly opt-out with the private
prefix.
Functions declared private
are invisible to the outside.
Everything exported from a module is constant (read-only).
// This is a module script.
fn inc(x) { x + 1 } // script-defined function - default public
private fn foo() {} // private function - invisible to outside
let private = 123; // variable not exported - default invisible to outside
let x = 42; // this will be exported below
export x; // the variable 'x' is exported under its own name
export x as answer; // the variable 'x' is exported under the alias 'answer'
// another script can load this module and access 'x' as 'module::answer'
Importing modules
A module can be imported via the import
statement, and its members are accessed via '::
' similar to C++.
import "crypto" as crypto; // import the script file 'crypto.rhai' as a module
crypto::encrypt(secret); // use functions defined under the module via '::'
crypto::hash::sha256(key); // sub-modules are also supported
print(crypto::status); // module variables are constants
crypto::status = "off"; // <- runtime error - cannot modify a constant
import
statements are scoped, meaning that they are only accessible inside the scope that they're imported.
They can appear anywhere a normal statement can be, but in the vast majority of cases import
statements are
group at the beginning of a script. It is not advised to deviate from this common practice unless there is
a Very Good Reason™. Especially, do not place an import
statement within a loop; doing so will repeatedly
re-load the same module during every iteration of the loop!
let mod = "crypto";
if secured { // new block scope
import mod as crypto; // import module (the path needs not be a constant string)
crypto::encrypt(key); // use a function in the module
} // the module disappears at the end of the block scope
crypto::encrypt(others); // <- this causes a run-time error because the 'crypto' module
// is no longer available!
for x in range(0, 1000) {
import "crypto" as c; // <- importing a module inside a loop is a Very Bad Idea™
c.encrypt(something);
}
Creating custom modules with Rust
To load a custom module (written in Rust) into an Engine
, first create a Module
type, add variables/functions into it,
then finally push it into a custom Scope
. This has the equivalent effect of putting an import
statement
at the beginning of any script run.
use rhai::{Engine, Scope, Module, i64};
let mut engine = Engine::new();
let mut scope = Scope::new();
let mut module = Module::new(); // new module
module.set_var("answer", 41_i64); // variable 'answer' under module
module.set_fn_1("inc", |x: i64| Ok(x+1)); // use the 'set_fn_XXX' API to add functions
// Push the module into the custom scope under the name 'question'
// This is equivalent to 'import "..." as question;'
scope.push_module("question", module);
// Use module-qualified variables
engine.eval_expression_with_scope::<i64>(&scope, "question::answer + 1")? == 42;
// Call module-qualified functions
engine.eval_expression_with_scope::<i64>(&scope, "question::inc(question::answer)")? == 42;
Creating a module from an AST
It is easy to convert a pre-compiled AST
into a module: just use Module::eval_ast_as_new
.
Don't forget the export
statement, otherwise there will be no variables exposed by the module
other than non-private
functions (unless that's intentional).
use rhai::{Engine, Module};
let engine = Engine::new();
// Compile a script into an 'AST'
let ast = engine.compile(r#"
// Functions become module functions
fn calc(x) {
x + 1
}
fn add_len(x, y) {
x + y.len
}
// Imported modules can become sub-modules
import "another module" as extra;
// Variables defined at global level can become module variables
const x = 123;
let foo = 41;
let hello;
// Variable values become constant module variable values
foo = calc(foo);
hello = "hello, " + foo + " worlds!";
// Finally, export the variables and modules
export
x as abc, // aliased variable name
foo,
hello,
extra as foobar; // export sub-module
"#)?;
// Convert the 'AST' into a module, using the 'Engine' to evaluate it first
let module = Module::eval_ast_as_new(Scope::new(), &ast, &engine)?;
// 'module' now can be loaded into a custom 'Scope' for future use. It contains:
// - sub-module: 'foobar' (renamed from 'extra')
// - functions: 'calc', 'add_len'
// - variables: 'abc' (renamed from 'x'), 'foo', 'hello'
Module resolvers
When encountering an import
statement, Rhai attempts to resolve the module based on the path string.
Module Resolvers are service types that implement the ModuleResolver
trait.
There are a number of standard resolvers built into Rhai, the default being the FileModuleResolver
which simply loads a script file based on the path (with .rhai
extension attached) and execute it to form a module.
Built-in module resolvers are grouped under the rhai::module_resolvers
module namespace.
Module Resolver | Description |
---|---|
FileModuleResolver |
The default module resolution service, not available under no_std . Loads a script file (based off the current directory) with .rhai extension.The base directory can be changed via the FileModuleResolver::new_with_path() constructor function.FileModuleResolver::create_module() loads a script file and returns a module. |
StaticModuleResolver |
Loads modules that are statically added. This can be used under no_std . |
An Engine
's module resolver is set via a call to Engine::set_module_resolver
:
// Use the 'StaticModuleResolver'
let resolver = rhai::module_resolvers::StaticModuleResolver::new();
engine.set_module_resolver(Some(resolver));
// Effectively disable 'import' statements by setting module resolver to 'None'
engine.set_module_resolver(None);
Ruggedization - protect against DoS attacks
For scripting systems open to untrusted user-land scripts, it is always best to limit the amount of resources used by a script so that it does not consume more resources that it is allowed to.
The most important resources to watch out for are:
- Memory: A malicous script may continuously grow a string, an array or object map until all memory is consumed. It may also create a large array or object map literal that exhausts all memory during parsing.
- CPU: A malicous script may run an infinite tight loop that consumes all CPU cycles.
- Time: A malicous script may run indefinitely, thereby blocking the calling system which is waiting for a result.
- Stack: A malicous script may attempt an infinite recursive call that exhausts the call stack. Alternatively, it may create a degenerated deep expression with so many levels that the parser exhausts the call stack when parsing the expression; or even deeply-nested statement blocks, if nested deep enough.
- Overflows: A malicous script may deliberately cause numeric over-flows and/or under-flows, divide by zero, and/or create bad floating-point representations, in order to crash the system.
- Files: A malicous script may continuously
import
an external module within an infinite loop, thereby putting heavy load on the file-system (or even the network if the file is not local). Furthermore, the module script may simplyimport
itself in an infinite recursion. Even when modules are not created from files, they still typically consume a lot of resources to load. - Data: A malicous script may attempt to read from and/or write to data that it does not own. If this happens, it is a severe security breach and may put the entire system at risk.
Maximum length of strings
Rhai by default does not limit how long a string can be.
This can be changed via the Engine::set_max_string_size
method, with zero being unlimited (the default).
let mut engine = Engine::new();
engine.set_max_string_size(500); // allow strings only up to 500 bytes long (in UTF-8 format)
engine.set_max_string_size(0); // allow unlimited string length
A script attempting to create a string literal longer than the maximum length will terminate with a parse error.
Any script operation that produces a string longer than the maximum also terminates the script with an error result.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Be conservative when setting a maximum limit and always consider the fact that a registered function may grow
a string's length without Rhai noticing until the very end. For instance, the built-in '+
' operator for strings
concatenates two strings together to form one longer string; if both strings are slightly below the maximum
length limit, the resultant string may be almost twice the maximum length.
Maximum size of arrays
Rhai by default does not limit how large an array can be.
This can be changed via the Engine::set_max_array_size
method, with zero being unlimited (the default).
let mut engine = Engine::new();
engine.set_max_array_size(500); // allow arrays only up to 500 items
engine.set_max_array_size(0); // allow unlimited arrays
A script attempting to create an array literal larger than the maximum will terminate with a parse error.
Any script operation that produces an array larger than the maximum also terminates the script with an error result.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Be conservative when setting a maximum limit and always consider the fact that a registered function may grow
an array's size without Rhai noticing until the very end.
For instance, the built-in '+
' operator for arrays concatenates two arrays together to form one larger array;
if both arrays are slightly below the maximum size limit, the resultant array may be almost twice the maximum size.
As a malicious script may create a deeply-nested array which consumes huge amounts of memory while each individual array still stays under the maximum size limit, Rhai also recursively adds up the sizes of all strings, arrays and object maps contained within each array to make sure that the aggregate sizes of none of these data structures exceed their respective maximum size limits (if any).
Maximum size of object maps
Rhai by default does not limit how large (i.e. the number of properties) an object map can be.
This can be changed via the Engine::set_max_map_size
method, with zero being unlimited (the default).
let mut engine = Engine::new();
engine.set_max_map_size(500); // allow object maps with only up to 500 properties
engine.set_max_map_size(0); // allow unlimited object maps
A script attempting to create an object map literal with more properties than the maximum will terminate with a parse error.
Any script operation that produces an object map with more properties than the maximum also terminates the script with an error result.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Be conservative when setting a maximum limit and always consider the fact that a registered function may grow
an object map's size without Rhai noticing until the very end. For instance, the built-in '+
' operator for object maps
concatenates two object maps together to form one larger object map; if both object maps are slightly below the maximum
size limit, the resultant object map may be almost twice the maximum size.
As a malicious script may create a deeply-nested object map which consumes huge amounts of memory while each individual object map still stays under the maximum size limit, Rhai also recursively adds up the sizes of all strings, arrays and object maps contained within each object map to make sure that the aggregate sizes of none of these data structures exceed their respective maximum size limits (if any).
Maximum number of operations
Rhai by default does not limit how much time or CPU a script consumes.
This can be changed via the Engine::set_max_operations
method, with zero being unlimited (the default).
let mut engine = Engine::new();
engine.set_max_operations(500); // allow only up to 500 operations for this script
engine.set_max_operations(0); // allow unlimited operations
The concept of one single operation in Rhai is volatile - it roughly equals one expression node, loading one variable/constant, one operator call, one iteration of a loop, or one function call etc. with sub-expressions, statements and function calls executed inside these contexts accumulated on top. A good rule-of-thumb is that one simple non-trivial expression consumes on average 5-10 operations.
One operation can take an unspecified amount of time and real CPU cycles, depending on the particulars. For example, loading a constant consumes very few CPU cycles, while calling an external Rust function, though also counted as only one operation, may consume much more computing resources. To help visualize, think of an operation as roughly equals to one instruction of a hypothetical CPU which includes specialized instructions, such as function call, load module etc., each taking up one CPU cycle to execute.
The operations count is intended to be a very course-grained measurement of the amount of CPU that a script has consumed, allowing the system to impose a hard upper limit on computing resources.
A script exceeding the maximum operations count terminates with an error result.
This can be disabled via the unchecked
feature for higher performance (but higher risks as well).
Tracking progress and force-terminate script run
It is impossible to know when, or even whether, a script run will end
(a.k.a. the Halting Problem).
When dealing with third-party untrusted scripts that may be malicious, to track evaluation progress and
to force-terminate a script prematurely (for any reason), provide a closure to the Engine::on_progress
method:
let mut engine = Engine::new();
engine.on_progress(|&count| { // parameter is '&u64' - number of operations already performed
if count % 1000 == 0 {
println!("{}", count); // print out a progress log every 1,000 operations
}
true // return 'true' to continue running the script
// return 'false' to immediately terminate the script
});
The closure passed to Engine::on_progress
will be called once for every operation.
Return false
to terminate the script immediately.
Notice that the operations count value passed into the closure does not indicate the percentage of work already done by the script (and thus it is not real progress tracking), because it is impossible to determine how long a script may run. It is possible, however, to calculate this percentage based on an estimated total number of operations for a typical run.
Maximum number of modules
Rhai by default does not limit how many modules can be loaded via import
statements.
This can be changed via the Engine::set_max_modules
method. Notice that setting the maximum number
of modules to zero does not indicate unlimited modules, but disallows loading any module altogether.
let mut engine = Engine::new();
engine.set_max_modules(5); // allow loading only up to 5 modules
engine.set_max_modules(0); // disallow loading any module (maximum = zero)
engine.set_max_modules(1000); // set to a large number for effectively unlimited modules
A script attempting to load more than the maximum number of modules will terminate with an error result.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Maximum call stack depth
Rhai by default limits function calls to a maximum depth of 128 levels (16 levels in debug build).
This limit may be changed via the Engine::set_max_call_levels
method.
When setting this limit, care must be also taken to the evaluation depth of each statement within the function. It is entirely possible for a malicous script to embed a recursive call deep inside a nested expression or statement block (see maximum statement depth).
The limit can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
let mut engine = Engine::new();
engine.set_max_call_levels(10); // allow only up to 10 levels of function calls
engine.set_max_call_levels(0); // allow no function calls at all (max depth = zero)
A script exceeding the maximum call stack depth will terminate with an error result.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Maximum statement depth
Rhai by default limits statements and expressions nesting to a maximum depth of 128 (which should be plenty) when they are at global level, but only a depth of 32 when they are within function bodies. For debug builds, these limits are set further downwards to 32 and 16 respectively.
That is because it is possible to overflow the Engine
's stack when it tries to
recursively parse an extremely deeply-nested code stream.
// The following, if long enough, can easily cause stack overflow during parsing.
let a = (1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(...)+1)))))))))));
This limit may be changed via the Engine::set_max_expr_depths
method. There are two limits to set,
one for the maximum depth at global level, and the other for function bodies.
let mut engine = Engine::new();
engine.set_max_expr_depths(50, 5); // allow nesting up to 50 layers of expressions/statements
// at global level, but only 5 inside functions
Beware that there may be multiple layers for a simple language construct, even though it may correspond to only one AST node. That is because the Rhai parser internally runs a recursive chain of function calls and it is important that a malicous script does not panic the parser in the first place.
Functions are placed under stricter limits because of the multiplicative effect of recursion. A script can effectively call itself while deep inside an expression chain within the function body, thereby overflowing the stack even when the level of recursion is within limit.
Make sure that C x ( 5 + F ) + S
layered calls do not cause a stack overflow, where:
C
= maximum call stack depth,F
= maximum statement depth for functions,S
= maximum statement depth at global level.
A script exceeding the maximum nesting depths will terminate with a parsing error.
The malicous AST
will not be able to get past parsing in the first place.
This check can be disabled via the unchecked
feature for higher performance
(but higher risks as well).
Checked arithmetic
By default, all arithmetic calculations in Rhai are checked, meaning that the script terminates with an error whenever it detects a numeric over-flow/under-flow condition or an invalid floating-point operation, instead of crashing the entire system.
This checking can be turned off via the unchecked
feature for higher performance
(but higher risks as well).
Blocking access to external data
Rhai is sand-boxed so a script can never read from outside its own environment.
Furthermore, an Engine
created non-mut
cannot mutate any state outside of itself;
so it is highly recommended that Engine
's are created immutable as much as possible.
let mut engine = Engine::new(); // create mutable 'Engine'
engine.register_get("add", add); // configure 'engine'
let engine = engine; // shadow the variable so that 'engine' is now immutable
Script optimization
Rhai includes an optimizer that tries to optimize a script after parsing.
This can reduce resource utilization and increase execution speed.
Script optimization can be turned off via the no_optimize
feature.
For example, in the following:
{
let x = 999; // NOT eliminated: variable may be used later on (perhaps even an 'eval')
123; // eliminated: no effect
"hello"; // eliminated: no effect
[1, 2, x, x*2, 5]; // eliminated: no effect
foo(42); // NOT eliminated: the function 'foo' may have side-effects
666 // NOT eliminated: this is the return value of the block,
// and the block is the last one so this is the return value of the whole script
}
Rhai attempts to eliminate dead code (i.e. code that does nothing, for example an expression by itself as a statement, which is allowed in Rhai). The above script optimizes to:
{
let x = 999;
foo(42);
666
}
Constants propagation is used to remove dead code:
const ABC = true;
if ABC || some_work() { print("done!"); } // 'ABC' is constant so it is replaced by 'true'...
if true || some_work() { print("done!"); } // since '||' short-circuits, 'some_work' is never called
if true { print("done!"); } // <- the line above is equivalent to this
print("done!"); // <- the line above is further simplified to this
// because the condition is always true
These are quite effective for template-based machine-generated scripts where certain constant values
are spliced into the script text in order to turn on/off certain sections.
For fixed script texts, the constant values can be provided in a user-defined Scope
object
to the Engine
for use in compilation and evaluation.
Beware, however, that most operators are actually function calls, and those functions can be overridden, so they are not optimized away:
const DECISION = 1;
if DECISION == 1 { // NOT optimized away because you can define
: // your own '==' function to override the built-in default!
:
} else if DECISION == 2 { // same here, NOT optimized away
:
} else if DECISION == 3 { // same here, NOT optimized away
:
} else {
:
}
because no operator functions will be run (in order not to trigger side-effects) during the optimization process
(unless the optimization level is set to OptimizationLevel::Full
). So, instead, do this:
const DECISION_1 = true;
const DECISION_2 = false;
const DECISION_3 = false;
if DECISION_1 {
: // this branch is kept and promoted to the parent level
} else if DECISION_2 {
: // this branch is eliminated
} else if DECISION_3 {
: // this branch is eliminated
} else {
: // this branch is eliminated
}
In general, boolean constants are most effective for the optimizer to automatically prune
large if
-else
branches because they do not depend on operators.
Alternatively, turn the optimizer to OptimizationLevel::Full
.
Here be dragons!
Optimization levels
There are actually three levels of optimizations: None
, Simple
and Full
.
-
None
is obvious - no optimization on the AST is performed. -
Simple
(default) performs only relatively safe optimizations without causing side-effects (i.e. it only relies on static analysis and will not actually perform any function calls). -
Full
is much more aggressive, including running functions on constant arguments to determine their result. One benefit to this is that many more optimization opportunities arise, especially with regards to comparison operators.
An Engine
's optimization level is set via a call to Engine::set_optimization_level
:
// Turn on aggressive optimizations
engine.set_optimization_level(rhai::OptimizationLevel::Full);
If it is ever needed to re-optimize an AST
, use the optimize_ast
method:
// Compile script to AST
let ast = engine.compile("40 + 2")?;
// Create a new 'Scope' - put constants in it to aid optimization if using 'OptimizationLevel::Full'
let scope = Scope::new();
// Re-optimize the AST
let ast = engine.optimize_ast(&scope, &ast, OptimizationLevel::Full);
When the optimization level is OptimizationLevel::Full
, the Engine
assumes all functions to be pure and will eagerly
evaluated all function calls with constant arguments, using the result to replace the call. This also applies to all operators
(which are implemented as functions). For instance, the same example above:
// When compiling the following with OptimizationLevel::Full...
const DECISION = 1;
// this condition is now eliminated because 'DECISION == 1'
if DECISION == 1 { // is a function call to the '==' function, and it returns 'true'
print("hello!"); // this block is promoted to the parent level
} else {
print("boo!"); // this block is eliminated because it is never reached
}
print("hello!"); // <- the above is equivalent to this
// ('print' and 'debug' are handled specially)
Because of the eager evaluation of functions, many constant expressions will be evaluated and replaced by the result.
This does not happen with OptimizationLevel::Simple
which doesn't assume all functions to be pure.
// When compiling the following with OptimizationLevel::Full...
let x = (1+2)*3-4/5%6; // <- will be replaced by 'let x = 9'
let y = (1>2) || (3<=4); // <- will be replaced by 'let y = true'
Side-effect considerations
All of Rhai's built-in functions (and operators which are implemented as functions) are pure (i.e. they do not mutate state
nor cause any side-effects, with the exception of print
and debug
which are handled specially) so using
OptimizationLevel::Full
is usually quite safe unless custom types and functions are registered.
If custom functions are registered, they may be called (or maybe not, if the calls happen to lie within a pruned code block).
If custom functions are registered to overload built-in operators, they will also be called when the operators are used
(in an if
statement, for example) causing side-effects.
Therefore, the rule-of-thumb is: always register custom types and functions after compiling scripts if
OptimizationLevel::Full
is used. DO NOT depend on knowledge that the functions have no side-effects,
because those functions can change later on and, when that happens, existing scripts may break in subtle ways.
Volatility considerations
Even if a custom function does not mutate state nor cause side-effects, it may still be volatile,
i.e. it depends on the external environment and is not pure.
A perfect example is a function that gets the current time - obviously each run will return a different value!
The optimizer, when using OptimizationLevel::Full
, will merrily assume that all functions are pure,
so when it finds constant arguments (or none) it eagerly executes the function call and replaces it with the result.
This causes the script to behave differently from the intended semantics.
Therefore, avoid using OptimizationLevel::Full
if non-pure custom types and/or functions are involved.
Subtle semantic changes
Some optimizations can alter subtle semantics of the script. For example:
if true { // condition always true
123.456; // eliminated
hello; // eliminated, EVEN THOUGH the variable doesn't exist!
foo(42) // promoted up-level
}
foo(42) // <- the above optimizes to this
Nevertheless, if the original script were evaluated instead, it would have been an error - the variable hello
doesn't exist,
so the script would have been terminated at that point with an error return.
In fact, any errors inside a statement that has been eliminated will silently disappear:
print("start!");
if my_decision { /* do nothing... */ } // eliminated due to no effect
print("end!");
// The above optimizes to:
print("start!");
print("end!");
In the script above, if my_decision
holds anything other than a boolean value, the script should have been terminated due to
a type error. However, after optimization, the entire if
statement is removed (because an access to my_decision
produces
no side-effects), thus the script silently runs to completion without errors.
Turning off optimizations
It is usually a bad idea to depend on a script failing or such kind of subtleties, but if it turns out to be necessary
(why? I would never guess), turn it off by setting the optimization level to OptimizationLevel::None
.
let engine = rhai::Engine::new();
// Turn off the optimizer
engine.set_optimization_level(rhai::OptimizationLevel::None);
Alternatively, turn off optimizations via the no_optimize
feature.
eval
- or "How to Shoot Yourself in the Foot even Easier"
Saving the best for last: in addition to script optimizations, there is the ever-dreaded... eval
function!
let x = 10;
fn foo(x) { x += 12; x }
let script = "let y = x;"; // build a script
script += "y += foo(y);";
script += "x + y";
let result = eval(script); // <- look, JS, we can also do this!
print("Answer: " + result); // prints 42
print("x = " + x); // prints 10: functions call arguments are passed by value
print("y = " + y); // prints 32: variables defined in 'eval' persist!
eval("{ let z = y }"); // to keep a variable local, use a statement block
print("z = " + z); // <- error: variable 'z' not found
"print(42)".eval(); // <- nope... method-call style doesn't work
Script segments passed to eval
execute inside the current Scope
, so they can access and modify everything,
including all variables that are visible at that position in code! It is almost as if the script segments were
physically pasted in at the position of the eval
call. But because of this, new functions cannot be defined
within an eval
call, since functions can only be defined at the global level, not inside a function call!
let script = "x += 32";
let x = 10;
eval(script); // variable 'x' in the current scope is visible!
print(x); // prints 42
// The above is equivalent to:
let script = "x += 32";
let x = 10;
x += 32;
print(x);
For those who subscribe to the (very sensible) motto of "eval
is evil",
disable eval
by overloading it, probably with something that throws.
fn eval(script) { throw "eval is evil! I refuse to run " + script }
let x = eval("40 + 2"); // 'eval' here throws "eval is evil! I refuse to run 40 + 2"
Or overload it from Rust:
fn alt_eval(script: String) -> Result<(), Box<EvalAltResult>> {
Err(format!("eval is evil! I refuse to run {}", script).into())
}
engine.register_result_fn("eval", alt_eval);
There is even a package named EvalPackage
which implements the disabling override:
use rhai::Engine;
use rhai::packages::Package // load the 'Package' trait to use packages
use rhai::packages::EvalPackage; // the 'eval' package disables 'eval'
let mut engine = Engine::new();
let package = EvalPackage::new(); // create the package
engine.load_package(package.get()); // load the package