4.6 KiB
Function Pointers
{{#include ../links.md}}
It is possible to store a function pointer in a variable just like a normal value. In fact, internally a function pointer simply stores the name of the function as a string.
Call a function pointer using the call
method.
Built-in methods
The following standard methods (mostly defined in the [BasicFnPackage
][packages] but excluded if
using a [raw Engine
]) operate on [strings]:
Function | Parameter(s) | Description |
---|---|---|
name method and property |
none | returns the name of the function encapsulated by the function pointer |
call |
arguments | calls the function matching the function pointer's name with the arguments |
Examples
fn foo(x) { 41 + x }
let func = Fn("foo"); // use the 'Fn' function to create a function pointer
print(func); // prints 'Fn(foo)'
let func = fn_name.Fn(); // <- error: 'Fn' cannot be called in method-call style
func.type_of() == "Fn"; // type_of() as function pointer is 'Fn'
func.name == "foo";
func.call(1) == 42; // call a function pointer with the 'call' method
foo(1) == 42; // <- the above de-sugars to this
call(func, 1); // normal function call style also works for 'call'
let len = Fn("len"); // 'Fn' also works with registered native Rust functions
len.call("hello") == 5;
let add = Fn("+"); // 'Fn' works with built-in operators also
add.call(40, 2) == 42;
let fn_name = "hello"; // the function name does not have to exist yet
let hello = Fn(fn_name + "_world");
hello.call(0); // error: function not found - 'hello_world (i64)'
Global Namespace Only
Because of their dynamic nature, function pointers cannot refer to functions in [import
]-ed [modules].
They can only refer to functions within the global [namespace][function namespace].
See [function namespaces] for more details.
import "foo" as f; // assume there is 'f::do_work()'
f::do_work(); // works!
let p = Fn("f::do_work"); // error: invalid function name
fn do_work_now() { // call it from a local function
import "foo" as f;
f::do_work();
}
let p = Fn("do_work_now");
p.call(); // works!
Dynamic Dispatch
The purpose of function pointers is to enable rudimentary dynamic dispatch, meaning to determine, at runtime, which function to call among a group.
Although it is possible to simulate dynamic dispatch via a number and a large if-then-else-if
statement,
using function pointers significantly simplifies the code.
let x = some_calculation();
// These are the functions to call depending on the value of 'x'
fn method1(x) { ... }
fn method2(x) { ... }
fn method3(x) { ... }
// Traditional - using decision variable
let func = sign(x);
// Dispatch with if-statement
if func == -1 {
method1(42);
} else if func == 0 {
method2(42);
} else if func == 1 {
method3(42);
}
// Using pure function pointer
let func = if x < 0 {
Fn("method1")
} else if x == 0 {
Fn("method2")
} else if x > 0 {
Fn("method3")
}
// Dynamic dispatch
func.call(42);
// Using functions map
let map = [ Fn("method1"), Fn("method2"), Fn("method3") ];
let func = sign(x) + 1;
// Dynamic dispatch
map[func].call(42);
Binding the this
Pointer
When call
is called as a method but not on a FnPtr
value, it is possible to dynamically dispatch
to a function call while binding the object in the method call to the this
pointer of the function.
To achieve this, pass the FnPtr
value as the first argument to call
:
fn add(x) { // define function which uses 'this'
this += x;
}
let func = Fn("add"); // function pointer to 'add'
func.call(1); // error: 'this' pointer is not bound
let x = 41;
func.call(x, 1); // error: function 'add (i64, i64)' not found
call(func, x, 1); // error: function 'add (i64, i64)' not found
x.call(func, 1); // 'this' is bound to 'x', dispatched to 'func'
x == 42;
Beware that this only works for method-call style. Normal function-call style cannot bind
the this
pointer (for syntactic reasons).
Therefore, obviously, binding the this
pointer is unsupported under [no_object
].