9.5 KiB
Function Pointers
{{#include ../links.md}}
It is possible to store a function pointer in a variable just like a normal value. In fact, internally a function pointer simply stores the name of the function as a string.
A function pointer is created via the Fn
function, which takes a [string] parameter.
Call a function pointer using the call
method.
Built-in methods
The following standard methods (mostly defined in the [BasicFnPackage
][packages] but excluded if
using a [raw Engine
]) operate on function pointers:
Function | Parameter(s) | Description |
---|---|---|
name method and property |
none | returns the name of the function encapsulated by the function pointer |
is_anonymous method and property |
none | does the function pointer refer to an [anonymous function]? Not available under [no_function ]. |
call |
arguments | calls the function matching the function pointer's name with the arguments |
Examples
fn foo(x) { 41 + x }
let func = Fn("foo"); // use the 'Fn' function to create a function pointer
print(func); // prints 'Fn(foo)'
let func = fn_name.Fn(); // <- error: 'Fn' cannot be called in method-call style
func.type_of() == "Fn"; // type_of() as function pointer is 'Fn'
func.name == "foo";
func.call(1) == 42; // call a function pointer with the 'call' method
foo(1) == 42; // <- the above de-sugars to this
call(func, 1); // normal function call style also works for 'call'
let len = Fn("len"); // 'Fn' also works with registered native Rust functions
len.call("hello") == 5;
let add = Fn("+"); // 'Fn' works with built-in operators also
add.call(40, 2) == 42;
let fn_name = "hello"; // the function name does not have to exist yet
let hello = Fn(fn_name + "_world");
hello.call(0); // error: function not found - 'hello_world (i64)'
Global Namespace Only
Because of their dynamic nature, function pointers cannot refer to functions in [import
]-ed [modules].
They can only refer to functions within the global [namespace][function namespace].
See [Function Namespaces] for more details.
import "foo" as f; // assume there is 'f::do_work()'
f::do_work(); // works!
let p = Fn("f::do_work"); // error: invalid function name
fn do_work_now() { // call it from a local function
f::do_work();
}
let p = Fn("do_work_now");
p.call(); // works!
Dynamic Dispatch
The purpose of function pointers is to enable rudimentary dynamic dispatch, meaning to determine, at runtime, which function to call among a group.
Although it is possible to simulate dynamic dispatch via a number and a large if-then-else-if
statement,
using function pointers significantly simplifies the code.
let x = some_calculation();
// These are the functions to call depending on the value of 'x'
fn method1(x) { ... }
fn method2(x) { ... }
fn method3(x) { ... }
// Traditional - using decision variable
let func = sign(x);
// Dispatch with if-statement
if func == -1 {
method1(42);
} else if func == 0 {
method2(42);
} else if func == 1 {
method3(42);
}
// Using pure function pointer
let func = if x < 0 {
Fn("method1")
} else if x == 0 {
Fn("method2")
} else if x > 0 {
Fn("method3")
}
// Dynamic dispatch
func.call(42);
// Using functions map
let map = [ Fn("method1"), Fn("method2"), Fn("method3") ];
let func = sign(x) + 1;
// Dynamic dispatch
map[func].call(42);
Bind the this
Pointer
When call
is called as a method but not on a function pointer, it is possible to dynamically dispatch
to a function call while binding the object in the method call to the this
pointer of the function.
To achieve this, pass the function pointer as the first argument to call
:
fn add(x) { // define function which uses 'this'
this += x;
}
let func = Fn("add"); // function pointer to 'add'
func.call(1); // error: 'this' pointer is not bound
let x = 41;
func.call(x, 1); // error: function 'add (i64, i64)' not found
call(func, x, 1); // error: function 'add (i64, i64)' not found
x.call(func, 1); // 'this' is bound to 'x', dispatched to 'func'
x == 42;
Beware that this only works for method-call style. Normal function-call style cannot bind
the this
pointer (for syntactic reasons).
Therefore, obviously, binding the this
pointer is unsupported under [no_object
].
Call a Function Pointer in Rust
It is completely normal to register a Rust function with an [Engine
] that takes parameters
whose types are function pointers. The Rust type in question is rhai::FnPtr
.
A function pointer in Rhai is essentially syntactic sugar wrapping the name of a function
to call in script. Therefore, the script's [AST
] is required to call a function pointer,
as well as the entire execution context that the script is running in.
For a rust function taking a function pointer as parameter, the Low-Level API must be used to register the function.
Essentially, use the low-level Engine::register_raw_fn
method to register the function.
FnPtr::call_dynamic
is used to actually call the function pointer, passing to it the
current native call context, the this
pointer, and other necessary arguments.
use rhai::{Engine, Module, Dynamic, FnPtr, NativeCallContext};
let mut engine = Engine::new();
// Define Rust function in required low-level API signature
fn call_fn_ptr_with_value(context: NativeCallContext, args: &mut [&mut Dynamic])
-> Result<Dynamic, Box<EvalAltResult>>
{
// 'args' is guaranteed to contain enough arguments of the correct types
let fp = std::mem::take(args[1]).cast::<FnPtr>(); // 2nd argument - function pointer
let value = args[2].clone(); // 3rd argument - function argument
let this_ptr = args.get_mut(0).unwrap(); // 1st argument - this pointer
// Use 'FnPtr::call_dynamic' to call the function pointer.
// Beware, private script-defined functions will not be found.
fp.call_dynamic(context, Some(this_ptr), [value])
}
// Register a Rust function using the low-level API
engine.register_raw_fn("super_call",
&[ // parameter types
std::any::TypeId::of::<i64>(),
std::any::TypeId::of::<FnPtr>(),
std::any::TypeId::of::<i64>()
],
call_fn_ptr_with_value
);
NativeCallContext
FnPtr::call_dynamic
takes a parameter of type NativeCallContext
which holds the native call context
of the particular call to a registered Rust function. It is a type that exposes the following:
Field | Type | Description |
---|---|---|
engine() |
&Engine |
the current [Engine ], with all configurations and settings.This is sometimes useful for calling a script-defined function within the same evaluation context using [ Engine::call_fn ][call_fn ], or calling a [function pointer]. |
imports() |
Option<&Imports> |
reference to the current stack of [modules] imported via import statements (if any) |
iter_namespaces() |
impl Iterator<Item = &Module> |
iterator of the namespaces (as [modules]) containing all script-defined functions |
This type is normally provided by the [Engine
] (e.g. when using Engine::register_fn_raw
).
However, it may also be manually constructed from a tuple:
use rhai::{Engine, FnPtr, NativeCallContext};
let engine = Engine::new();
// Compile script to AST
let mut ast = engine.compile(
r#"
let test = "hello";
|x| test + x // this creates an closure
"#,
)?;
// Save the closure together with captured variables
let fn_ptr = engine.eval_ast::<FnPtr>(&ast)?;
// Get rid of the script, retaining only functions
ast.retain_functions(|_, _, _| true);
// Create native call context
let context = NativeCallContext::new(
&engine, // the 'Engine'
&[ast.as_ref()] // function namespace from the 'AST'
);
// 'f' captures: the engine, the AST, and the closure
let f = move |x: i64| fn_ptr.call_dynamic(context, None, [x.into()]);
// 'f' can be called like a normal function
let result = f(42)?;