rhai/doc/src/language/fn-ptr.md

221 lines
6.7 KiB
Markdown
Raw Normal View History

2020-06-25 18:07:57 +08:00
Function Pointers
=================
2020-06-26 10:39:18 +08:00
{{#include ../links.md}}
2020-06-25 18:07:57 +08:00
It is possible to store a _function pointer_ in a variable just like a normal value.
In fact, internally a function pointer simply stores the _name_ of the function as a string.
A function pointer is created via the `Fn` function, which takes a [string] parameter.
2020-07-16 12:09:31 +08:00
Call a function pointer using the `call` method.
2020-06-25 18:07:57 +08:00
2020-06-25 19:22:14 +08:00
Built-in methods
----------------
2020-06-25 18:07:57 +08:00
2020-06-27 10:43:57 +08:00
The following standard methods (mostly defined in the [`BasicFnPackage`][packages] but excluded if
2020-10-15 20:05:23 +08:00
using a [raw `Engine`]) operate on function pointers:
2020-06-25 18:07:57 +08:00
2020-09-30 23:02:01 +08:00
| Function | Parameter(s) | Description |
| -------------------------- | ------------ | ---------------------------------------------------------------------------- |
| `name` method and property | _none_ | returns the name of the function encapsulated by the function pointer |
| `call` | _arguments_ | calls the function matching the function pointer's name with the _arguments_ |
2020-06-25 18:07:57 +08:00
Examples
--------
```rust
fn foo(x) { 41 + x }
let func = Fn("foo"); // use the 'Fn' function to create a function pointer
print(func); // prints 'Fn(foo)'
let func = fn_name.Fn(); // <- error: 'Fn' cannot be called in method-call style
func.type_of() == "Fn"; // type_of() as function pointer is 'Fn'
func.name == "foo";
func.call(1) == 42; // call a function pointer with the 'call' method
foo(1) == 42; // <- the above de-sugars to this
2020-07-16 12:09:31 +08:00
call(func, 1); // normal function call style also works for 'call'
2020-06-25 18:07:57 +08:00
let len = Fn("len"); // 'Fn' also works with registered native Rust functions
len.call("hello") == 5;
let add = Fn("+"); // 'Fn' works with built-in operators also
add.call(40, 2) == 42;
let fn_name = "hello"; // the function name does not have to exist yet
let hello = Fn(fn_name + "_world");
2020-06-29 23:55:28 +08:00
hello.call(0); // error: function not found - 'hello_world (i64)'
```
Global Namespace Only
--------------------
2020-09-28 22:14:19 +08:00
Because of their dynamic nature, function pointers cannot refer to functions in [`import`]-ed [modules].
They can only refer to functions within the global [namespace][function namespace].
2020-10-15 20:05:23 +08:00
See _[Function Namespaces]_ for more details.
2020-06-29 23:55:28 +08:00
```rust
import "foo" as f; // assume there is 'f::do_work()'
2020-06-29 23:55:28 +08:00
f::do_work(); // works!
2020-06-29 23:55:28 +08:00
let p = Fn("f::do_work"); // error: invalid function name
2020-06-29 23:55:28 +08:00
fn do_work_now() { // call it from a local function
2020-06-29 23:55:28 +08:00
import "foo" as f;
f::do_work();
2020-06-29 23:55:28 +08:00
}
let p = Fn("do_work_now");
2020-06-29 23:55:28 +08:00
p.call(); // works!
2020-06-25 18:07:57 +08:00
```
2020-06-25 19:22:14 +08:00
Dynamic Dispatch
----------------
The purpose of function pointers is to enable rudimentary _dynamic dispatch_, meaning to determine,
at runtime, which function to call among a group.
Although it is possible to simulate dynamic dispatch via a number and a large `if-then-else-if` statement,
using function pointers significantly simplifies the code.
```rust
let x = some_calculation();
// These are the functions to call depending on the value of 'x'
fn method1(x) { ... }
fn method2(x) { ... }
fn method3(x) { ... }
// Traditional - using decision variable
let func = sign(x);
// Dispatch with if-statement
if func == -1 {
method1(42);
} else if func == 0 {
method2(42);
} else if func == 1 {
method3(42);
}
// Using pure function pointer
let func = if x < 0 {
Fn("method1")
} else if x == 0 {
Fn("method2")
} else if x > 0 {
Fn("method3")
}
// Dynamic dispatch
func.call(42);
// Using functions map
let map = [ Fn("method1"), Fn("method2"), Fn("method3") ];
let func = sign(x) + 1;
// Dynamic dispatch
map[func].call(42);
```
2020-10-15 20:05:23 +08:00
Bind the `this` Pointer
----------------------
2020-10-15 20:05:23 +08:00
When `call` is called as a _method_ but not on a function pointer, it is possible to dynamically dispatch
to a function call while binding the object in the method call to the `this` pointer of the function.
2020-10-15 20:05:23 +08:00
To achieve this, pass the function pointer as the _first_ argument to `call`:
```rust
2020-09-30 23:02:01 +08:00
fn add(x) { // define function which uses 'this'
this += x;
}
let func = Fn("add"); // function pointer to 'add'
func.call(1); // error: 'this' pointer is not bound
let x = 41;
func.call(x, 1); // error: function 'add (i64, i64)' not found
call(func, x, 1); // error: function 'add (i64, i64)' not found
x.call(func, 1); // 'this' is bound to 'x', dispatched to 'func'
x == 42;
```
Beware that this only works for _method-call_ style. Normal function-call style cannot bind
the `this` pointer (for syntactic reasons).
2020-07-19 17:14:55 +08:00
Therefore, obviously, binding the `this` pointer is unsupported under [`no_object`].
2020-10-15 20:05:23 +08:00
Call a Function Pointer in Rust
------------------------------
It is completely normal to register a Rust function with an [`Engine`] that takes parameters
whose types are function pointers. The Rust type in question is `rhai::FnPtr`.
A function pointer in Rhai is essentially syntactic sugar wrapping the _name_ of a function
to call in script. Therefore, the script's [`AST`] is required to call a function pointer,
as well as the entire _execution context_ that the script is running in.
For a rust function taking a function pointer as parameter, the [Low-Level API](../rust/register-raw.md)
must be used to register the function.
Essentially, use the low-level `Engine::register_raw_fn` method to register the function.
`FnPtr::call_dynamic` is used to actually call the function pointer, passing to it the
current scripting [`Engine`], collection of script-defined functions, the `this` pointer,
and other necessary arguments.
```rust
use rhai::{Engine, Module, Dynamic, FnPtr};
let mut engine = Engine::new();
// Define Rust function in required low-level API signature
fn call_fn_ptr_with_value(engine: &Engine, lib: &Module, args: &mut [&mut Dynamic])
-> Result<Dynamic, Box<EvalAltResult>>
{
// 'args' is guaranteed to contain enough arguments of the correct types
let fp = std::mem::take(args[1]).cast::<FnPtr>(); // 2nd argument - function pointer
let value = args[2].clone(); // 3rd argument - function argument
let this_ptr = args.get_mut(0).unwrap(); // 1st argument - this pointer
// Use 'FnPtr::call_dynamic' to call the function pointer.
// Beware, private script-defined functions will not be found.
fp.call_dynamic(engine, lib, Some(this_ptr), [value])
}
// Register a Rust function using the low-level API
engine.register_raw_fn("super_call",
&[ // parameter types
std::any::TypeId::of::<i64>(),
std::any::TypeId::of::<FnPtr>(),
std::any::TypeId::of::<i64>()
],
call_fn_ptr_with_value
);
```