rhai/src/engine.rs
2020-06-17 16:49:51 +08:00

2487 lines
94 KiB
Rust

//! Main module defining the script evaluation `Engine`.
use crate::any::{Dynamic, Union, Variant};
use crate::calc_fn_hash;
use crate::error::ParseErrorType;
use crate::fn_native::{CallableFunction, Callback, FnCallArgs};
use crate::module::{resolvers, Module, ModuleResolver};
use crate::optimize::OptimizationLevel;
use crate::packages::{Package, PackageLibrary, PackagesCollection, StandardPackage};
use crate::parser::{Expr, FnAccess, ImmutableString, ReturnType, ScriptFnDef, Stmt, AST, INT};
use crate::r#unsafe::{unsafe_cast_var_name_to_lifetime, unsafe_mut_cast_to_lifetime};
use crate::result::EvalAltResult;
use crate::scope::{EntryType as ScopeEntryType, Scope};
use crate::token::Position;
use crate::utils::StaticVec;
#[cfg(not(feature = "no_float"))]
use crate::parser::FLOAT;
use crate::stdlib::{
any::TypeId,
boxed::Box,
collections::HashMap,
format,
iter::{empty, once},
mem,
string::{String, ToString},
vec::Vec,
};
/// Variable-sized array of `Dynamic` values.
///
/// Not available under the `no_index` feature.
#[cfg(not(feature = "no_index"))]
pub type Array = Vec<Dynamic>;
/// Hash map of `Dynamic` values with `String` keys.
///
/// Not available under the `no_object` feature.
#[cfg(not(feature = "no_object"))]
pub type Map = HashMap<String, Dynamic>;
#[cfg(not(feature = "unchecked"))]
#[cfg(debug_assertions)]
pub const MAX_CALL_STACK_DEPTH: usize = 16;
#[cfg(not(feature = "unchecked"))]
#[cfg(debug_assertions)]
pub const MAX_EXPR_DEPTH: usize = 32;
#[cfg(not(feature = "unchecked"))]
#[cfg(debug_assertions)]
pub const MAX_FUNCTION_EXPR_DEPTH: usize = 16;
#[cfg(not(feature = "unchecked"))]
#[cfg(not(debug_assertions))]
pub const MAX_CALL_STACK_DEPTH: usize = 128;
#[cfg(not(feature = "unchecked"))]
#[cfg(not(debug_assertions))]
pub const MAX_EXPR_DEPTH: usize = 128;
#[cfg(not(feature = "unchecked"))]
#[cfg(not(debug_assertions))]
pub const MAX_FUNCTION_EXPR_DEPTH: usize = 32;
#[cfg(feature = "unchecked")]
pub const MAX_CALL_STACK_DEPTH: usize = usize::MAX;
#[cfg(feature = "unchecked")]
pub const MAX_EXPR_DEPTH: usize = 0;
#[cfg(feature = "unchecked")]
pub const MAX_FUNCTION_EXPR_DEPTH: usize = 0;
pub const KEYWORD_PRINT: &str = "print";
pub const KEYWORD_DEBUG: &str = "debug";
pub const KEYWORD_TYPE_OF: &str = "type_of";
pub const KEYWORD_EVAL: &str = "eval";
pub const FUNC_TO_STRING: &str = "to_string";
pub const FUNC_GETTER: &str = "get$";
pub const FUNC_SETTER: &str = "set$";
pub const FUNC_INDEXER_GET: &str = "$index$get$";
pub const FUNC_INDEXER_SET: &str = "$index$set$";
/// A type that encapsulates a mutation target for an expression with side effects.
#[derive(Debug)]
enum Target<'a> {
/// The target is a mutable reference to a `Dynamic` value somewhere.
Ref(&'a mut Dynamic),
/// The target is a temporary `Dynamic` value (i.e. the mutation can cause no side effects).
Value(Dynamic),
/// The target is a character inside a String.
/// This is necessary because directly pointing to a char inside a String is impossible.
StringChar(&'a mut Dynamic, usize, Dynamic),
}
impl Target<'_> {
/// Is the `Target` a reference pointing to other data?
pub fn is_ref(&self) -> bool {
match self {
Self::Ref(_) => true,
Self::Value(_) | Self::StringChar(_, _, _) => false,
}
}
/// Is the `Target` an owned value?
pub fn is_value(&self) -> bool {
match self {
Self::Ref(_) => false,
Self::Value(_) => true,
Self::StringChar(_, _, _) => false,
}
}
/// Is the `Target` a specific type?
pub fn is<T: Variant + Clone>(&self) -> bool {
match self {
Target::Ref(r) => r.is::<T>(),
Target::Value(r) => r.is::<T>(),
Target::StringChar(_, _, _) => TypeId::of::<T>() == TypeId::of::<char>(),
}
}
/// Get the value of the `Target` as a `Dynamic`, cloning a referenced value if necessary.
pub fn clone_into_dynamic(self) -> Dynamic {
match self {
Self::Ref(r) => r.clone(), // Referenced value is cloned
Self::Value(v) => v, // Owned value is simply taken
Self::StringChar(_, _, ch) => ch, // Character is taken
}
}
/// Get a mutable reference from the `Target`.
pub fn as_mut(&mut self) -> &mut Dynamic {
match self {
Self::Ref(r) => *r,
Self::Value(ref mut r) => r,
Self::StringChar(_, _, ref mut r) => r,
}
}
/// Update the value of the `Target`.
/// Position in `EvalAltResult` is None and must be set afterwards.
pub fn set_value(&mut self, new_val: Dynamic) -> Result<(), Box<EvalAltResult>> {
match self {
Self::Ref(r) => **r = new_val,
Self::Value(_) => {
return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS(
Position::none(),
)))
}
Self::StringChar(Dynamic(Union::Str(ref mut s)), index, _) => {
// Replace the character at the specified index position
let new_ch = new_val
.as_char()
.map_err(|_| EvalAltResult::ErrorCharMismatch(Position::none()))?;
let mut chars: StaticVec<char> = s.chars().collect();
let ch = chars[*index];
// See if changed - if so, update the String
if ch != new_ch {
chars[*index] = new_ch;
*s = chars.iter().collect::<String>().into();
}
}
_ => unreachable!(),
}
Ok(())
}
}
impl<'a> From<&'a mut Dynamic> for Target<'a> {
fn from(value: &'a mut Dynamic) -> Self {
Self::Ref(value)
}
}
impl<T: Into<Dynamic>> From<T> for Target<'_> {
fn from(value: T) -> Self {
Self::Value(value.into())
}
}
/// A type that holds all the current states of the Engine.
///
/// # Safety
///
/// This type uses some unsafe code, mainly for avoiding cloning of local variable names via
/// direct lifetime casting.
#[derive(Debug, Eq, PartialEq, Hash, Clone, Default)]
pub struct State {
/// Normally, access to variables are parsed with a relative offset into the scope to avoid a lookup.
/// In some situation, e.g. after running an `eval` statement, subsequent offsets become mis-aligned.
/// When that happens, this flag is turned on to force a scope lookup by name.
pub always_search: bool,
/// Level of the current scope. The global (root) level is zero, a new block (or function call)
/// is one level higher, and so on.
pub scope_level: usize,
/// Number of operations performed.
pub operations: u64,
/// Number of modules loaded.
pub modules: usize,
}
impl State {
/// Create a new `State`.
pub fn new() -> Self {
Default::default()
}
}
/// Get a script-defined function definition from a module.
pub fn get_script_function_by_signature<'a>(
module: &'a Module,
name: &str,
params: usize,
public_only: bool,
) -> Option<&'a ScriptFnDef> {
// Qualifiers (none) + function name + number of arguments.
let hash_script = calc_fn_hash(empty(), name, params, empty());
let func = module.get_fn(hash_script)?;
if !func.is_script() {
return None;
}
let fn_def = func.get_fn_def();
match fn_def.access {
FnAccess::Private if public_only => None,
FnAccess::Private | FnAccess::Public => Some(&fn_def),
}
}
/// Rhai main scripting engine.
///
/// ```
/// # fn main() -> Result<(), Box<rhai::EvalAltResult>> {
/// use rhai::Engine;
///
/// let engine = Engine::new();
///
/// let result = engine.eval::<i64>("40 + 2")?;
///
/// println!("Answer: {}", result); // prints 42
/// # Ok(())
/// # }
/// ```
///
/// Currently, `Engine` is neither `Send` nor `Sync`. Use the `sync` feature to make it `Send + Sync`.
pub struct Engine {
/// A unique ID identifying this scripting `Engine`.
pub id: Option<String>,
/// A module containing all functions directly loaded into the Engine.
pub(crate) global_module: Module,
/// A collection of all library packages loaded into the Engine.
pub(crate) packages: PackagesCollection,
/// A module resolution service.
pub(crate) module_resolver: Option<Box<dyn ModuleResolver>>,
/// A hashmap mapping type names to pretty-print names.
pub(crate) type_names: HashMap<String, String>,
/// Callback closure for implementing the `print` command.
pub(crate) print: Callback<str, ()>,
/// Callback closure for implementing the `debug` command.
pub(crate) debug: Callback<str, ()>,
/// Callback closure for progress reporting.
pub(crate) progress: Option<Callback<u64, bool>>,
/// Optimize the AST after compilation.
pub(crate) optimization_level: OptimizationLevel,
/// Maximum levels of call-stack to prevent infinite recursion.
///
/// Defaults to 16 for debug builds and 128 for non-debug builds.
pub(crate) max_call_stack_depth: usize,
/// Maximum depth of statements/expressions at global level.
pub(crate) max_expr_depth: usize,
/// Maximum depth of statements/expressions in functions.
pub(crate) max_function_expr_depth: usize,
/// Maximum number of operations allowed to run.
pub(crate) max_operations: u64,
/// Maximum number of modules allowed to load.
pub(crate) max_modules: usize,
/// Maximum length of a string.
pub(crate) max_string_size: usize,
/// Maximum length of an array.
pub(crate) max_array_size: usize,
/// Maximum number of properties in a map.
pub(crate) max_map_size: usize,
}
impl Default for Engine {
fn default() -> Self {
// Create the new scripting Engine
let mut engine = Self {
id: None,
packages: Default::default(),
global_module: Default::default(),
#[cfg(not(feature = "no_module"))]
#[cfg(not(feature = "no_std"))]
#[cfg(not(target_arch = "wasm32"))]
module_resolver: Some(Box::new(resolvers::FileModuleResolver::new())),
#[cfg(any(feature = "no_module", feature = "no_std", target_arch = "wasm32",))]
module_resolver: None,
type_names: HashMap::new(),
// default print/debug implementations
print: Box::new(default_print),
debug: Box::new(default_print),
// progress callback
progress: None,
// optimization level
#[cfg(feature = "no_optimize")]
optimization_level: OptimizationLevel::None,
#[cfg(not(feature = "no_optimize"))]
optimization_level: OptimizationLevel::Simple,
max_call_stack_depth: MAX_CALL_STACK_DEPTH,
max_expr_depth: MAX_EXPR_DEPTH,
max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH,
max_operations: 0,
max_modules: usize::MAX,
max_string_size: 0,
max_array_size: 0,
max_map_size: 0,
};
engine.load_package(StandardPackage::new().get());
engine
}
}
/// Make getter function
pub fn make_getter(id: &str) -> String {
format!("{}{}", FUNC_GETTER, id)
}
/// Extract the property name from a getter function name.
fn extract_prop_from_getter(fn_name: &str) -> Option<&str> {
#[cfg(not(feature = "no_object"))]
{
if fn_name.starts_with(FUNC_GETTER) {
Some(&fn_name[FUNC_GETTER.len()..])
} else {
None
}
}
#[cfg(feature = "no_object")]
{
None
}
}
/// Make setter function
pub fn make_setter(id: &str) -> String {
format!("{}{}", FUNC_SETTER, id)
}
/// Extract the property name from a setter function name.
fn extract_prop_from_setter(fn_name: &str) -> Option<&str> {
#[cfg(not(feature = "no_object"))]
{
if fn_name.starts_with(FUNC_SETTER) {
Some(&fn_name[FUNC_SETTER.len()..])
} else {
None
}
}
#[cfg(feature = "no_object")]
{
None
}
}
/// Print/debug to stdout
fn default_print(s: &str) {
#[cfg(not(feature = "no_std"))]
#[cfg(not(target_arch = "wasm32"))]
println!("{}", s);
}
/// Search for a variable within the scope
fn search_scope<'s, 'a>(
scope: &'s mut Scope,
state: &mut State,
expr: &'a Expr,
) -> Result<(&'s mut Dynamic, &'a str, ScopeEntryType, Position), Box<EvalAltResult>> {
let ((name, pos), modules, hash_var, index) = match expr {
Expr::Variable(x) => x.as_ref(),
_ => unreachable!(),
};
// Check if it is qualified
if let Some(modules) = modules.as_ref() {
// Qualified - check if the root module is directly indexed
let index = if state.always_search {
None
} else {
modules.index()
};
let module = if let Some(index) = index {
scope
.get_mut(scope.len() - index.get())
.0
.downcast_mut::<Module>()
.unwrap()
} else {
// Find the root module in the scope
let (id, root_pos) = modules.get(0);
scope
.find_module_internal(id)
.ok_or_else(|| Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos)))?
};
let target = module.get_qualified_var_mut(name, *hash_var, *pos)?;
// Module variables are constant
Ok((target, name, ScopeEntryType::Constant, *pos))
} else {
// Unqualified - check if it is directly indexed
let index = if state.always_search { None } else { *index };
let index = if let Some(index) = index {
scope.len() - index.get()
} else {
// Find the variable in the scope
scope
.get_index(name)
.ok_or_else(|| Box::new(EvalAltResult::ErrorVariableNotFound(name.into(), *pos)))?
.0
};
let (val, typ) = scope.get_mut(index);
Ok((val, name, typ, *pos))
}
}
impl Engine {
/// Create a new `Engine`
pub fn new() -> Self {
Default::default()
}
/// Create a new `Engine` with minimal built-in functions.
/// Use the `load_package` method to load additional packages of functions.
pub fn new_raw() -> Self {
Self {
id: None,
packages: Default::default(),
global_module: Default::default(),
module_resolver: None,
type_names: HashMap::new(),
print: Box::new(|_| {}),
debug: Box::new(|_| {}),
progress: None,
#[cfg(feature = "no_optimize")]
optimization_level: OptimizationLevel::None,
#[cfg(not(feature = "no_optimize"))]
optimization_level: OptimizationLevel::Simple,
max_call_stack_depth: MAX_CALL_STACK_DEPTH,
max_expr_depth: MAX_EXPR_DEPTH,
max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH,
max_operations: 0,
max_modules: usize::MAX,
max_string_size: 0,
max_array_size: 0,
max_map_size: 0,
}
}
/// Load a new package into the `Engine`.
///
/// When searching for functions, packages loaded later are preferred.
/// In other words, loaded packages are searched in reverse order.
pub fn load_package(&mut self, package: PackageLibrary) {
// Push the package to the top - packages are searched in reverse order
self.packages.push(package);
}
/// Load a new package into the `Engine`.
///
/// When searching for functions, packages loaded later are preferred.
/// In other words, loaded packages are searched in reverse order.
pub fn load_packages(&mut self, package: PackageLibrary) {
// Push the package to the top - packages are searched in reverse order
self.packages.push(package);
}
/// Control whether and how the `Engine` will optimize an AST after compilation.
///
/// Not available under the `no_optimize` feature.
#[cfg(not(feature = "no_optimize"))]
pub fn set_optimization_level(&mut self, optimization_level: OptimizationLevel) {
self.optimization_level = optimization_level
}
/// The current optimization level.
/// It controls whether and how the `Engine` will optimize an AST after compilation.
///
/// Not available under the `no_optimize` feature.
#[cfg(not(feature = "no_optimize"))]
pub fn optimization_level(&self) -> OptimizationLevel {
self.optimization_level
}
/// Set the maximum levels of function calls allowed for a script in order to avoid
/// infinite recursion and stack overflows.
#[cfg(not(feature = "unchecked"))]
pub fn set_max_call_levels(&mut self, levels: usize) {
self.max_call_stack_depth = levels
}
/// The maximum levels of function calls allowed for a script.
#[cfg(not(feature = "unchecked"))]
pub fn max_call_levels(&self) -> usize {
self.max_call_stack_depth
}
/// Set the maximum number of operations allowed for a script to run to avoid
/// consuming too much resources (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn set_max_operations(&mut self, operations: u64) {
self.max_operations = if operations == u64::MAX {
0
} else {
operations
};
}
/// The maximum number of operations allowed for a script to run (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn max_operations(&self) -> u64 {
self.max_operations
}
/// Set the maximum number of imported modules allowed for a script.
#[cfg(not(feature = "unchecked"))]
pub fn set_max_modules(&mut self, modules: usize) {
self.max_modules = modules;
}
/// The maximum number of imported modules allowed for a script.
#[cfg(not(feature = "unchecked"))]
pub fn max_modules(&self) -> usize {
self.max_modules
}
/// Set the depth limits for expressions (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn set_max_expr_depths(&mut self, max_expr_depth: usize, max_function_expr_depth: usize) {
self.max_expr_depth = if max_expr_depth == usize::MAX {
0
} else {
max_expr_depth
};
self.max_function_expr_depth = if max_function_expr_depth == usize::MAX {
0
} else {
max_function_expr_depth
};
}
/// The depth limit for expressions (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn max_expr_depth(&self) -> usize {
self.max_expr_depth
}
/// The depth limit for expressions in functions (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn max_function_expr_depth(&self) -> usize {
self.max_function_expr_depth
}
/// Set the maximum length of strings (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn set_max_string_size(&mut self, max_size: usize) {
self.max_string_size = if max_size == usize::MAX { 0 } else { max_size };
}
/// The maximum length of strings (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub fn max_string_size(&self) -> usize {
self.max_string_size
}
/// Set the maximum length of arrays (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
#[cfg(not(feature = "no_index"))]
pub fn set_max_array_size(&mut self, max_size: usize) {
self.max_array_size = if max_size == usize::MAX { 0 } else { max_size };
}
/// The maximum length of arrays (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
#[cfg(not(feature = "no_index"))]
pub fn max_array_size(&self) -> usize {
self.max_array_size
}
/// Set the maximum length of object maps (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
#[cfg(not(feature = "no_object"))]
pub fn set_max_map_size(&mut self, max_size: usize) {
self.max_map_size = if max_size == usize::MAX { 0 } else { max_size };
}
/// The maximum length of object maps (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
#[cfg(not(feature = "no_object"))]
pub fn max_map_size(&self) -> usize {
self.max_map_size
}
/// Set the module resolution service used by the `Engine`.
///
/// Not available under the `no_module` feature.
#[cfg(not(feature = "no_module"))]
pub fn set_module_resolver(&mut self, resolver: Option<impl ModuleResolver + 'static>) {
self.module_resolver = resolver.map(|f| Box::new(f) as Box<dyn ModuleResolver>);
}
/// Universal method for calling functions either registered with the `Engine` or written in Rhai.
/// Position in `EvalAltResult` is None and must be set afterwards.
///
/// ## WARNING
///
/// Function call arguments be _consumed_ when the function requires them to be passed by value.
/// All function arguments not in the first position are always passed by value and thus consumed.
/// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`!
pub(crate) fn call_fn_raw(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
fn_name: &str,
(hash_fn, hash_script): (u64, u64),
args: &mut FnCallArgs,
is_ref: bool,
def_val: Option<&Dynamic>,
level: usize,
) -> Result<(Dynamic, bool), Box<EvalAltResult>> {
self.inc_operations(state)?;
let native_only = hash_script == 0;
// Check for stack overflow
#[cfg(not(feature = "no_function"))]
#[cfg(not(feature = "unchecked"))]
{
if level > self.max_call_stack_depth {
return Err(Box::new(
EvalAltResult::ErrorStackOverflow(Position::none()),
));
}
}
let mut this_copy: Dynamic = Default::default();
let mut old_this_ptr: Option<&mut Dynamic> = None;
/// This function replaces the first argument of a method call with a clone copy.
/// This is to prevent a pure function unintentionally consuming the first argument.
fn normalize_first_arg<'a>(
normalize: bool,
this_copy: &mut Dynamic,
old_this_ptr: &mut Option<&'a mut Dynamic>,
args: &mut FnCallArgs<'a>,
) {
// Only do it for method calls with arguments.
if !normalize || args.is_empty() {
return;
}
// Clone the original value.
*this_copy = args[0].clone();
// Replace the first reference with a reference to the clone, force-casting the lifetime.
// Keep the original reference. Must remember to restore it later with `restore_first_arg_of_method_call`.
let this_pointer = mem::replace(
args.get_mut(0).unwrap(),
unsafe_mut_cast_to_lifetime(this_copy),
);
*old_this_ptr = Some(this_pointer);
}
/// This function restores the first argument that was replaced by `normalize_first_arg_of_method_call`.
fn restore_first_arg<'a>(old_this_ptr: Option<&'a mut Dynamic>, args: &mut FnCallArgs<'a>) {
if let Some(this_pointer) = old_this_ptr {
mem::replace(args.get_mut(0).unwrap(), this_pointer);
}
}
// Search for the function
// First search in script-defined functions (can override built-in)
// Then search registered native functions (can override packages)
// Then search packages
// NOTE: We skip script functions for global_module and packages, and native functions for lib
let func = if !native_only {
lib.get_fn(hash_script) //.or_else(|| lib.get_fn(hash_fn))
} else {
None
}
//.or_else(|| self.global_module.get_fn(hash_script))
.or_else(|| self.global_module.get_fn(hash_fn))
//.or_else(|| self.packages.get_fn(hash_script))
.or_else(|| self.packages.get_fn(hash_fn));
if let Some(func) = func {
// Calling pure function in method-call?
normalize_first_arg(
(func.is_pure() || func.is_script()) && is_ref,
&mut this_copy,
&mut old_this_ptr,
args,
);
if func.is_script() {
// Run scripted function
let fn_def = func.get_fn_def();
let result =
self.call_script_fn(scope, state, lib, fn_name, fn_def, args, level)?;
// Restore the original reference
restore_first_arg(old_this_ptr, args);
return Ok((result, false));
} else {
// Run external function
let result = func.get_native_fn()(self, args)?;
// Restore the original reference
restore_first_arg(old_this_ptr, args);
// See if the function match print/debug (which requires special processing)
return Ok(match fn_name {
KEYWORD_PRINT => (
(self.print)(result.as_str().map_err(|type_name| {
Box::new(EvalAltResult::ErrorMismatchOutputType(
type_name.into(),
Position::none(),
))
})?)
.into(),
false,
),
KEYWORD_DEBUG => (
(self.debug)(result.as_str().map_err(|type_name| {
Box::new(EvalAltResult::ErrorMismatchOutputType(
type_name.into(),
Position::none(),
))
})?)
.into(),
false,
),
_ => (result, func.is_method()),
});
}
}
// See if it is built in.
if args.len() == 2 {
match run_builtin_binary_op(fn_name, args[0], args[1])? {
Some(v) => return Ok((v, false)),
None => (),
}
}
// Return default value (if any)
if let Some(val) = def_val {
return Ok((val.clone(), false));
}
// Getter function not found?
if let Some(prop) = extract_prop_from_getter(fn_name) {
return Err(Box::new(EvalAltResult::ErrorDotExpr(
format!("- property '{}' unknown or write-only", prop),
Position::none(),
)));
}
// Setter function not found?
if let Some(prop) = extract_prop_from_setter(fn_name) {
return Err(Box::new(EvalAltResult::ErrorDotExpr(
format!("- property '{}' unknown or read-only", prop),
Position::none(),
)));
}
// index getter function not found?
if fn_name == FUNC_INDEXER_GET && args.len() == 2 {
return Err(Box::new(EvalAltResult::ErrorFunctionNotFound(
format!(
"{} [{}]",
self.map_type_name(args[0].type_name()),
self.map_type_name(args[1].type_name()),
),
Position::none(),
)));
}
// index setter function not found?
if fn_name == FUNC_INDEXER_SET {
return Err(Box::new(EvalAltResult::ErrorFunctionNotFound(
format!(
"{} [{}]=",
self.map_type_name(args[0].type_name()),
self.map_type_name(args[1].type_name()),
),
Position::none(),
)));
}
// Raise error
Err(Box::new(EvalAltResult::ErrorFunctionNotFound(
format!(
"{} ({})",
fn_name,
args.iter()
.map(|name| if name.is::<ImmutableString>() {
"&str | ImmutableString"
} else {
self.map_type_name((*name).type_name())
})
.collect::<Vec<_>>()
.join(", ")
),
Position::none(),
)))
}
/// Call a script-defined function.
/// Position in `EvalAltResult` is None and must be set afterwards.
///
/// ## WARNING
///
/// Function call arguments may be _consumed_ when the function requires them to be passed by value.
/// All function arguments not in the first position are always passed by value and thus consumed.
/// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`!
pub(crate) fn call_script_fn(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
fn_name: &str,
fn_def: &ScriptFnDef,
args: &mut FnCallArgs,
level: usize,
) -> Result<Dynamic, Box<EvalAltResult>> {
let orig_scope_level = state.scope_level;
state.scope_level += 1;
let scope_len = scope.len();
// Put arguments into scope as variables
// Actually consume the arguments instead of cloning them
scope.extend(
fn_def
.params
.iter()
.zip(args.iter_mut().map(|v| mem::take(*v)))
.map(|(name, value)| {
let var_name = unsafe_cast_var_name_to_lifetime(name.as_str(), state);
(var_name, ScopeEntryType::Normal, value)
}),
);
// Evaluate the function at one higher level of call depth
let result = self
.eval_stmt(scope, state, lib, &fn_def.body, level + 1)
.or_else(|err| match *err {
// Convert return statement to return value
EvalAltResult::Return(x, _) => Ok(x),
EvalAltResult::ErrorInFunctionCall(name, err, _) => {
Err(Box::new(EvalAltResult::ErrorInFunctionCall(
format!("{} > {}", fn_name, name),
err,
Position::none(),
)))
}
_ => Err(Box::new(EvalAltResult::ErrorInFunctionCall(
fn_name.to_string(),
err,
Position::none(),
))),
});
// Remove all local variables
scope.rewind(scope_len);
state.scope_level = orig_scope_level;
result
}
// Has a system function an override?
fn has_override(&self, lib: &Module, (hash_fn, hash_script): (u64, u64)) -> bool {
// NOTE: We skip script functions for global_module and packages, and native functions for lib
// First check script-defined functions
lib.contains_fn(hash_script)
//|| lib.contains_fn(hash_fn)
// Then check registered functions
//|| self.global_module.contains_fn(hash_script)
|| self.global_module.contains_fn(hash_fn)
// Then check packages
//|| self.packages.contains_fn(hash_script)
|| self.packages.contains_fn(hash_fn)
}
/// Perform an actual function call, taking care of special functions
/// Position in `EvalAltResult` is None and must be set afterwards.
///
/// ## WARNING
///
/// Function call arguments may be _consumed_ when the function requires them to be passed by value.
/// All function arguments not in the first position are always passed by value and thus consumed.
/// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`!
fn exec_fn_call(
&self,
state: &mut State,
lib: &Module,
fn_name: &str,
native_only: bool,
hash_script: u64,
args: &mut FnCallArgs,
is_ref: bool,
def_val: Option<&Dynamic>,
level: usize,
) -> Result<(Dynamic, bool), Box<EvalAltResult>> {
// Qualifiers (none) + function name + number of arguments + argument `TypeId`'s.
let arg_types = args.iter().map(|a| a.type_id());
let hash_fn = calc_fn_hash(empty(), fn_name, args.len(), arg_types);
let hashes = (hash_fn, if native_only { 0 } else { hash_script });
match fn_name {
// type_of
KEYWORD_TYPE_OF if args.len() == 1 && !self.has_override(lib, hashes) => Ok((
self.map_type_name(args[0].type_name()).to_string().into(),
false,
)),
// eval - reaching this point it must be a method-style call
KEYWORD_EVAL if args.len() == 1 && !self.has_override(lib, hashes) => {
Err(Box::new(EvalAltResult::ErrorRuntime(
"'eval' should not be called in method style. Try eval(...);".into(),
Position::none(),
)))
}
// Normal function call
_ => {
let mut scope = Scope::new();
self.call_fn_raw(
&mut scope, state, lib, fn_name, hashes, args, is_ref, def_val, level,
)
}
}
}
/// Evaluate a text string as a script - used primarily for 'eval'.
/// Position in `EvalAltResult` is None and must be set afterwards.
fn eval_script_expr(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
script: &Dynamic,
) -> Result<Dynamic, Box<EvalAltResult>> {
let script = script.as_str().map_err(|type_name| {
EvalAltResult::ErrorMismatchOutputType(type_name.into(), Position::none())
})?;
// Compile the script text
// No optimizations because we only run it once
let mut ast = self.compile_with_scope_and_optimization_level(
&Scope::new(),
&[script],
OptimizationLevel::None,
)?;
// If new functions are defined within the eval string, it is an error
if ast.lib().num_fn() != 0 {
return Err(ParseErrorType::WrongFnDefinition.into());
}
let statements = mem::take(ast.statements_mut());
let ast = AST::new(statements, lib.clone());
// Evaluate the AST
let (result, operations) = self.eval_ast_with_scope_raw(scope, &ast)?;
state.operations += operations;
self.inc_operations(state)?;
return Ok(result);
}
/// Chain-evaluate a dot/index chain.
/// Position in `EvalAltResult` is None and must be set afterwards.
fn eval_dot_index_chain_helper(
&self,
state: &mut State,
lib: &Module,
target: &mut Target,
rhs: &Expr,
idx_values: &mut StaticVec<Dynamic>,
is_index: bool,
level: usize,
mut new_val: Option<Dynamic>,
) -> Result<(Dynamic, bool), Box<EvalAltResult>> {
let is_ref = target.is_ref();
let is_value = target.is_value();
// Pop the last index value
let mut idx_val = idx_values.pop();
if is_index {
#[cfg(feature = "no_index")]
unreachable!();
let pos = rhs.position();
match rhs {
// xxx[idx].expr... | xxx[idx][expr]...
Expr::Dot(x) | Expr::Index(x) => {
let (idx, expr, pos) = x.as_ref();
let is_idx = matches!(rhs, Expr::Index(_));
let idx_pos = idx.position();
let this_ptr =
&mut self.get_indexed_mut(state, lib, target, idx_val, idx_pos, false)?;
self.eval_dot_index_chain_helper(
state, lib, this_ptr, expr, idx_values, is_idx, level, new_val,
)
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
// xxx[rhs] = new_val
_ if new_val.is_some() => {
let mut idx_val2 = idx_val.clone();
match self.get_indexed_mut(state, lib, target, idx_val, pos, true) {
// Indexed value is an owned value - the only possibility is an indexer
// Try to call an index setter
Ok(this_ptr) if this_ptr.is_value() => {
let fn_name = FUNC_INDEXER_SET;
let args = &mut [target.as_mut(), &mut idx_val2, &mut new_val.unwrap()];
self.exec_fn_call(state, lib, fn_name, true, 0, args, is_ref, None, 0)
.or_else(|err| match *err {
// If there is no index setter, no need to set it back because the indexer is read-only
EvalAltResult::ErrorFunctionNotFound(s, _)
if s == FUNC_INDEXER_SET =>
{
Ok(Default::default())
}
_ => Err(err),
})?;
}
// Indexed value is a reference - update directly
Ok(ref mut this_ptr) => {
this_ptr
.set_value(new_val.unwrap())
.map_err(|err| EvalAltResult::new_position(err, rhs.position()))?;
}
Err(err) => match *err {
// No index getter - try to call an index setter
EvalAltResult::ErrorIndexingType(_, _) => {
let fn_name = FUNC_INDEXER_SET;
let args =
&mut [target.as_mut(), &mut idx_val2, &mut new_val.unwrap()];
self.exec_fn_call(
state, lib, fn_name, true, 0, args, is_ref, None, 0,
)?;
}
// Error
err => return Err(Box::new(err)),
},
}
Ok(Default::default())
}
// xxx[rhs]
_ => self
.get_indexed_mut(state, lib, target, idx_val, pos, false)
.map(|v| (v.clone_into_dynamic(), false)),
}
} else {
match rhs {
// xxx.fn_name(arg_expr_list)
Expr::FnCall(x) if x.1.is_none() => {
let ((name, native, pos), _, hash, _, def_val) = x.as_ref();
let def_val = def_val.as_ref();
// Get a reference to the mutation target Dynamic
let (result, updated) = {
let obj = target.as_mut();
let mut arg_values: StaticVec<_> = once(obj)
.chain(
idx_val
.downcast_mut::<StaticVec<Dynamic>>()
.unwrap()
.iter_mut(),
)
.collect();
let args = arg_values.as_mut();
self.exec_fn_call(
state, lib, name, *native, *hash, args, is_ref, def_val, 0,
)
.map_err(|err| EvalAltResult::new_position(err, *pos))?
};
// Feed the changed temp value back
if updated && !is_ref && !is_value {
let new_val = target.as_mut().clone();
target.set_value(new_val)?;
}
Ok((result, updated))
}
// xxx.module::fn_name(...) - syntax error
Expr::FnCall(_) => unreachable!(),
// {xxx:map}.id = ???
#[cfg(not(feature = "no_object"))]
Expr::Property(x) if target.is::<Map>() && new_val.is_some() => {
let ((prop, _, _), pos) = x.as_ref();
let index = prop.clone().into();
let mut val = self.get_indexed_mut(state, lib, target, index, *pos, true)?;
val.set_value(new_val.unwrap())
.map_err(|err| EvalAltResult::new_position(err, rhs.position()))?;
Ok((Default::default(), true))
}
// {xxx:map}.id
#[cfg(not(feature = "no_object"))]
Expr::Property(x) if target.is::<Map>() => {
let ((prop, _, _), pos) = x.as_ref();
let index = prop.clone().into();
let val = self.get_indexed_mut(state, lib, target, index, *pos, false)?;
Ok((val.clone_into_dynamic(), false))
}
// xxx.id = ???
Expr::Property(x) if new_val.is_some() => {
let ((_, _, setter), pos) = x.as_ref();
let mut args = [target.as_mut(), new_val.as_mut().unwrap()];
self.exec_fn_call(state, lib, setter, true, 0, &mut args, is_ref, None, 0)
.map(|(v, _)| (v, true))
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
// xxx.id
Expr::Property(x) => {
let ((_, getter, _), pos) = x.as_ref();
let mut args = [target.as_mut()];
self.exec_fn_call(state, lib, getter, true, 0, &mut args, is_ref, None, 0)
.map(|(v, _)| (v, false))
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
#[cfg(not(feature = "no_object"))]
// {xxx:map}.prop[expr] | {xxx:map}.prop.expr
Expr::Index(x) | Expr::Dot(x) if target.is::<Map>() => {
let (prop, expr, pos) = x.as_ref();
let is_idx = matches!(rhs, Expr::Index(_));
let mut val = if let Expr::Property(p) = prop {
let ((prop, _, _), _) = p.as_ref();
let index = prop.clone().into();
self.get_indexed_mut(state, lib, target, index, *pos, false)?
} else {
unreachable!();
};
self.eval_dot_index_chain_helper(
state, lib, &mut val, expr, idx_values, is_idx, level, new_val,
)
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
// xxx.prop[expr] | xxx.prop.expr
Expr::Index(x) | Expr::Dot(x) => {
let (prop, expr, pos) = x.as_ref();
let is_idx = matches!(rhs, Expr::Index(_));
let args = &mut [target.as_mut(), &mut Default::default()];
let (mut val, updated) = if let Expr::Property(p) = prop {
let ((_, getter, _), _) = p.as_ref();
let args = &mut args[..1];
self.exec_fn_call(state, lib, getter, true, 0, args, is_ref, None, 0)
.map_err(|err| EvalAltResult::new_position(err, *pos))?
} else {
unreachable!();
};
let val = &mut val;
let target = &mut val.into();
let (result, may_be_changed) = self
.eval_dot_index_chain_helper(
state, lib, target, expr, idx_values, is_idx, level, new_val,
)
.map_err(|err| EvalAltResult::new_position(err, *pos))?;
// Feed the value back via a setter just in case it has been updated
if updated || may_be_changed {
if let Expr::Property(p) = prop {
let ((_, _, setter), _) = p.as_ref();
// Re-use args because the first &mut parameter will not be consumed
args[1] = val;
self.exec_fn_call(state, lib, setter, true, 0, args, is_ref, None, 0)
.or_else(|err| match *err {
// If there is no setter, no need to feed it back because the property is read-only
EvalAltResult::ErrorDotExpr(_, _) => Ok(Default::default()),
err => Err(EvalAltResult::new_position(Box::new(err), *pos)),
})?;
}
}
Ok((result, may_be_changed))
}
// Syntax error
_ => Err(Box::new(EvalAltResult::ErrorDotExpr(
"".into(),
rhs.position(),
))),
}
}
}
/// Evaluate a dot/index chain.
fn eval_dot_index_chain(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
expr: &Expr,
level: usize,
new_val: Option<Dynamic>,
) -> Result<Dynamic, Box<EvalAltResult>> {
let ((dot_lhs, dot_rhs, op_pos), is_index) = match expr {
Expr::Index(x) => (x.as_ref(), true),
Expr::Dot(x) => (x.as_ref(), false),
_ => unreachable!(),
};
let idx_values = &mut StaticVec::new();
self.eval_indexed_chain(scope, state, lib, dot_rhs, idx_values, 0, level)?;
match dot_lhs {
// id.??? or id[???]
Expr::Variable(_) => {
let (target, name, typ, pos) = search_scope(scope, state, dot_lhs)?;
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, pos))?;
// Constants cannot be modified
match typ {
ScopeEntryType::Module => unreachable!(),
ScopeEntryType::Constant if new_val.is_some() => {
return Err(Box::new(EvalAltResult::ErrorAssignmentToConstant(
name.to_string(),
pos,
)));
}
ScopeEntryType::Constant | ScopeEntryType::Normal => (),
}
let this_ptr = &mut target.into();
self.eval_dot_index_chain_helper(
state, lib, this_ptr, dot_rhs, idx_values, is_index, level, new_val,
)
.map(|(v, _)| v)
.map_err(|err| EvalAltResult::new_position(err, *op_pos))
}
// {expr}.??? = ??? or {expr}[???] = ???
expr if new_val.is_some() => {
return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS(
expr.position(),
)));
}
// {expr}.??? or {expr}[???]
expr => {
let val = self.eval_expr(scope, state, lib, expr, level)?;
let this_ptr = &mut val.into();
self.eval_dot_index_chain_helper(
state, lib, this_ptr, dot_rhs, idx_values, is_index, level, new_val,
)
.map(|(v, _)| v)
.map_err(|err| EvalAltResult::new_position(err, *op_pos))
}
}
}
/// Evaluate a chain of indexes and store the results in a list.
/// The first few results are stored in the array `list` which is of fixed length.
/// Any spill-overs are stored in `more`, which is dynamic.
/// The fixed length array is used to avoid an allocation in the overwhelming cases of just a few levels of indexing.
/// The total number of values is returned.
fn eval_indexed_chain(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
expr: &Expr,
idx_values: &mut StaticVec<Dynamic>,
size: usize,
level: usize,
) -> Result<(), Box<EvalAltResult>> {
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, expr.position()))?;
match expr {
Expr::FnCall(x) if x.1.is_none() => {
let arg_values =
x.3.iter()
.map(|arg_expr| self.eval_expr(scope, state, lib, arg_expr, level))
.collect::<Result<StaticVec<Dynamic>, _>>()?;
idx_values.push(Dynamic::from(arg_values));
}
Expr::FnCall(_) => unreachable!(),
Expr::Property(_) => idx_values.push(()), // Store a placeholder - no need to copy the property name
Expr::Index(x) | Expr::Dot(x) => {
let (lhs, rhs, _) = x.as_ref();
// Evaluate in left-to-right order
let lhs_val = match lhs {
Expr::Property(_) => Default::default(), // Store a placeholder in case of a property
_ => self.eval_expr(scope, state, lib, lhs, level)?,
};
// Push in reverse order
self.eval_indexed_chain(scope, state, lib, rhs, idx_values, size, level)?;
idx_values.push(lhs_val);
}
_ => idx_values.push(self.eval_expr(scope, state, lib, expr, level)?),
}
Ok(())
}
/// Get the value at the indexed position of a base type
/// Position in `EvalAltResult` may be None and should be set afterwards.
fn get_indexed_mut<'a>(
&self,
state: &mut State,
lib: &Module,
target: &'a mut Target,
mut idx: Dynamic,
idx_pos: Position,
create: bool,
) -> Result<Target<'a>, Box<EvalAltResult>> {
self.inc_operations(state)?;
let is_ref = target.is_ref();
let val = target.as_mut();
match val {
#[cfg(not(feature = "no_index"))]
Dynamic(Union::Array(arr)) => {
// val_array[idx]
let index = idx
.as_int()
.map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?;
let arr_len = arr.len();
if index >= 0 {
arr.get_mut(index as usize)
.map(Target::from)
.ok_or_else(|| {
Box::new(EvalAltResult::ErrorArrayBounds(arr_len, index, idx_pos))
})
} else {
Err(Box::new(EvalAltResult::ErrorArrayBounds(
arr_len, index, idx_pos,
)))
}
}
#[cfg(not(feature = "no_object"))]
Dynamic(Union::Map(map)) => {
// val_map[idx]
Ok(if create {
let index = idx
.take_string()
.map_err(|_| EvalAltResult::ErrorStringIndexExpr(idx_pos))?;
map.entry(index).or_insert(Default::default()).into()
} else {
let index = idx
.downcast_ref::<String>()
.ok_or_else(|| EvalAltResult::ErrorStringIndexExpr(idx_pos))?;
map.get_mut(index)
.map(Target::from)
.unwrap_or_else(|| Target::from(()))
})
}
#[cfg(not(feature = "no_index"))]
Dynamic(Union::Str(s)) => {
// val_string[idx]
let chars_len = s.chars().count();
let index = idx
.as_int()
.map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?;
if index >= 0 {
let offset = index as usize;
let ch = s.chars().nth(offset).ok_or_else(|| {
Box::new(EvalAltResult::ErrorStringBounds(chars_len, index, idx_pos))
})?;
Ok(Target::StringChar(val, offset, ch.into()))
} else {
Err(Box::new(EvalAltResult::ErrorStringBounds(
chars_len, index, idx_pos,
)))
}
}
#[cfg(not(feature = "no_index"))]
_ => {
let fn_name = FUNC_INDEXER_GET;
let type_name = self.map_type_name(val.type_name());
let args = &mut [val, &mut idx];
self.exec_fn_call(state, lib, fn_name, true, 0, args, is_ref, None, 0)
.map(|(v, _)| v.into())
.map_err(|_| {
Box::new(EvalAltResult::ErrorIndexingType(
type_name.into(),
Position::none(),
))
})
}
#[cfg(feature = "no_index")]
_ => Err(Box::new(EvalAltResult::ErrorIndexingType(
self.map_type_name(val.type_name()).into(),
Position::none(),
))),
}
}
// Evaluate an 'in' expression
fn eval_in_expr(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
lhs: &Expr,
rhs: &Expr,
level: usize,
) -> Result<Dynamic, Box<EvalAltResult>> {
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, rhs.position()))?;
let lhs_value = self.eval_expr(scope, state, lib, lhs, level)?;
let rhs_value = self.eval_expr(scope, state, lib, rhs, level)?;
match rhs_value {
#[cfg(not(feature = "no_index"))]
Dynamic(Union::Array(mut rhs_value)) => {
let op = "==";
let def_value = false.into();
let mut scope = Scope::new();
// Call the `==` operator to compare each value
for value in rhs_value.iter_mut() {
let args = &mut [&mut lhs_value.clone(), value];
let def_value = Some(&def_value);
let hashes = (
// Qualifiers (none) + function name + number of arguments + argument `TypeId`'s.
calc_fn_hash(empty(), op, args.len(), args.iter().map(|a| a.type_id())),
0,
);
let (r, _) = self
.call_fn_raw(
&mut scope, state, lib, op, hashes, args, false, def_value, level,
)
.map_err(|err| EvalAltResult::new_position(err, rhs.position()))?;
if r.as_bool().unwrap_or(false) {
return Ok(true.into());
}
}
Ok(false.into())
}
#[cfg(not(feature = "no_object"))]
Dynamic(Union::Map(rhs_value)) => match lhs_value {
// Only allows String or char
Dynamic(Union::Str(s)) => Ok(rhs_value.contains_key(s.as_str()).into()),
Dynamic(Union::Char(c)) => Ok(rhs_value.contains_key(&c.to_string()).into()),
_ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))),
},
Dynamic(Union::Str(rhs_value)) => match lhs_value {
// Only allows String or char
Dynamic(Union::Str(s)) => Ok(rhs_value.contains(s.as_str()).into()),
Dynamic(Union::Char(c)) => Ok(rhs_value.contains(c).into()),
_ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))),
},
_ => Err(Box::new(EvalAltResult::ErrorInExpr(rhs.position()))),
}
}
/// Evaluate an expression
fn eval_expr(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
expr: &Expr,
level: usize,
) -> Result<Dynamic, Box<EvalAltResult>> {
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, expr.position()))?;
let result = match expr {
Expr::Expr(x) => self.eval_expr(scope, state, lib, x.as_ref(), level),
Expr::IntegerConstant(x) => Ok(x.0.into()),
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(x) => Ok(x.0.into()),
Expr::StringConstant(x) => Ok(x.0.to_string().into()),
Expr::CharConstant(x) => Ok(x.0.into()),
Expr::Variable(_) => {
let (val, _, _, _) = search_scope(scope, state, expr)?;
Ok(val.clone())
}
Expr::Property(_) => unreachable!(),
// Statement block
Expr::Stmt(x) => self.eval_stmt(scope, state, lib, &x.0, level),
// var op= rhs
Expr::Assignment(x) if matches!(x.0, Expr::Variable(_)) => {
let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref();
let mut rhs_val = self.eval_expr(scope, state, lib, rhs_expr, level)?;
let (lhs_ptr, name, typ, pos) = search_scope(scope, state, lhs_expr)?;
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, pos))?;
match typ {
// Assignment to constant variable
ScopeEntryType::Constant => Err(Box::new(
EvalAltResult::ErrorAssignmentToConstant(name.to_string(), pos),
)),
// Normal assignment
ScopeEntryType::Normal if op.is_empty() => {
*lhs_ptr = rhs_val;
Ok(Default::default())
}
// Op-assignment - in order of precedence:
ScopeEntryType::Normal => {
// 1) Native registered overriding function
// 2) Built-in implementation
// 3) Map to `var = var op rhs`
// Qualifiers (none) + function name + number of arguments + argument `TypeId`'s.
let arg_types = once(lhs_ptr.type_id()).chain(once(rhs_val.type_id()));
let hash_fn = calc_fn_hash(empty(), op, 2, arg_types);
if let Some(CallableFunction::Method(func)) = self
.global_module
.get_fn(hash_fn)
.or_else(|| self.packages.get_fn(hash_fn))
{
// Overriding exact implementation
func(self, &mut [lhs_ptr, &mut rhs_val])?;
} else if run_builtin_op_assignment(op, lhs_ptr, &rhs_val)?.is_none() {
// Not built in, map to `var = var op rhs`
let op = &op[..op.len() - 1]; // extract operator without =
let hash = calc_fn_hash(empty(), op, 2, empty());
let args = &mut [&mut lhs_ptr.clone(), &mut rhs_val];
// Set variable value
*lhs_ptr = self
.exec_fn_call(state, lib, op, true, hash, args, false, None, level)
.map(|(v, _)| v)
.map_err(|err| EvalAltResult::new_position(err, *op_pos))?;
}
Ok(Default::default())
}
// A module cannot be assigned to
ScopeEntryType::Module => unreachable!(),
}
}
// lhs op= rhs
Expr::Assignment(x) => {
let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref();
let mut rhs_val = self.eval_expr(scope, state, lib, rhs_expr, level)?;
let new_val = Some(if op.is_empty() {
// Normal assignment
rhs_val
} else {
// Op-assignment - always map to `lhs = lhs op rhs`
let op = &op[..op.len() - 1]; // extract operator without =
let hash = calc_fn_hash(empty(), op, 2, empty());
let args = &mut [
&mut self.eval_expr(scope, state, lib, lhs_expr, level)?,
&mut rhs_val,
];
self.exec_fn_call(state, lib, op, true, hash, args, false, None, level)
.map(|(v, _)| v)
.map_err(|err| EvalAltResult::new_position(err, *op_pos))?
});
match lhs_expr {
// name op= rhs
Expr::Variable(_) => unreachable!(),
// idx_lhs[idx_expr] op= rhs
#[cfg(not(feature = "no_index"))]
Expr::Index(_) => {
self.eval_dot_index_chain(scope, state, lib, lhs_expr, level, new_val)
}
// dot_lhs.dot_rhs op= rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(_) => {
self.eval_dot_index_chain(scope, state, lib, lhs_expr, level, new_val)
}
// Error assignment to constant
expr if expr.is_constant() => {
Err(Box::new(EvalAltResult::ErrorAssignmentToConstant(
expr.get_constant_str(),
expr.position(),
)))
}
// Syntax error
expr => Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS(
expr.position(),
))),
}
}
// lhs[idx_expr]
#[cfg(not(feature = "no_index"))]
Expr::Index(_) => self.eval_dot_index_chain(scope, state, lib, expr, level, None),
// lhs.dot_rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(_) => self.eval_dot_index_chain(scope, state, lib, expr, level, None),
#[cfg(not(feature = "no_index"))]
Expr::Array(x) => Ok(Dynamic(Union::Array(Box::new(
x.0.iter()
.map(|item| self.eval_expr(scope, state, lib, item, level))
.collect::<Result<Vec<_>, _>>()?,
)))),
#[cfg(not(feature = "no_object"))]
Expr::Map(x) => Ok(Dynamic(Union::Map(Box::new(
x.0.iter()
.map(|((key, _), expr)| {
self.eval_expr(scope, state, lib, expr, level)
.map(|val| (key.clone(), val))
})
.collect::<Result<HashMap<_, _>, _>>()?,
)))),
// Normal function call
Expr::FnCall(x) if x.1.is_none() => {
let ((name, native, pos), _, hash, args_expr, def_val) = x.as_ref();
let def_val = def_val.as_ref();
// Handle eval
if name == KEYWORD_EVAL && args_expr.len() == 1 {
let hash_fn =
calc_fn_hash(empty(), name, 1, once(TypeId::of::<ImmutableString>()));
if !self.has_override(lib, (hash_fn, *hash)) {
// eval - only in function call style
let prev_len = scope.len();
let expr = args_expr.get(0);
let script = self.eval_expr(scope, state, lib, expr, level)?;
let result = self
.eval_script_expr(scope, state, lib, &script)
.map_err(|err| EvalAltResult::new_position(err, expr.position()));
if scope.len() != prev_len {
// IMPORTANT! If the eval defines new variables in the current scope,
// all variable offsets from this point on will be mis-aligned.
state.always_search = true;
}
return result;
}
}
// Normal function call - except for eval (handled above)
let mut arg_values: StaticVec<Dynamic>;
let mut args: StaticVec<_>;
let mut is_ref = false;
if args_expr.is_empty() {
// No arguments
args = Default::default();
} else {
// See if the first argument is a variable, if so, convert to method-call style
// in order to leverage potential &mut first argument and avoid cloning the value
match args_expr.get(0) {
// func(x, ...) -> x.func(...)
lhs @ Expr::Variable(_) => {
arg_values = args_expr
.iter()
.skip(1)
.map(|expr| self.eval_expr(scope, state, lib, expr, level))
.collect::<Result<_, _>>()?;
let (target, _, typ, pos) = search_scope(scope, state, lhs)?;
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, pos))?;
match typ {
ScopeEntryType::Module => unreachable!(),
ScopeEntryType::Constant | ScopeEntryType::Normal => (),
}
args = once(target).chain(arg_values.iter_mut()).collect();
is_ref = true;
}
// func(..., ...)
_ => {
arg_values = args_expr
.iter()
.map(|expr| self.eval_expr(scope, state, lib, expr, level))
.collect::<Result<_, _>>()?;
args = arg_values.iter_mut().collect();
}
}
}
let args = args.as_mut();
self.exec_fn_call(
state, lib, name, *native, *hash, args, is_ref, def_val, level,
)
.map(|(v, _)| v)
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
// Module-qualified function call
Expr::FnCall(x) if x.1.is_some() => {
let ((name, _, pos), modules, hash_script, args_expr, def_val) = x.as_ref();
let modules = modules.as_ref().unwrap();
let mut arg_values = args_expr
.iter()
.map(|expr| self.eval_expr(scope, state, lib, expr, level))
.collect::<Result<StaticVec<_>, _>>()?;
let mut args: StaticVec<_> = arg_values.iter_mut().collect();
let (id, root_pos) = modules.get(0); // First module
let module = if let Some(index) = modules.index() {
scope
.get_mut(scope.len() - index.get())
.0
.downcast_mut::<Module>()
.unwrap()
} else {
scope.find_module_internal(id).ok_or_else(|| {
Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos))
})?
};
// First search in script-defined functions (can override built-in)
let func = match module.get_qualified_fn(name, *hash_script) {
Err(err) if matches!(*err, EvalAltResult::ErrorFunctionNotFound(_, _)) => {
// Then search in Rust functions
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, *pos))?;
// Qualified Rust functions are indexed in two steps:
// 1) Calculate a hash in a similar manner to script-defined functions,
// i.e. qualifiers + function name + number of arguments.
// 2) Calculate a second hash with no qualifiers, empty function name,
// zero number of arguments, and the actual list of argument `TypeId`'.s
let hash_fn_args =
calc_fn_hash(empty(), "", 0, args.iter().map(|a| a.type_id()));
// 3) The final hash is the XOR of the two hashes.
let hash_qualified_fn = *hash_script ^ hash_fn_args;
module.get_qualified_fn(name, hash_qualified_fn)
}
r => r,
};
match func {
Ok(f) if f.is_script() => {
let args = args.as_mut();
let fn_def = f.get_fn_def();
let mut scope = Scope::new();
self.call_script_fn(&mut scope, state, lib, name, fn_def, args, level)
.map_err(|err| EvalAltResult::new_position(err, *pos))
}
Ok(f) => {
f.get_native_fn()(self, args.as_mut()).map_err(|err| err.new_position(*pos))
}
Err(err)
if def_val.is_some()
&& matches!(*err, EvalAltResult::ErrorFunctionNotFound(_, _)) =>
{
Ok(def_val.clone().unwrap())
}
Err(err) => Err(err),
}
}
Expr::In(x) => self.eval_in_expr(scope, state, lib, &x.0, &x.1, level),
Expr::And(x) => {
let (lhs, rhs, _) = x.as_ref();
Ok((self
.eval_expr(scope, state, lib, lhs, level)?
.as_bool()
.map_err(|_| {
EvalAltResult::ErrorBooleanArgMismatch("AND".into(), lhs.position())
})?
&& // Short-circuit using &&
self
.eval_expr(scope, state, lib, rhs, level)?
.as_bool()
.map_err(|_| {
EvalAltResult::ErrorBooleanArgMismatch("AND".into(), rhs.position())
})?)
.into())
}
Expr::Or(x) => {
let (lhs, rhs, _) = x.as_ref();
Ok((self
.eval_expr(scope, state, lib, lhs, level)?
.as_bool()
.map_err(|_| {
EvalAltResult::ErrorBooleanArgMismatch("OR".into(), lhs.position())
})?
|| // Short-circuit using ||
self
.eval_expr(scope, state, lib, rhs, level)?
.as_bool()
.map_err(|_| {
EvalAltResult::ErrorBooleanArgMismatch("OR".into(), rhs.position())
})?)
.into())
}
Expr::True(_) => Ok(true.into()),
Expr::False(_) => Ok(false.into()),
Expr::Unit(_) => Ok(().into()),
_ => unreachable!(),
};
self.check_data_size(result)
}
/// Evaluate a statement
pub(crate) fn eval_stmt(
&self,
scope: &mut Scope,
state: &mut State,
lib: &Module,
stmt: &Stmt,
level: usize,
) -> Result<Dynamic, Box<EvalAltResult>> {
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, stmt.position()))?;
let result = match stmt {
// No-op
Stmt::Noop(_) => Ok(Default::default()),
// Expression as statement
Stmt::Expr(expr) => {
let result = self.eval_expr(scope, state, lib, expr, level)?;
Ok(match expr.as_ref() {
// If it is a simple assignment, erase the result at the root
Expr::Assignment(_) => Default::default(),
_ => result,
})
}
// Block scope
Stmt::Block(x) => {
let prev_len = scope.len();
state.scope_level += 1;
let result = x.0.iter().try_fold(Default::default(), |_, stmt| {
self.eval_stmt(scope, state, lib, stmt, level)
});
scope.rewind(prev_len);
state.scope_level -= 1;
// The impact of an eval statement goes away at the end of a block
// because any new variables introduced will go out of scope
state.always_search = false;
result
}
// If-else statement
Stmt::IfThenElse(x) => {
let (expr, if_block, else_block) = x.as_ref();
self.eval_expr(scope, state, lib, expr, level)?
.as_bool()
.map_err(|_| Box::new(EvalAltResult::ErrorLogicGuard(expr.position())))
.and_then(|guard_val| {
if guard_val {
self.eval_stmt(scope, state, lib, if_block, level)
} else if let Some(stmt) = else_block {
self.eval_stmt(scope, state, lib, stmt, level)
} else {
Ok(Default::default())
}
})
}
// While loop
Stmt::While(x) => loop {
let (expr, body) = x.as_ref();
match self.eval_expr(scope, state, lib, expr, level)?.as_bool() {
Ok(true) => match self.eval_stmt(scope, state, lib, body, level) {
Ok(_) => (),
Err(err) => match *err {
EvalAltResult::ErrorLoopBreak(false, _) => (),
EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()),
_ => return Err(err),
},
},
Ok(false) => return Ok(Default::default()),
Err(_) => {
return Err(Box::new(EvalAltResult::ErrorLogicGuard(expr.position())))
}
}
},
// Loop statement
Stmt::Loop(body) => loop {
match self.eval_stmt(scope, state, lib, body, level) {
Ok(_) => (),
Err(err) => match *err {
EvalAltResult::ErrorLoopBreak(false, _) => (),
EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()),
_ => return Err(err),
},
}
},
// For loop
Stmt::For(x) => {
let (name, expr, stmt) = x.as_ref();
let iter_type = self.eval_expr(scope, state, lib, expr, level)?;
let tid = iter_type.type_id();
if let Some(func) = self
.global_module
.get_iter(tid)
.or_else(|| self.packages.get_iter(tid))
{
// Add the loop variable
let var_name = unsafe_cast_var_name_to_lifetime(name, &state);
scope.push(var_name, ());
let index = scope.len() - 1;
state.scope_level += 1;
for loop_var in func(iter_type) {
*scope.get_mut(index).0 = loop_var;
self.inc_operations(state)
.map_err(|err| EvalAltResult::new_position(err, stmt.position()))?;
match self.eval_stmt(scope, state, lib, stmt, level) {
Ok(_) => (),
Err(err) => match *err {
EvalAltResult::ErrorLoopBreak(false, _) => (),
EvalAltResult::ErrorLoopBreak(true, _) => break,
_ => return Err(err),
},
}
}
scope.rewind(scope.len() - 1);
state.scope_level -= 1;
Ok(Default::default())
} else {
Err(Box::new(EvalAltResult::ErrorFor(x.1.position())))
}
}
// Continue statement
Stmt::Continue(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(false, *pos))),
// Break statement
Stmt::Break(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(true, *pos))),
// Return value
Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Return => {
Err(Box::new(EvalAltResult::Return(
self.eval_expr(scope, state, lib, x.1.as_ref().unwrap(), level)?,
(x.0).1,
)))
}
// Empty return
Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Return => {
Err(Box::new(EvalAltResult::Return(Default::default(), (x.0).1)))
}
// Throw value
Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Exception => {
let val = self.eval_expr(scope, state, lib, x.1.as_ref().unwrap(), level)?;
Err(Box::new(EvalAltResult::ErrorRuntime(
val.take_string().unwrap_or_else(|_| "".into()),
(x.0).1,
)))
}
// Empty throw
Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Exception => {
Err(Box::new(EvalAltResult::ErrorRuntime("".into(), (x.0).1)))
}
Stmt::ReturnWithVal(_) => unreachable!(),
// Let statement
Stmt::Let(x) if x.1.is_some() => {
let ((var_name, _), expr) = x.as_ref();
let val = self.eval_expr(scope, state, lib, expr.as_ref().unwrap(), level)?;
let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state);
scope.push_dynamic_value(var_name, ScopeEntryType::Normal, val, false);
Ok(Default::default())
}
Stmt::Let(x) => {
let ((var_name, _), _) = x.as_ref();
let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state);
scope.push(var_name, ());
Ok(Default::default())
}
// Const statement
Stmt::Const(x) if x.1.is_constant() => {
let ((var_name, _), expr) = x.as_ref();
let val = self.eval_expr(scope, state, lib, &expr, level)?;
let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state);
scope.push_dynamic_value(var_name, ScopeEntryType::Constant, val, true);
Ok(Default::default())
}
// Const expression not constant
Stmt::Const(_) => unreachable!(),
// Import statement
Stmt::Import(x) => {
let (expr, (name, pos)) = x.as_ref();
// Guard against too many modules
if state.modules >= self.max_modules {
return Err(Box::new(EvalAltResult::ErrorTooManyModules(*pos)));
}
if let Some(path) = self
.eval_expr(scope, state, lib, &expr, level)?
.try_cast::<ImmutableString>()
{
#[cfg(not(feature = "no_module"))]
{
if let Some(resolver) = &self.module_resolver {
// Use an empty scope to create a module
let module =
resolver.resolve(self, Scope::new(), &path, expr.position())?;
let mod_name = unsafe_cast_var_name_to_lifetime(name, &state);
scope.push_module_internal(mod_name, module);
state.modules += 1;
Ok(Default::default())
} else {
Err(Box::new(EvalAltResult::ErrorModuleNotFound(
path.to_string(),
expr.position(),
)))
}
}
#[cfg(feature = "no_module")]
Ok(Default::default())
} else {
Err(Box::new(EvalAltResult::ErrorImportExpr(expr.position())))
}
}
// Export statement
Stmt::Export(list) => {
for ((id, id_pos), rename) in list.iter() {
// Mark scope variables as public
if let Some(index) = scope
.get_index(id)
.map(|(i, _)| i)
.or_else(|| scope.get_module_index(id))
{
let alias = rename
.as_ref()
.map(|(n, _)| n.clone())
.unwrap_or_else(|| id.clone());
scope.set_entry_alias(index, alias);
} else {
return Err(Box::new(EvalAltResult::ErrorVariableNotFound(
id.into(),
*id_pos,
)));
}
}
Ok(Default::default())
}
};
self.check_data_size(result)
}
/// Check a result to ensure that the data size is within allowable limit.
fn check_data_size(
&self,
result: Result<Dynamic, Box<EvalAltResult>>,
) -> Result<Dynamic, Box<EvalAltResult>> {
#[cfg(feature = "unchecked")]
return result;
// If no data size limits, just return
if self.max_string_size + self.max_array_size + self.max_map_size == 0 {
return result;
}
// Recursively calculate the size of a value (especially `Array` and `Map`)
fn calc_size(value: &Dynamic) -> (usize, usize, usize) {
match value {
#[cfg(not(feature = "no_index"))]
Dynamic(Union::Array(arr)) => {
let mut arrays = 0;
let mut maps = 0;
arr.iter().for_each(|value| match value {
Dynamic(Union::Array(_)) | Dynamic(Union::Map(_)) => {
let (a, m, _) = calc_size(value);
arrays += a;
maps += m;
}
_ => arrays += 1,
});
(arrays, maps, 0)
}
#[cfg(not(feature = "no_object"))]
Dynamic(Union::Map(map)) => {
let mut arrays = 0;
let mut maps = 0;
map.values().for_each(|value| match value {
Dynamic(Union::Array(_)) | Dynamic(Union::Map(_)) => {
let (a, m, _) = calc_size(value);
arrays += a;
maps += m;
}
_ => maps += 1,
});
(arrays, maps, 0)
}
Dynamic(Union::Str(s)) => (0, 0, s.len()),
_ => (0, 0, 0),
}
}
match result {
// Simply return all errors
Err(_) => return result,
// String with limit
Ok(Dynamic(Union::Str(_))) if self.max_string_size > 0 => (),
// Array with limit
#[cfg(not(feature = "no_index"))]
Ok(Dynamic(Union::Array(_))) if self.max_array_size > 0 => (),
// Map with limit
#[cfg(not(feature = "no_object"))]
Ok(Dynamic(Union::Map(_))) if self.max_map_size > 0 => (),
// Everything else is simply returned
Ok(_) => return result,
};
let (arr, map, s) = calc_size(result.as_ref().unwrap());
if s > self.max_string_size {
Err(Box::new(EvalAltResult::ErrorDataTooLarge(
"Length of string".to_string(),
self.max_string_size,
s,
Position::none(),
)))
} else if arr > self.max_array_size {
Err(Box::new(EvalAltResult::ErrorDataTooLarge(
"Size of array".to_string(),
self.max_array_size,
arr,
Position::none(),
)))
} else if map > self.max_map_size {
Err(Box::new(EvalAltResult::ErrorDataTooLarge(
"Number of properties in object map".to_string(),
self.max_map_size,
map,
Position::none(),
)))
} else {
result
}
}
/// Check if the number of operations stay within limit.
/// Position in `EvalAltResult` is None and must be set afterwards.
fn inc_operations(&self, state: &mut State) -> Result<(), Box<EvalAltResult>> {
state.operations += 1;
#[cfg(not(feature = "unchecked"))]
{
// Guard against too many operations
if self.max_operations > 0 && state.operations > self.max_operations {
return Err(Box::new(EvalAltResult::ErrorTooManyOperations(
Position::none(),
)));
}
}
// Report progress - only in steps
if let Some(progress) = &self.progress {
if !progress(&state.operations) {
// Terminate script if progress returns false
return Err(Box::new(EvalAltResult::ErrorTerminated(Position::none())));
}
}
Ok(())
}
/// Map a type_name into a pretty-print name
pub(crate) fn map_type_name<'a>(&'a self, name: &'a str) -> &'a str {
self.type_names
.get(name)
.map(String::as_str)
.unwrap_or(name)
}
}
/// Build in common binary operator implementations to avoid the cost of calling a registered function.
fn run_builtin_binary_op(
op: &str,
x: &Dynamic,
y: &Dynamic,
) -> Result<Option<Dynamic>, Box<EvalAltResult>> {
use crate::packages::arithmetic::*;
let args_type = x.type_id();
if y.type_id() != args_type {
return Ok(None);
}
if args_type == TypeId::of::<INT>() {
let x = *x.downcast_ref::<INT>().unwrap();
let y = *y.downcast_ref::<INT>().unwrap();
#[cfg(not(feature = "unchecked"))]
match op {
"+" => return add(x, y).map(Into::into).map(Some),
"-" => return sub(x, y).map(Into::into).map(Some),
"*" => return mul(x, y).map(Into::into).map(Some),
"/" => return div(x, y).map(Into::into).map(Some),
"%" => return modulo(x, y).map(Into::into).map(Some),
"~" => return pow_i_i(x, y).map(Into::into).map(Some),
">>" => return shr(x, y).map(Into::into).map(Some),
"<<" => return shl(x, y).map(Into::into).map(Some),
_ => (),
}
#[cfg(feature = "unchecked")]
match op {
"+" => return Ok(Some((x + y).into())),
"-" => return Ok(Some((x - y).into())),
"*" => return Ok(Some((x * y).into())),
"/" => return Ok(Some((x / y).into())),
"%" => return Ok(Some((x % y).into())),
"~" => return pow_i_i_u(x, y).map(Into::into).map(Some),
">>" => return shr_u(x, y).map(Into::into).map(Some),
"<<" => return shl_u(x, y).map(Into::into).map(Some),
_ => (),
}
match op {
"==" => return Ok(Some((x == y).into())),
"!=" => return Ok(Some((x != y).into())),
">" => return Ok(Some((x > y).into())),
">=" => return Ok(Some((x >= y).into())),
"<" => return Ok(Some((x < y).into())),
"<=" => return Ok(Some((x <= y).into())),
"&" => return Ok(Some((x & y).into())),
"|" => return Ok(Some((x | y).into())),
"^" => return Ok(Some((x ^ y).into())),
_ => (),
}
} else if args_type == TypeId::of::<bool>() {
let x = *x.downcast_ref::<bool>().unwrap();
let y = *y.downcast_ref::<bool>().unwrap();
match op {
"&" => return Ok(Some((x && y).into())),
"|" => return Ok(Some((x || y).into())),
"==" => return Ok(Some((x == y).into())),
"!=" => return Ok(Some((x != y).into())),
_ => (),
}
} else if args_type == TypeId::of::<ImmutableString>() {
let x = x.downcast_ref::<ImmutableString>().unwrap();
let y = y.downcast_ref::<ImmutableString>().unwrap();
match op {
"+" => return Ok(Some((x + y).into())),
"==" => return Ok(Some((x == y).into())),
"!=" => return Ok(Some((x != y).into())),
">" => return Ok(Some((x > y).into())),
">=" => return Ok(Some((x >= y).into())),
"<" => return Ok(Some((x < y).into())),
"<=" => return Ok(Some((x <= y).into())),
_ => (),
}
} else if args_type == TypeId::of::<char>() {
let x = *x.downcast_ref::<char>().unwrap();
let y = *y.downcast_ref::<char>().unwrap();
match op {
"==" => return Ok(Some((x == y).into())),
"!=" => return Ok(Some((x != y).into())),
">" => return Ok(Some((x > y).into())),
">=" => return Ok(Some((x >= y).into())),
"<" => return Ok(Some((x < y).into())),
"<=" => return Ok(Some((x <= y).into())),
_ => (),
}
} else if args_type == TypeId::of::<()>() {
match op {
"==" => return Ok(Some(true.into())),
"!=" | ">" | ">=" | "<" | "<=" => return Ok(Some(false.into())),
_ => (),
}
}
#[cfg(not(feature = "no_float"))]
{
if args_type == TypeId::of::<FLOAT>() {
let x = *x.downcast_ref::<FLOAT>().unwrap();
let y = *y.downcast_ref::<FLOAT>().unwrap();
match op {
"+" => return Ok(Some((x + y).into())),
"-" => return Ok(Some((x - y).into())),
"*" => return Ok(Some((x * y).into())),
"/" => return Ok(Some((x / y).into())),
"%" => return Ok(Some((x % y).into())),
"~" => return pow_f_f(x, y).map(Into::into).map(Some),
"==" => return Ok(Some((x == y).into())),
"!=" => return Ok(Some((x != y).into())),
">" => return Ok(Some((x > y).into())),
">=" => return Ok(Some((x >= y).into())),
"<" => return Ok(Some((x < y).into())),
"<=" => return Ok(Some((x <= y).into())),
_ => (),
}
}
}
Ok(None)
}
/// Build in common operator assignment implementations to avoid the cost of calling a registered function.
fn run_builtin_op_assignment(
op: &str,
x: &mut Dynamic,
y: &Dynamic,
) -> Result<Option<()>, Box<EvalAltResult>> {
use crate::packages::arithmetic::*;
let args_type = x.type_id();
if y.type_id() != args_type {
return Ok(None);
}
if args_type == TypeId::of::<INT>() {
let x = x.downcast_mut::<INT>().unwrap();
let y = *y.downcast_ref::<INT>().unwrap();
#[cfg(not(feature = "unchecked"))]
match op {
"+=" => return Ok(Some(*x = add(*x, y)?)),
"-=" => return Ok(Some(*x = sub(*x, y)?)),
"*=" => return Ok(Some(*x = mul(*x, y)?)),
"/=" => return Ok(Some(*x = div(*x, y)?)),
"%=" => return Ok(Some(*x = modulo(*x, y)?)),
"~=" => return Ok(Some(*x = pow_i_i(*x, y)?)),
">>=" => return Ok(Some(*x = shr(*x, y)?)),
"<<=" => return Ok(Some(*x = shl(*x, y)?)),
_ => (),
}
#[cfg(feature = "unchecked")]
match op {
"+=" => return Ok(Some(*x += y)),
"-=" => return Ok(Some(*x -= y)),
"*=" => return Ok(Some(*x *= y)),
"/=" => return Ok(Some(*x /= y)),
"%=" => return Ok(Some(*x %= y)),
"~=" => return Ok(Some(*x = pow_i_i_u(*x, y)?)),
">>=" => return Ok(Some(*x = shr_u(*x, y)?)),
"<<=" => return Ok(Some(*x = shl_u(*x, y)?)),
_ => (),
}
match op {
"&=" => return Ok(Some(*x &= y)),
"|=" => return Ok(Some(*x |= y)),
"^=" => return Ok(Some(*x ^= y)),
_ => (),
}
} else if args_type == TypeId::of::<bool>() {
let x = x.downcast_mut::<bool>().unwrap();
let y = *y.downcast_ref::<bool>().unwrap();
match op {
"&=" => return Ok(Some(*x = *x && y)),
"|=" => return Ok(Some(*x = *x || y)),
_ => (),
}
} else if args_type == TypeId::of::<ImmutableString>() {
let x = x.downcast_mut::<ImmutableString>().unwrap();
let y = y.downcast_ref::<ImmutableString>().unwrap();
match op {
"+=" => return Ok(Some(*x += y)),
_ => (),
}
}
#[cfg(not(feature = "no_float"))]
{
if args_type == TypeId::of::<FLOAT>() {
let x = x.downcast_mut::<FLOAT>().unwrap();
let y = *y.downcast_ref::<FLOAT>().unwrap();
match op {
"+=" => return Ok(Some(*x += y)),
"-=" => return Ok(Some(*x -= y)),
"*=" => return Ok(Some(*x *= y)),
"/=" => return Ok(Some(*x /= y)),
"%=" => return Ok(Some(*x %= y)),
"~=" => return Ok(Some(*x = pow_f_f(*x, y)?)),
_ => (),
}
}
}
Ok(None)
}