rhai/src/parser.rs
2020-03-22 21:03:58 +08:00

2568 lines
84 KiB
Rust

//! Main module defining the lexer and parser.
use crate::any::{Any, AnyExt, Dynamic};
use crate::engine::Engine;
use crate::error::{LexError, ParseError, ParseErrorType};
use crate::scope::{Scope, VariableType};
#[cfg(not(feature = "no_optimize"))]
use crate::optimize::optimize_into_ast;
use crate::stdlib::{
borrow::Cow,
boxed::Box,
char,
cmp::Ordering,
fmt, format,
iter::Peekable,
str::Chars,
str::FromStr,
string::{String, ToString},
sync::Arc,
usize, vec,
vec::Vec,
};
/// The system integer type.
///
/// If the `only_i32` feature is enabled, this will be `i32` instead.
#[cfg(not(feature = "only_i32"))]
pub type INT = i64;
/// The system integer type.
///
/// If the `only_i32` feature is not enabled, this will be `i64` instead.
#[cfg(feature = "only_i32")]
pub type INT = i32;
/// The system floating-point type.
#[cfg(not(feature = "no_float"))]
pub type FLOAT = f64;
type LERR = LexError;
type PERR = ParseErrorType;
/// A location (line number + character position) in the input script.
#[derive(Eq, PartialEq, Ord, PartialOrd, Hash, Clone, Copy)]
pub struct Position {
/// Line number - 0 = none, MAX = EOF
line: usize,
/// Character position - 0 = BOL, MAX = EOF
pos: usize,
}
impl Position {
/// Create a new `Position`.
pub fn new(line: usize, position: usize) -> Self {
assert!(line != 0, "line cannot be zero");
assert!(
line != usize::MAX || position != usize::MAX,
"invalid position"
);
Self {
line,
pos: position,
}
}
/// Get the line number (1-based), or `None` if no position or EOF.
pub fn line(&self) -> Option<usize> {
if self.is_none() || self.is_eof() {
None
} else {
Some(self.line)
}
}
/// Get the character position (1-based), or `None` if at beginning of a line.
pub fn position(&self) -> Option<usize> {
if self.is_none() || self.is_eof() {
None
} else if self.pos == 0 {
None
} else {
Some(self.pos)
}
}
/// Advance by one character position.
pub(crate) fn advance(&mut self) {
self.pos += 1;
}
/// Go backwards by one character position.
///
/// # Panics
///
/// Panics if already at beginning of a line - cannot rewind to a previous line.
///
pub(crate) fn rewind(&mut self) {
assert!(self.pos > 0, "cannot rewind at position 0");
self.pos -= 1;
}
/// Advance to the next line.
pub(crate) fn new_line(&mut self) {
self.line += 1;
self.pos = 0;
}
/// Create a `Position` representing no position.
pub(crate) fn none() -> Self {
Self { line: 0, pos: 0 }
}
/// Create a `Position` at EOF.
pub(crate) fn eof() -> Self {
Self {
line: usize::MAX,
pos: usize::MAX,
}
}
/// Is there no `Position`?
pub fn is_none(&self) -> bool {
self.line == 0 && self.pos == 0
}
/// Is the `Position` at EOF?
pub fn is_eof(&self) -> bool {
self.line == usize::MAX && self.pos == usize::MAX
}
}
impl Default for Position {
fn default() -> Self {
Self::new(1, 0)
}
}
impl fmt::Display for Position {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_eof() {
write!(f, "EOF")
} else if self.is_none() {
write!(f, "none")
} else {
write!(f, "line {}, position {}", self.line, self.pos)
}
}
}
impl fmt::Debug for Position {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_eof() {
write!(f, "(EOF)")
} else {
write!(f, "({}:{})", self.line, self.pos)
}
}
}
/// Compiled AST (abstract syntax tree) of a Rhai script.
#[derive(Debug, Clone)]
pub struct AST(pub(crate) Vec<Stmt>, pub(crate) Vec<Arc<FnDef>>);
/// A script-function definition.
#[derive(Debug, Clone)]
pub struct FnDef {
/// Function name.
pub name: String,
/// Names of function parameters.
pub params: Vec<String>,
/// Function body.
pub body: Stmt,
/// Position of the function definition.
pub pos: Position,
}
impl FnDef {
/// Function to order two FnDef records, for binary search.
pub fn compare(&self, name: &str, params_len: usize) -> Ordering {
// First order by name
match self.name.as_str().cmp(name) {
// Then by number of parameters
Ordering::Equal => self.params.len().cmp(&params_len),
order => order,
}
}
}
/// `return`/`throw` statement.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub enum ReturnType {
/// `return` statement.
Return,
/// `throw` statement.
Exception,
}
/// A statement.
#[derive(Debug, Clone)]
pub enum Stmt {
/// No-op.
Noop(Position),
/// if expr { stmt } else { stmt }
IfThenElse(Box<Expr>, Box<Stmt>, Option<Box<Stmt>>),
/// while expr { stmt }
While(Box<Expr>, Box<Stmt>),
/// loop { stmt }
Loop(Box<Stmt>),
/// for id in expr { stmt }
For(String, Box<Expr>, Box<Stmt>),
/// let id = expr
Let(String, Option<Box<Expr>>, Position),
/// const id = expr
Const(String, Box<Expr>, Position),
/// { stmt; ... }
Block(Vec<Stmt>, Position),
/// { stmt }
Expr(Box<Expr>),
/// break
Break(Position),
/// `return`/`throw`
ReturnWithVal(Option<Box<Expr>>, ReturnType, Position),
}
impl Stmt {
/// Get the `Position` of this statement.
pub fn position(&self) -> Position {
match self {
Stmt::Noop(pos)
| Stmt::Let(_, _, pos)
| Stmt::Const(_, _, pos)
| Stmt::Block(_, pos)
| Stmt::Break(pos)
| Stmt::ReturnWithVal(_, _, pos) => *pos,
Stmt::IfThenElse(expr, _, _) | Stmt::Expr(expr) => expr.position(),
Stmt::While(_, stmt) | Stmt::Loop(stmt) | Stmt::For(_, _, stmt) => stmt.position(),
}
}
/// Is this statement self-terminated (i.e. no need for a semicolon terminator)?
pub fn is_self_terminated(&self) -> bool {
match self {
Stmt::IfThenElse(_, _, _)
| Stmt::While(_, _)
| Stmt::Loop(_)
| Stmt::For(_, _, _)
| Stmt::Block(_, _) => true,
// A No-op requires a semicolon in order to know it is an empty statement!
Stmt::Noop(_) => false,
Stmt::Let(_, _, _)
| Stmt::Const(_, _, _)
| Stmt::Expr(_)
| Stmt::Break(_)
| Stmt::ReturnWithVal(_, _, _) => false,
}
}
/// Is this statement _pure_?
pub fn is_pure(&self) -> bool {
match self {
Stmt::Noop(_) => true,
Stmt::Expr(expr) => expr.is_pure(),
Stmt::IfThenElse(guard, if_block, Some(else_block)) => {
guard.is_pure() && if_block.is_pure() && else_block.is_pure()
}
Stmt::IfThenElse(guard, block, None) | Stmt::While(guard, block) => {
guard.is_pure() && block.is_pure()
}
Stmt::Loop(block) => block.is_pure(),
Stmt::For(_, range, block) => range.is_pure() && block.is_pure(),
Stmt::Let(_, _, _) | Stmt::Const(_, _, _) => false,
Stmt::Block(statements, _) => statements.iter().all(Stmt::is_pure),
Stmt::Break(_) | Stmt::ReturnWithVal(_, _, _) => false,
}
}
}
/// An expression.
#[derive(Debug, Clone)]
pub enum Expr {
/// Integer constant.
IntegerConstant(INT, Position),
/// Floating-point constant.
#[cfg(not(feature = "no_float"))]
FloatConstant(FLOAT, Position),
/// Character constant.
CharConstant(char, Position),
/// String constant.
StringConstant(String, Position),
/// Variable access.
Variable(String, Position),
/// Property access.
Property(String, Position),
/// { stmt }
Stmt(Box<Stmt>, Position),
/// func(expr, ... )
FunctionCall(String, Vec<Expr>, Option<Dynamic>, Position),
/// expr = expr
Assignment(Box<Expr>, Box<Expr>, Position),
/// lhs.rhs
Dot(Box<Expr>, Box<Expr>, Position),
/// expr[expr]
#[cfg(not(feature = "no_index"))]
Index(Box<Expr>, Box<Expr>, Position),
#[cfg(not(feature = "no_index"))]
/// [ expr, ... ]
Array(Vec<Expr>, Position),
/// lhs && rhs
And(Box<Expr>, Box<Expr>),
/// lhs || rhs
Or(Box<Expr>, Box<Expr>),
/// true
True(Position),
/// false
False(Position),
/// ()
Unit(Position),
}
impl Expr {
/// Get the `Dynamic` value of a constant expression.
///
/// # Panics
///
/// Panics when the expression is not constant.
pub fn get_constant_value(&self) -> Dynamic {
match self {
Expr::IntegerConstant(i, _) => i.into_dynamic(),
Expr::CharConstant(c, _) => c.into_dynamic(),
Expr::StringConstant(s, _) => s.into_dynamic(),
Expr::True(_) => true.into_dynamic(),
Expr::False(_) => false.into_dynamic(),
Expr::Unit(_) => ().into_dynamic(),
#[cfg(not(feature = "no_index"))]
Expr::Array(items, _) if items.iter().all(Expr::is_constant) => items
.iter()
.map(Expr::get_constant_value)
.collect::<Vec<_>>()
.into_dynamic(),
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(f, _) => f.into_dynamic(),
_ => panic!("cannot get value of non-constant expression"),
}
}
/// Get the display value of a constant expression.
///
/// # Panics
///
/// Panics when the expression is not constant.
pub fn get_constant_str(&self) -> String {
match self {
Expr::IntegerConstant(i, _) => i.to_string(),
Expr::CharConstant(c, _) => c.to_string(),
Expr::StringConstant(_, _) => "string".to_string(),
Expr::True(_) => "true".to_string(),
Expr::False(_) => "false".to_string(),
Expr::Unit(_) => "()".to_string(),
#[cfg(not(feature = "no_index"))]
Expr::Array(items, _) if items.iter().all(Expr::is_constant) => "array".to_string(),
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(f, _) => f.to_string(),
_ => panic!("cannot get value of non-constant expression"),
}
}
/// Get the `Position` of the expression.
pub fn position(&self) -> Position {
match self {
Expr::IntegerConstant(_, pos)
| Expr::CharConstant(_, pos)
| Expr::StringConstant(_, pos)
| Expr::Variable(_, pos)
| Expr::Property(_, pos)
| Expr::Stmt(_, pos)
| Expr::FunctionCall(_, _, _, pos)
| Expr::True(pos)
| Expr::False(pos)
| Expr::Unit(pos) => *pos,
Expr::Assignment(expr, _, _)
| Expr::Dot(expr, _, _)
| Expr::And(expr, _)
| Expr::Or(expr, _) => expr.position(),
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(_, pos) => *pos,
#[cfg(not(feature = "no_index"))]
Expr::Array(_, pos) => *pos,
#[cfg(not(feature = "no_index"))]
Expr::Index(expr, _, _) => expr.position(),
}
}
/// Is the expression pure?
///
/// A pure expression has no side effects.
pub fn is_pure(&self) -> bool {
match self {
#[cfg(not(feature = "no_index"))]
Expr::Array(expressions, _) => expressions.iter().all(Expr::is_pure),
#[cfg(not(feature = "no_index"))]
Expr::Index(x, y, _) => x.is_pure() && y.is_pure(),
Expr::And(x, y) | Expr::Or(x, y) => x.is_pure() && y.is_pure(),
Expr::Stmt(stmt, _) => stmt.is_pure(),
expr => expr.is_constant() || matches!(expr, Expr::Variable(_, _)),
}
}
/// Is the expression a constant?
pub fn is_constant(&self) -> bool {
match self {
Expr::IntegerConstant(_, _)
| Expr::CharConstant(_, _)
| Expr::StringConstant(_, _)
| Expr::True(_)
| Expr::False(_)
| Expr::Unit(_) => true,
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(_, _) => true,
// An array literal is constant if all items are constant
#[cfg(not(feature = "no_index"))]
Expr::Array(expressions, _) => expressions.iter().all(Expr::is_constant),
_ => false,
}
}
}
/// Tokens.
#[derive(Debug, PartialEq, Clone)]
pub enum Token {
IntegerConstant(INT),
#[cfg(not(feature = "no_float"))]
FloatConstant(FLOAT),
Identifier(String),
CharConstant(char),
StringConst(String),
LeftBrace,
RightBrace,
LeftParen,
RightParen,
#[cfg(not(feature = "no_index"))]
LeftBracket,
#[cfg(not(feature = "no_index"))]
RightBracket,
Plus,
UnaryPlus,
Minus,
UnaryMinus,
Multiply,
Divide,
Modulo,
PowerOf,
LeftShift,
RightShift,
SemiColon,
Colon,
Comma,
Period,
Equals,
True,
False,
Let,
Const,
If,
Else,
While,
Loop,
For,
In,
LessThan,
GreaterThan,
LessThanEqualsTo,
GreaterThanEqualsTo,
EqualsTo,
NotEqualsTo,
Bang,
Pipe,
Or,
XOr,
Ampersand,
And,
#[cfg(not(feature = "no_function"))]
Fn,
Break,
Return,
Throw,
PlusAssign,
MinusAssign,
MultiplyAssign,
DivideAssign,
LeftShiftAssign,
RightShiftAssign,
AndAssign,
OrAssign,
XOrAssign,
ModuloAssign,
PowerOfAssign,
LexError(LexError),
}
impl Token {
/// Get the syntax of the token.
pub fn syntax<'a>(&'a self) -> Cow<'a, str> {
use self::Token::*;
match self {
IntegerConstant(i) => i.to_string().into(),
#[cfg(not(feature = "no_float"))]
FloatConstant(f) => f.to_string().into(),
Identifier(s) => s.into(),
CharConstant(c) => c.to_string().into(),
LexError(err) => err.to_string().into(),
token => (match token {
StringConst(_) => "string",
LeftBrace => "{",
RightBrace => "}",
LeftParen => "(",
RightParen => ")",
#[cfg(not(feature = "no_index"))]
LeftBracket => "[",
#[cfg(not(feature = "no_index"))]
RightBracket => "]",
Plus => "+",
UnaryPlus => "+",
Minus => "-",
UnaryMinus => "-",
Multiply => "*",
Divide => "/",
SemiColon => ";",
Colon => ":",
Comma => ",",
Period => ".",
Equals => "=",
True => "true",
False => "false",
Let => "let",
Const => "const",
If => "if",
Else => "else",
While => "while",
Loop => "loop",
LessThan => "<",
GreaterThan => ">",
Bang => "!",
LessThanEqualsTo => "<=",
GreaterThanEqualsTo => ">=",
EqualsTo => "==",
NotEqualsTo => "!=",
Pipe => "|",
Or => "||",
Ampersand => "&",
And => "&&",
#[cfg(not(feature = "no_function"))]
Fn => "fn",
Break => "break",
Return => "return",
Throw => "throw",
PlusAssign => "+=",
MinusAssign => "-=",
MultiplyAssign => "*=",
DivideAssign => "/=",
LeftShiftAssign => "<<=",
RightShiftAssign => ">>=",
AndAssign => "&=",
OrAssign => "|=",
XOrAssign => "^=",
LeftShift => "<<",
RightShift => ">>",
XOr => "^",
Modulo => "%",
ModuloAssign => "%=",
PowerOf => "~",
PowerOfAssign => "~=",
For => "for",
In => "in",
_ => panic!("operator should be match in outer scope"),
})
.into(),
}
}
// If another operator is after these, it's probably an unary operator
// (not sure about fn name).
pub fn is_next_unary(&self) -> bool {
use self::Token::*;
match self {
LexError(_) |
LeftBrace | // (+expr) - is unary
// RightBrace | {expr} - expr not unary & is closing
LeftParen | // {-expr} - is unary
// RightParen | (expr) - expr not unary & is closing
Plus |
UnaryPlus |
Minus |
UnaryMinus |
Multiply |
Divide |
Colon |
Comma |
Period |
Equals |
LessThan |
GreaterThan |
Bang |
LessThanEqualsTo |
GreaterThanEqualsTo |
EqualsTo |
NotEqualsTo |
Pipe |
Or |
Ampersand |
And |
If |
While |
PlusAssign |
MinusAssign |
MultiplyAssign |
DivideAssign |
LeftShiftAssign |
RightShiftAssign |
AndAssign |
OrAssign |
XOrAssign |
LeftShift |
RightShift |
XOr |
Modulo |
ModuloAssign |
Return |
Throw |
PowerOf |
In |
PowerOfAssign => true,
#[cfg(not(feature = "no_index"))]
LeftBracket => true, // [-expr] - is unary
// RightBracket | [expr] - expr not unary & is closing
_ => false,
}
}
/// Get the precedence number of the token.
pub fn precedence(&self) -> u8 {
match self {
Self::Equals
| Self::PlusAssign
| Self::MinusAssign
| Self::MultiplyAssign
| Self::DivideAssign
| Self::LeftShiftAssign
| Self::RightShiftAssign
| Self::AndAssign
| Self::OrAssign
| Self::XOrAssign
| Self::ModuloAssign
| Self::PowerOfAssign => 10,
Self::Or | Self::XOr | Self::Pipe => 50,
Self::And | Self::Ampersand => 60,
Self::LessThan
| Self::LessThanEqualsTo
| Self::GreaterThan
| Self::GreaterThanEqualsTo
| Self::EqualsTo
| Self::NotEqualsTo => 70,
Self::Plus | Self::Minus => 80,
Self::Divide | Self::Multiply | Self::PowerOf => 90,
Self::LeftShift | Self::RightShift => 100,
Self::Modulo => 110,
Self::Period => 120,
_ => 0,
}
}
/// Does an expression bind to the right (instead of left)?
pub fn is_bind_right(&self) -> bool {
match self {
// Assignments bind to the right
Self::Equals
| Self::PlusAssign
| Self::MinusAssign
| Self::MultiplyAssign
| Self::DivideAssign
| Self::LeftShiftAssign
| Self::RightShiftAssign
| Self::AndAssign
| Self::OrAssign
| Self::XOrAssign
| Self::ModuloAssign
| Self::PowerOfAssign => true,
// Property access binds to the right
Self::Period => true,
_ => false,
}
}
}
/// An iterator on a `Token` stream.
pub struct TokenIterator<'a> {
/// The last token seen.
last: Token,
/// Current position.
pos: Position,
/// The input characters stream.
char_stream: Peekable<Chars<'a>>,
}
impl<'a> TokenIterator<'a> {
/// Move the current position one character ahead.
fn advance(&mut self) {
self.pos.advance();
}
/// Move the current position back one character.
///
/// # Panics
///
/// Panics if already at the beginning of a line - cannot rewind to the previous line.
fn rewind(&mut self) {
self.pos.rewind();
}
/// Move the current position to the next line.
fn new_line(&mut self) {
self.pos.new_line()
}
/// Parse a string literal wrapped by `enclosing_char`.
pub fn parse_string_literal(
&mut self,
enclosing_char: char,
) -> Result<String, (LexError, Position)> {
let mut result = Vec::new();
let mut escape = String::with_capacity(12);
loop {
let next_char = self.char_stream.next();
self.advance();
match next_char.ok_or((LERR::UnterminatedString, Position::eof()))? {
// \...
'\\' if escape.is_empty() => {
escape.push('\\');
}
// \\
'\\' if !escape.is_empty() => {
escape.clear();
result.push('\\');
}
// \t
't' if !escape.is_empty() => {
escape.clear();
result.push('\t');
}
// \n
'n' if !escape.is_empty() => {
escape.clear();
result.push('\n');
}
// \r
'r' if !escape.is_empty() => {
escape.clear();
result.push('\r');
}
// \x??, \u????, \U????????
ch @ 'x' | ch @ 'u' | ch @ 'U' if !escape.is_empty() => {
let mut seq = escape.clone();
seq.push(ch);
escape.clear();
let mut out_val: u32 = 0;
let len = match ch {
'x' => 2,
'u' => 4,
'U' => 8,
_ => panic!("should be 'x', 'u' or 'U'"),
};
for _ in 0..len {
let c = self.char_stream.next().ok_or_else(|| {
(LERR::MalformedEscapeSequence(seq.to_string()), self.pos)
})?;
seq.push(c);
self.advance();
out_val *= 16;
out_val += c.to_digit(16).ok_or_else(|| {
(LERR::MalformedEscapeSequence(seq.to_string()), self.pos)
})?;
}
result.push(
char::from_u32(out_val)
.ok_or_else(|| (LERR::MalformedEscapeSequence(seq), self.pos))?,
);
}
// \{enclosing_char} - escaped
ch if enclosing_char == ch && !escape.is_empty() => result.push(ch),
// Close wrapper
ch if enclosing_char == ch && escape.is_empty() => break,
// Unknown escape sequence
_ if !escape.is_empty() => {
return Err((LERR::MalformedEscapeSequence(escape), self.pos))
}
// Cannot have new-lines inside string literals
'\n' => {
self.rewind();
return Err((LERR::UnterminatedString, self.pos));
}
// All other characters
ch => {
escape.clear();
result.push(ch);
}
}
}
Ok(result.iter().collect())
}
/// Get the next token.
fn inner_next(&mut self) -> Option<(Token, Position)> {
let mut negated = false;
while let Some(c) = self.char_stream.next() {
self.advance();
let pos = self.pos;
match c {
// \n
'\n' => self.new_line(),
// digit ...
'0'..='9' => {
let mut result = Vec::new();
let mut radix_base: Option<u32> = None;
result.push(c);
while let Some(&next_char) = self.char_stream.peek() {
match next_char {
'0'..='9' | '_' => {
result.push(next_char);
self.char_stream.next();
self.advance();
}
#[cfg(not(feature = "no_float"))]
'.' => {
result.push(next_char);
self.char_stream.next();
self.advance();
while let Some(&next_char_in_float) = self.char_stream.peek() {
match next_char_in_float {
'0'..='9' | '_' => {
result.push(next_char_in_float);
self.char_stream.next();
self.advance();
}
_ => break,
}
}
}
// 0x????, 0o????, 0b????
ch @ 'x' | ch @ 'X' | ch @ 'o' | ch @ 'O' | ch @ 'b' | ch @ 'B'
if c == '0' =>
{
result.push(next_char);
self.char_stream.next();
self.advance();
let valid = match ch {
'x' | 'X' => [
'a', 'b', 'c', 'd', 'e', 'f', 'A', 'B', 'C', 'D', 'E', 'F',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_',
],
'o' | 'O' => [
'0', '1', '2', '3', '4', '5', '6', '7', '_', '_', '_', '_',
'_', '_', '_', '_', '_', '_', '_', '_', '_', '_', '_',
],
'b' | 'B' => [
'0', '1', '_', '_', '_', '_', '_', '_', '_', '_', '_', '_',
'_', '_', '_', '_', '_', '_', '_', '_', '_', '_', '_',
],
_ => panic!("unexpected character {}", ch),
};
radix_base = Some(match ch {
'x' | 'X' => 16,
'o' | 'O' => 8,
'b' | 'B' => 2,
_ => panic!("unexpected character {}", ch),
});
while let Some(&next_char_in_hex) = self.char_stream.peek() {
if !valid.contains(&next_char_in_hex) {
break;
}
result.push(next_char_in_hex);
self.char_stream.next();
self.advance();
}
}
_ => break,
}
}
if negated {
result.insert(0, '-');
}
// Parse number
if let Some(radix) = radix_base {
let out: String = result.iter().skip(2).filter(|&&c| c != '_').collect();
return Some((
INT::from_str_radix(&out, radix)
.map(Token::IntegerConstant)
.unwrap_or_else(|_| {
Token::LexError(LERR::MalformedNumber(result.iter().collect()))
}),
pos,
));
} else {
let out: String = result.iter().filter(|&&c| c != '_').collect();
let num = INT::from_str(&out).map(Token::IntegerConstant);
// If integer parsing is unnecessary, try float instead
#[cfg(not(feature = "no_float"))]
let num = num.or_else(|_| FLOAT::from_str(&out).map(Token::FloatConstant));
return Some((
num.unwrap_or_else(|_| {
Token::LexError(LERR::MalformedNumber(result.iter().collect()))
}),
pos,
));
}
}
// letter ...
'A'..='Z' | 'a'..='z' | '_' => {
let mut result = Vec::new();
result.push(c);
while let Some(&next_char) = self.char_stream.peek() {
match next_char {
x if x.is_ascii_alphanumeric() || x == '_' => {
result.push(x);
self.char_stream.next();
self.advance();
}
_ => break,
}
}
let is_valid_identifier = result
.iter()
.find(|&ch| char::is_ascii_alphanumeric(ch)) // first alpha-numeric character
.map(char::is_ascii_alphabetic) // is a letter
.unwrap_or(false); // if no alpha-numeric at all - syntax error
let identifier: String = result.iter().collect();
if !is_valid_identifier {
return Some((Token::LexError(LERR::MalformedIdentifier(identifier)), pos));
}
return Some((
match identifier.as_str() {
"true" => Token::True,
"false" => Token::False,
"let" => Token::Let,
"const" => Token::Const,
"if" => Token::If,
"else" => Token::Else,
"while" => Token::While,
"loop" => Token::Loop,
"break" => Token::Break,
"return" => Token::Return,
"throw" => Token::Throw,
"for" => Token::For,
"in" => Token::In,
#[cfg(not(feature = "no_function"))]
"fn" => Token::Fn,
_ => Token::Identifier(identifier),
},
pos,
));
}
// " - string literal
'"' => {
return match self.parse_string_literal('"') {
Ok(out) => Some((Token::StringConst(out), pos)),
Err(e) => Some((Token::LexError(e.0), e.1)),
}
}
// ' - character literal
'\'' => match self.parse_string_literal('\'') {
Ok(result) => {
let mut chars = result.chars();
return Some((
if let Some(first_char) = chars.next() {
if chars.count() != 0 {
Token::LexError(LERR::MalformedChar(format!("'{}'", result)))
} else {
Token::CharConstant(first_char)
}
} else {
Token::LexError(LERR::MalformedChar(format!("'{}'", result)))
},
pos,
));
}
Err(e) => return Some((Token::LexError(e.0), e.1)),
},
// Braces
'{' => return Some((Token::LeftBrace, pos)),
'}' => return Some((Token::RightBrace, pos)),
// Parentheses
'(' => return Some((Token::LeftParen, pos)),
')' => return Some((Token::RightParen, pos)),
// Indexing
#[cfg(not(feature = "no_index"))]
'[' => return Some((Token::LeftBracket, pos)),
#[cfg(not(feature = "no_index"))]
']' => return Some((Token::RightBracket, pos)),
// Operators
'+' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::PlusAssign
}
_ if self.last.is_next_unary() => Token::UnaryPlus,
_ => Token::Plus,
},
pos,
))
}
'-' => match self.char_stream.peek() {
// Negative number?
Some('0'..='9') if self.last.is_next_unary() => negated = true,
Some('0'..='9') => return Some((Token::Minus, pos)),
Some('=') => {
self.char_stream.next();
self.advance();
return Some((Token::MinusAssign, pos));
}
_ if self.last.is_next_unary() => return Some((Token::UnaryMinus, pos)),
_ => return Some((Token::Minus, pos)),
},
'*' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::MultiplyAssign
}
_ => Token::Multiply,
},
pos,
))
}
'/' => match self.char_stream.peek() {
Some(&'/') => {
self.char_stream.next();
self.advance();
while let Some(c) = self.char_stream.next() {
match c {
'\n' => {
self.new_line();
break;
}
_ => self.advance(),
}
}
}
Some(&'*') => {
let mut level = 1;
self.char_stream.next();
self.advance();
while let Some(c) = self.char_stream.next() {
self.advance();
match c {
'/' => {
if let Some('*') = self.char_stream.next() {
level += 1;
}
self.advance();
}
'*' => {
if let Some('/') = self.char_stream.next() {
level -= 1;
}
self.advance();
}
'\n' => self.new_line(),
_ => (),
}
if level == 0 {
break;
}
}
}
Some(&'=') => {
self.char_stream.next();
self.advance();
return Some((Token::DivideAssign, pos));
}
_ => return Some((Token::Divide, pos)),
},
';' => return Some((Token::SemiColon, pos)),
':' => return Some((Token::Colon, pos)),
',' => return Some((Token::Comma, pos)),
'.' => return Some((Token::Period, pos)),
'=' => match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
return Some((Token::EqualsTo, pos));
}
_ => return Some((Token::Equals, pos)),
},
'<' => match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
return Some((Token::LessThanEqualsTo, pos));
}
Some(&'<') => {
self.char_stream.next();
self.advance();
return match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Some((Token::LeftShiftAssign, pos))
}
_ => {
self.char_stream.next();
self.advance();
Some((Token::LeftShift, pos))
}
};
}
_ => return Some((Token::LessThan, pos)),
},
'>' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::GreaterThanEqualsTo
}
Some(&'>') => {
self.char_stream.next();
self.advance();
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::RightShiftAssign
}
_ => {
self.char_stream.next();
self.advance();
Token::RightShift
}
}
}
_ => Token::GreaterThan,
},
pos,
))
}
'!' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::NotEqualsTo
}
_ => Token::Bang,
},
pos,
))
}
'|' => {
return Some((
match self.char_stream.peek() {
Some(&'|') => {
self.char_stream.next();
self.advance();
Token::Or
}
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::OrAssign
}
_ => Token::Pipe,
},
pos,
))
}
'&' => {
return Some((
match self.char_stream.peek() {
Some(&'&') => {
self.char_stream.next();
self.advance();
Token::And
}
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::AndAssign
}
_ => Token::Ampersand,
},
pos,
))
}
'^' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::XOrAssign
}
_ => Token::XOr,
},
pos,
))
}
'%' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::ModuloAssign
}
_ => Token::Modulo,
},
pos,
))
}
'~' => {
return Some((
match self.char_stream.peek() {
Some(&'=') => {
self.char_stream.next();
self.advance();
Token::PowerOfAssign
}
_ => Token::PowerOf,
},
pos,
))
}
x if x.is_whitespace() => (),
x => return Some((Token::LexError(LERR::UnexpectedChar(x)), pos)),
}
}
None
}
}
impl<'a> Iterator for TokenIterator<'a> {
type Item = (Token, Position);
// TODO - perhaps this could be optimized?
fn next(&mut self) -> Option<Self::Item> {
self.inner_next().map(|x| {
self.last = x.0.clone();
x
})
}
}
/// Tokenize an input text stream.
pub fn lex(input: &str) -> TokenIterator<'_> {
TokenIterator {
last: Token::LexError(LERR::InputError("".into())),
pos: Position::new(1, 0),
char_stream: input.chars().peekable(),
}
}
/// Parse ( expr )
fn parse_paren_expr<'a>(
input: &mut Peekable<TokenIterator<'a>>,
begin: Position,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
match input.peek() {
// ()
Some((Token::RightParen, _)) => {
input.next();
return Ok(Expr::Unit(begin));
}
_ => (),
}
let expr = parse_expr(input, allow_stmt_expr)?;
match input.next() {
// ( xxx )
Some((Token::RightParen, _)) => Ok(expr),
// ( xxx ???
Some((_, pos)) => {
return Err(ParseError::new(
PERR::MissingRightParen("a matching ( in the expression".into()),
pos,
))
}
// ( xxx
None => Err(ParseError::new(
PERR::MissingRightParen("a matching ( in the expression".into()),
Position::eof(),
)),
}
}
/// Parse a function call.
fn parse_call_expr<'a>(
id: String,
input: &mut Peekable<TokenIterator<'a>>,
begin: Position,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let mut args_expr_list = Vec::new();
// id()
if let (Token::RightParen, _) = input.peek().ok_or_else(|| {
ParseError::new(
PERR::MissingRightParen(format!(
"closing the arguments to call of function '{}'",
id
)),
Position::eof(),
)
})? {
input.next();
return Ok(Expr::FunctionCall(id, args_expr_list, None, begin));
}
loop {
args_expr_list.push(parse_expr(input, allow_stmt_expr)?);
match input.peek().ok_or_else(|| {
ParseError::new(
PERR::MissingRightParen(format!(
"closing the arguments to call of function '{}'",
id
)),
Position::eof(),
)
})? {
(Token::RightParen, _) => {
input.next();
return Ok(Expr::FunctionCall(id, args_expr_list, None, begin));
}
(Token::Comma, _) => (),
(_, pos) => {
return Err(ParseError::new(
PERR::MissingComma(format!(
"separating the arguments to call of function '{}'",
id
)),
*pos,
))
}
}
input.next();
}
}
/// Parse an indexing expression.s
#[cfg(not(feature = "no_index"))]
fn parse_index_expr<'a>(
lhs: Box<Expr>,
input: &mut Peekable<TokenIterator<'a>>,
pos: Position,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let idx_expr = parse_expr(input, allow_stmt_expr)?;
// Check type of indexing - must be integer
match &idx_expr {
// lhs[int]
Expr::IntegerConstant(i, pos) if *i < 0 => {
return Err(ParseError::new(
PERR::MalformedIndexExpr(format!(
"Array access expects non-negative index: {} < 0",
i
)),
*pos,
))
}
// lhs[float]
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(_, pos) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr("Array access expects integer index, not a float".into()),
*pos,
))
}
// lhs[char]
Expr::CharConstant(_, pos) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr(
"Array access expects integer index, not a character".into(),
),
*pos,
))
}
// lhs[string]
Expr::StringConstant(_, pos) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr("Array access expects integer index, not a string".into()),
*pos,
))
}
// lhs[??? = ??? ], lhs[()]
Expr::Assignment(_, _, pos) | Expr::Unit(pos) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr("Array access expects integer index, not ()".into()),
*pos,
))
}
// lhs[??? && ???], lhs[??? || ???]
Expr::And(lhs, _) | Expr::Or(lhs, _) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr(
"Array access expects integer index, not a boolean".into(),
),
lhs.position(),
))
}
// lhs[true], lhs[false]
Expr::True(pos) | Expr::False(pos) => {
return Err(ParseError::new(
PERR::MalformedIndexExpr(
"Array access expects integer index, not a boolean".into(),
),
*pos,
))
}
// All other expressions
_ => (),
}
// Check if there is a closing bracket
match input.peek().ok_or_else(|| {
ParseError::new(
PERR::MissingRightBracket("index expression".into()),
Position::eof(),
)
})? {
(Token::RightBracket, _) => {
input.next();
return Ok(Expr::Index(lhs, Box::new(idx_expr), pos));
}
(_, pos) => {
return Err(ParseError::new(
PERR::MissingRightBracket("index expression".into()),
*pos,
))
}
}
}
/// Parse an expression that begins with an identifier.
fn parse_ident_expr<'a>(
id: String,
input: &mut Peekable<TokenIterator<'a>>,
begin: Position,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
match input.peek() {
// id(...) - function call
Some((Token::LeftParen, _)) => {
input.next();
parse_call_expr(id, input, begin, allow_stmt_expr)
}
// id[...] - indexing
#[cfg(not(feature = "no_index"))]
Some((Token::LeftBracket, pos)) => {
let pos = *pos;
input.next();
parse_index_expr(
Box::new(Expr::Variable(id, begin)),
input,
pos,
allow_stmt_expr,
)
}
// id - variable
Some(_) => Ok(Expr::Variable(id, begin)),
// EOF
None => Ok(Expr::Variable(id, begin)),
}
}
/// Parse an array literal.
#[cfg(not(feature = "no_index"))]
fn parse_array_literal<'a>(
input: &mut Peekable<TokenIterator<'a>>,
begin: Position,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let mut arr = Vec::new();
if !matches!(input.peek(), Some((Token::RightBracket, _))) {
while input.peek().is_some() {
arr.push(parse_expr(input, allow_stmt_expr)?);
match input.peek().ok_or_else(|| {
ParseError(
PERR::MissingRightBracket("separating items in array literal".into()),
Position::eof(),
)
})? {
(Token::Comma, _) => {
input.next();
}
(Token::RightBracket, _) => break,
(_, pos) => {
return Err(ParseError(
PERR::MissingComma("separating items in array literal".into()),
*pos,
))
}
}
}
}
match input.peek().ok_or_else(|| {
ParseError::new(
PERR::MissingRightBracket("the end of array literal".into()),
Position::eof(),
)
})? {
(Token::RightBracket, _) => {
input.next();
Ok(Expr::Array(arr, begin))
}
(_, pos) => Err(ParseError::new(
PERR::MissingRightBracket("the end of array literal".into()),
*pos,
)),
}
}
/// Parse a primary expression.
fn parse_primary<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let token = match input
.peek()
.ok_or_else(|| ParseError::new(PERR::UnexpectedEOF, Position::eof()))?
{
// { - block statement as expression
(Token::LeftBrace, pos) if allow_stmt_expr => {
let pos = *pos;
return parse_block(input, false, allow_stmt_expr)
.map(|block| Expr::Stmt(Box::new(block), pos));
}
_ => input.next().expect("should be a token"),
};
let mut can_be_indexed = false;
let mut root_expr = match token {
#[cfg(not(feature = "no_float"))]
(Token::FloatConstant(x), pos) => Ok(Expr::FloatConstant(x, pos)),
(Token::IntegerConstant(x), pos) => Ok(Expr::IntegerConstant(x, pos)),
(Token::CharConstant(c), pos) => Ok(Expr::CharConstant(c, pos)),
(Token::StringConst(s), pos) => {
can_be_indexed = true;
Ok(Expr::StringConstant(s, pos))
}
(Token::Identifier(s), pos) => {
can_be_indexed = true;
parse_ident_expr(s, input, pos, allow_stmt_expr)
}
(Token::LeftParen, pos) => {
can_be_indexed = true;
parse_paren_expr(input, pos, allow_stmt_expr)
}
#[cfg(not(feature = "no_index"))]
(Token::LeftBracket, pos) => {
can_be_indexed = true;
parse_array_literal(input, pos, allow_stmt_expr)
}
(Token::True, pos) => Ok(Expr::True(pos)),
(Token::False, pos) => Ok(Expr::False(pos)),
(Token::LexError(err), pos) => Err(ParseError::new(PERR::BadInput(err.to_string()), pos)),
(token, pos) => Err(ParseError::new(
PERR::BadInput(format!("Unexpected '{}'", token.syntax())),
pos,
)),
}?;
if can_be_indexed {
// Tail processing all possible indexing
#[cfg(not(feature = "no_index"))]
while let Some((Token::LeftBracket, pos)) = input.peek() {
let pos = *pos;
input.next();
root_expr = parse_index_expr(Box::new(root_expr), input, pos, allow_stmt_expr)?;
}
}
Ok(root_expr)
}
/// Parse a potential unary operator.
fn parse_unary<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
match input
.peek()
.ok_or_else(|| ParseError::new(PERR::UnexpectedEOF, Position::eof()))?
{
// -expr
(Token::UnaryMinus, pos) => {
let pos = *pos;
input.next();
match parse_unary(input, allow_stmt_expr)? {
// Negative integer
Expr::IntegerConstant(i, _) => i
.checked_neg()
.map(|x| Expr::IntegerConstant(x, pos))
.or_else(|| {
#[cfg(not(feature = "no_float"))]
return Some(Expr::FloatConstant(-(i as FLOAT), pos));
#[cfg(feature = "no_float")]
return None;
})
.ok_or_else(|| {
ParseError::new(
PERR::BadInput(LERR::MalformedNumber(format!("-{}", i)).to_string()),
pos,
)
}),
// Negative float
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(f, pos) => Ok(Expr::FloatConstant(-f, pos)),
// Call negative function
expr => Ok(Expr::FunctionCall("-".into(), vec![expr], None, pos)),
}
}
// +expr
(Token::UnaryPlus, _) => {
input.next();
parse_unary(input, allow_stmt_expr)
}
// !expr
(Token::Bang, pos) => {
let pos = *pos;
input.next();
Ok(Expr::FunctionCall(
"!".into(),
vec![parse_primary(input, allow_stmt_expr)?],
Some(Box::new(false)), // NOT operator, when operating on invalid operand, defaults to false
pos,
))
}
// All other tokens
_ => parse_primary(input, allow_stmt_expr),
}
}
/// Parse an assignment.
fn parse_assignment(lhs: Expr, rhs: Expr, pos: Position) -> Result<Expr, ParseError> {
// Is the LHS in a valid format for an assignment target?
fn valid_assignment_chain(expr: &Expr, is_top: bool) -> Option<ParseError> {
match expr {
// var
Expr::Variable(_, _) => {
assert!(is_top, "property expected but gets variable");
None
}
// property
Expr::Property(_, _) => {
assert!(!is_top, "variable expected but gets property");
None
}
// var[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, _) if matches!(idx_lhs.as_ref(), &Expr::Variable(_, _)) => {
assert!(is_top, "property expected but gets variable");
None
}
// property[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, _) if matches!(idx_lhs.as_ref(), &Expr::Property(_, _)) => {
assert!(!is_top, "variable expected but gets property");
None
}
// idx_lhs[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, pos) => Some(ParseError::new(
match idx_lhs.as_ref() {
Expr::Index(_, _, _) => ParseErrorType::AssignmentToCopy,
_ => ParseErrorType::AssignmentToInvalidLHS,
},
*pos,
)),
// dot_lhs.dot_rhs
Expr::Dot(dot_lhs, dot_rhs, _) => match dot_lhs.as_ref() {
// var.dot_rhs
Expr::Variable(_, _) if is_top => valid_assignment_chain(dot_rhs, false),
// property.dot_rhs
Expr::Property(_, _) if !is_top => valid_assignment_chain(dot_rhs, false),
// var[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, _)
if matches!(idx_lhs.as_ref(), &Expr::Variable(_, _)) && is_top =>
{
valid_assignment_chain(dot_rhs, false)
}
// property[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, _)
if matches!(idx_lhs.as_ref(), &Expr::Property(_, _)) && !is_top =>
{
valid_assignment_chain(dot_rhs, false)
}
// idx_lhs[...]
#[cfg(not(feature = "no_index"))]
Expr::Index(idx_lhs, _, _) => Some(ParseError::new(
ParseErrorType::AssignmentToCopy,
idx_lhs.position(),
)),
expr => panic!("unexpected dot expression {:#?}", expr),
},
_ => Some(ParseError::new(
ParseErrorType::AssignmentToInvalidLHS,
expr.position(),
)),
}
}
match valid_assignment_chain(&lhs, true) {
None => Ok(Expr::Assignment(Box::new(lhs), Box::new(rhs), pos)),
Some(err) => Err(err),
}
}
/// Parse an operator-assignment expression.
fn parse_op_assignment(op: &str, lhs: Expr, rhs: Expr, pos: Position) -> Result<Expr, ParseError> {
let lhs_copy = lhs.clone();
// lhs op= rhs -> lhs = op(lhs, rhs)
parse_assignment(
lhs,
Expr::FunctionCall(op.into(), vec![lhs_copy, rhs], None, pos),
pos,
)
}
/// Parse a binary expression.
fn parse_binary_op<'a>(
input: &mut Peekable<TokenIterator<'a>>,
parent_precedence: u8,
lhs: Expr,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let mut current_lhs = lhs;
loop {
let (current_precedence, bind_right) = if let Some((ref current_op, _)) = input.peek() {
(current_op.precedence(), current_op.is_bind_right())
} else {
(0, false)
};
// Bind left to the parent lhs expression if precedence is higher
// If same precedence, then check if the operator binds right
if current_precedence < parent_precedence
|| (current_precedence == parent_precedence && !bind_right)
{
return Ok(current_lhs);
}
if let Some((op_token, pos)) = input.next() {
input.peek();
let rhs = parse_unary(input, allow_stmt_expr)?;
let next_precedence = if let Some((next_op, _)) = input.peek() {
next_op.precedence()
} else {
0
};
// Bind to right if the next operator has higher precedence
// If same precedence, then check if the operator binds right
let rhs = if (current_precedence == next_precedence && bind_right)
|| current_precedence < next_precedence
{
parse_binary_op(input, current_precedence, rhs, allow_stmt_expr)?
} else {
// Otherwise bind to left (even if next operator has the same precedence)
rhs
};
current_lhs = match op_token {
Token::Plus => Expr::FunctionCall("+".into(), vec![current_lhs, rhs], None, pos),
Token::Minus => Expr::FunctionCall("-".into(), vec![current_lhs, rhs], None, pos),
Token::Multiply => {
Expr::FunctionCall("*".into(), vec![current_lhs, rhs], None, pos)
}
Token::Divide => Expr::FunctionCall("/".into(), vec![current_lhs, rhs], None, pos),
Token::Equals => parse_assignment(current_lhs, rhs, pos)?,
Token::PlusAssign => parse_op_assignment("+", current_lhs, rhs, pos)?,
Token::MinusAssign => parse_op_assignment("-", current_lhs, rhs, pos)?,
Token::Period => {
fn change_var_to_property(expr: Expr) -> Expr {
match expr {
Expr::Dot(lhs, rhs, pos) => Expr::Dot(
Box::new(change_var_to_property(*lhs)),
Box::new(change_var_to_property(*rhs)),
pos,
),
#[cfg(not(feature = "no_index"))]
Expr::Index(lhs, idx, pos) => {
Expr::Index(Box::new(change_var_to_property(*lhs)), idx, pos)
}
Expr::Variable(s, pos) => Expr::Property(s, pos),
expr => expr,
}
}
Expr::Dot(
Box::new(current_lhs),
Box::new(change_var_to_property(rhs)),
pos,
)
}
// Comparison operators default to false when passed invalid operands
Token::EqualsTo => Expr::FunctionCall(
"==".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::NotEqualsTo => Expr::FunctionCall(
"!=".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::LessThan => Expr::FunctionCall(
"<".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::LessThanEqualsTo => Expr::FunctionCall(
"<=".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::GreaterThan => Expr::FunctionCall(
">".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::GreaterThanEqualsTo => Expr::FunctionCall(
">=".into(),
vec![current_lhs, rhs],
Some(Box::new(false)),
pos,
),
Token::Or => Expr::Or(Box::new(current_lhs), Box::new(rhs)),
Token::And => Expr::And(Box::new(current_lhs), Box::new(rhs)),
Token::XOr => Expr::FunctionCall("^".into(), vec![current_lhs, rhs], None, pos),
Token::OrAssign => parse_op_assignment("|", current_lhs, rhs, pos)?,
Token::AndAssign => parse_op_assignment("&", current_lhs, rhs, pos)?,
Token::XOrAssign => parse_op_assignment("^", current_lhs, rhs, pos)?,
Token::MultiplyAssign => parse_op_assignment("*", current_lhs, rhs, pos)?,
Token::DivideAssign => parse_op_assignment("/", current_lhs, rhs, pos)?,
Token::Pipe => Expr::FunctionCall("|".into(), vec![current_lhs, rhs], None, pos),
Token::LeftShift => {
Expr::FunctionCall("<<".into(), vec![current_lhs, rhs], None, pos)
}
Token::RightShift => {
Expr::FunctionCall(">>".into(), vec![current_lhs, rhs], None, pos)
}
Token::LeftShiftAssign => parse_op_assignment("<<", current_lhs, rhs, pos)?,
Token::RightShiftAssign => parse_op_assignment(">>", current_lhs, rhs, pos)?,
Token::Ampersand => {
Expr::FunctionCall("&".into(), vec![current_lhs, rhs], None, pos)
}
Token::Modulo => Expr::FunctionCall("%".into(), vec![current_lhs, rhs], None, pos),
Token::ModuloAssign => parse_op_assignment("%", current_lhs, rhs, pos)?,
Token::PowerOf => Expr::FunctionCall("~".into(), vec![current_lhs, rhs], None, pos),
Token::PowerOfAssign => parse_op_assignment("~", current_lhs, rhs, pos)?,
token => {
return Err(ParseError::new(
PERR::UnknownOperator(token.syntax().into()),
pos,
))
}
};
}
}
}
/// Parse an expression.
fn parse_expr<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Expr, ParseError> {
let lhs = parse_unary(input, allow_stmt_expr)?;
parse_binary_op(input, 1, lhs, allow_stmt_expr)
}
/// Make sure that the expression is not a statement expression (i.e. wrapped in {})
fn ensure_not_statement_expr<'a>(
input: &mut Peekable<TokenIterator<'a>>,
type_name: &str,
) -> Result<(), ParseError> {
match input
.peek()
.ok_or_else(|| ParseError(PERR::ExprExpected(type_name.to_string()), Position::eof()))?
{
// Disallow statement expressions
(Token::LeftBrace, pos) => Err(ParseError(PERR::ExprExpected(type_name.to_string()), *pos)),
// No need to check for others at this time - leave it for the expr parser
_ => Ok(()),
}
}
/// Parse an if statement.
fn parse_if<'a>(
input: &mut Peekable<TokenIterator<'a>>,
breakable: bool,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// if ...
input.next();
// if guard { if_body }
ensure_not_statement_expr(input, "a boolean")?;
let guard = parse_expr(input, allow_stmt_expr)?;
let if_body = parse_block(input, breakable, allow_stmt_expr)?;
// if guard { if_body } else ...
let else_body = if matches!(input.peek(), Some((Token::Else, _))) {
input.next();
Some(Box::new(if matches!(input.peek(), Some((Token::If, _))) {
// if guard { if_body } else if ...
parse_if(input, breakable, allow_stmt_expr)?
} else {
// if guard { if_body } else { else-body }
parse_block(input, breakable, allow_stmt_expr)?
}))
} else {
None
};
Ok(Stmt::IfThenElse(
Box::new(guard),
Box::new(if_body),
else_body,
))
}
/// Parse a while loop.
fn parse_while<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// while ...
input.next();
// while guard { body }
ensure_not_statement_expr(input, "a boolean")?;
let guard = parse_expr(input, allow_stmt_expr)?;
let body = parse_block(input, true, allow_stmt_expr)?;
Ok(Stmt::While(Box::new(guard), Box::new(body)))
}
/// Parse a loop statement.
fn parse_loop<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// loop ...
input.next();
// loop { body }
let body = parse_block(input, true, allow_stmt_expr)?;
Ok(Stmt::Loop(Box::new(body)))
}
/// Parse a for loop.
fn parse_for<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// for ...
input.next();
// for name ...
let name = match input
.next()
.ok_or_else(|| ParseError::new(PERR::VariableExpected, Position::eof()))?
{
// Variable name
(Token::Identifier(s), _) => s,
// Bad identifier
(Token::LexError(err), pos) => {
return Err(ParseError::new(PERR::BadInput(err.to_string()), pos))
}
// Not a variable name
(_, pos) => return Err(ParseError::new(PERR::VariableExpected, pos)),
};
// for name in ...
match input
.next()
.ok_or_else(|| ParseError::new(PERR::MissingIn, Position::eof()))?
{
(Token::In, _) => (),
(_, pos) => return Err(ParseError::new(PERR::MissingIn, pos)),
}
// for name in expr { body }
ensure_not_statement_expr(input, "a boolean")?;
let expr = parse_expr(input, allow_stmt_expr)?;
let body = parse_block(input, true, allow_stmt_expr)?;
Ok(Stmt::For(name, Box::new(expr), Box::new(body)))
}
/// Parse a variable definition statement.
fn parse_let<'a>(
input: &mut Peekable<TokenIterator<'a>>,
var_type: VariableType,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// let/const... (specified in `var_type`)
input.next();
// let name ...
let (name, pos) = match input
.next()
.ok_or_else(|| ParseError::new(PERR::VariableExpected, Position::eof()))?
{
(Token::Identifier(s), pos) => (s, pos),
(Token::LexError(err), pos) => {
return Err(ParseError::new(PERR::BadInput(err.to_string()), pos))
}
(_, pos) => return Err(ParseError::new(PERR::VariableExpected, pos)),
};
// let name = ...
if matches!(input.peek(), Some((Token::Equals, _))) {
input.next();
// let name = expr
let init_value = parse_expr(input, allow_stmt_expr)?;
match var_type {
// let name = expr
VariableType::Normal => Ok(Stmt::Let(name, Some(Box::new(init_value)), pos)),
// const name = { expr:constant }
VariableType::Constant if init_value.is_constant() => {
Ok(Stmt::Const(name, Box::new(init_value), pos))
}
// const name = expr - error
VariableType::Constant => Err(ParseError(
PERR::ForbiddenConstantExpr(name.to_string()),
init_value.position(),
)),
}
} else {
// let name
Ok(Stmt::Let(name, None, pos))
}
}
/// Parse a statement block.
fn parse_block<'a>(
input: &mut Peekable<TokenIterator<'a>>,
breakable: bool,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
// Must start with {
let pos = match input
.next()
.ok_or_else(|| ParseError::new(PERR::MissingLeftBrace, Position::eof()))?
{
(Token::LeftBrace, pos) => pos,
(_, pos) => return Err(ParseError::new(PERR::MissingLeftBrace, pos)),
};
let mut statements = Vec::new();
while !matches!(input.peek(), Some((Token::RightBrace, _))) {
// Parse statements inside the block
let stmt = parse_stmt(input, breakable, allow_stmt_expr)?;
// See if it needs a terminating semicolon
let need_semicolon = !stmt.is_self_terminated();
statements.push(stmt);
match input.peek() {
// EOF
None => break,
// { ... stmt }
Some((Token::RightBrace, _)) => break,
// { ... stmt;
Some((Token::SemiColon, _)) if need_semicolon => {
input.next();
}
// { ... { stmt } ;
Some((Token::SemiColon, _)) if !need_semicolon => (),
// { ... { stmt } ???
Some((_, _)) if !need_semicolon => (),
// { ... stmt ??? - error
Some((_, pos)) => {
// Semicolons are not optional between statements
return Err(ParseError::new(
PERR::MissingSemicolon("terminating a statement".into()),
*pos,
));
}
}
}
match input.peek().ok_or_else(|| {
ParseError::new(
PERR::MissingRightBrace("end of block".into()),
Position::eof(),
)
})? {
(Token::RightBrace, _) => {
input.next();
Ok(Stmt::Block(statements, pos))
}
(_, pos) => Err(ParseError::new(
PERR::MissingRightBrace("end of block".into()),
*pos,
)),
}
}
/// Parse an expression as a statement.
fn parse_expr_stmt<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
Ok(Stmt::Expr(Box::new(parse_expr(input, allow_stmt_expr)?)))
}
/// Parse a single statement.
fn parse_stmt<'a>(
input: &mut Peekable<TokenIterator<'a>>,
breakable: bool,
allow_stmt_expr: bool,
) -> Result<Stmt, ParseError> {
let token = match input.peek() {
Some(token) => token,
None => return Ok(Stmt::Noop(Position::eof())),
};
match token {
// Semicolon - empty statement
(Token::SemiColon, pos) => Ok(Stmt::Noop(*pos)),
// fn ...
#[cfg(not(feature = "no_function"))]
(Token::Fn, pos) => return Err(ParseError::new(PERR::WrongFnDefinition, *pos)),
(Token::If, _) => parse_if(input, breakable, allow_stmt_expr),
(Token::While, _) => parse_while(input, allow_stmt_expr),
(Token::Loop, _) => parse_loop(input, allow_stmt_expr),
(Token::For, _) => parse_for(input, allow_stmt_expr),
(Token::Break, pos) if breakable => {
let pos = *pos;
input.next();
Ok(Stmt::Break(pos))
}
(Token::Break, pos) => return Err(ParseError::new(PERR::LoopBreak, *pos)),
(token @ Token::Return, pos) | (token @ Token::Throw, pos) => {
let return_type = match token {
Token::Return => ReturnType::Return,
Token::Throw => ReturnType::Exception,
_ => panic!("token should be return or throw"),
};
let pos = *pos;
input.next();
match input.peek() {
// `return`/`throw` at EOF
None => Ok(Stmt::ReturnWithVal(None, return_type, Position::eof())),
// `return;` or `throw;`
Some((Token::SemiColon, _)) => Ok(Stmt::ReturnWithVal(None, return_type, pos)),
// `return` or `throw` with expression
Some((_, _)) => {
let expr = parse_expr(input, allow_stmt_expr)?;
let pos = expr.position();
Ok(Stmt::ReturnWithVal(Some(Box::new(expr)), return_type, pos))
}
}
}
(Token::LeftBrace, _) => parse_block(input, breakable, allow_stmt_expr),
(Token::Let, _) => parse_let(input, VariableType::Normal, allow_stmt_expr),
(Token::Const, _) => parse_let(input, VariableType::Constant, allow_stmt_expr),
_ => parse_expr_stmt(input, allow_stmt_expr),
}
}
/// Parse a function definition.
#[cfg(not(feature = "no_function"))]
fn parse_fn<'a>(
input: &mut Peekable<TokenIterator<'a>>,
allow_stmt_expr: bool,
) -> Result<FnDef, ParseError> {
let pos = input.next().expect("should be fn").1;
let name = match input
.next()
.ok_or_else(|| ParseError::new(PERR::FnMissingName, Position::eof()))?
{
(Token::Identifier(s), _) => s,
(_, pos) => return Err(ParseError::new(PERR::FnMissingName, pos)),
};
match input
.peek()
.ok_or_else(|| ParseError::new(PERR::FnMissingParams(name.clone()), Position::eof()))?
{
(Token::LeftParen, _) => {
input.next();
}
(_, pos) => return Err(ParseError::new(PERR::FnMissingParams(name), *pos)),
}
let mut params = Vec::new();
if matches!(input.peek(), Some((Token::RightParen, _))) {
input.next();
} else {
loop {
match input.next().ok_or_else(|| {
ParseError::new(
PERR::MissingRightParen(format!(
"closing the parameters list of function '{}'",
name
)),
Position::eof(),
)
})? {
(Token::Identifier(s), _) => {
params.push(s.into());
}
(_, pos) => {
return Err(ParseError::new(
PERR::MissingRightParen(format!(
"closing the parameters list of function '{}'",
name
)),
pos,
))
}
}
match input.next().ok_or_else(|| {
ParseError::new(
PERR::MissingRightParen(format!(
"closing the parameters list of function '{}'",
name
)),
Position::eof(),
)
})? {
(Token::RightParen, _) => break,
(Token::Comma, _) => (),
(Token::Identifier(_), _) => {
return Err(ParseError::new(
PERR::MissingComma(format!(
"separating the parameters of function '{}'",
name
)),
pos,
))
}
(_, pos) => {
return Err(ParseError::new(
PERR::MissingRightParen(format!(
"closing the parameters list of function '{}'",
name
)),
pos,
))
}
}
}
}
let body = match input.peek() {
Some((Token::LeftBrace, _)) => parse_block(input, false, allow_stmt_expr)?,
Some((_, pos)) => return Err(ParseError::new(PERR::FnMissingBody(name), *pos)),
None => return Err(ParseError::new(PERR::FnMissingBody(name), Position::eof())),
};
Ok(FnDef {
name,
params,
body,
pos,
})
}
pub fn parse_global_expr<'a, 'e>(
input: &mut Peekable<TokenIterator<'a>>,
engine: &Engine<'e>,
scope: &Scope,
) -> Result<AST, ParseError> {
let expr = parse_expr(input, false)?;
if let Some((token, pos)) = input.peek() {
// Return error if the expression doesn't end
return Err(ParseError::new(
PERR::BadInput(format!("Unexpected '{}'", token.syntax())),
*pos,
));
}
Ok(
// Optimize AST
#[cfg(not(feature = "no_optimize"))]
optimize_into_ast(engine, scope, vec![Stmt::Expr(Box::new(expr))], vec![]),
//
// Do not optimize AST if `no_optimize`
#[cfg(feature = "no_optimize")]
AST(vec![Stmt::Expr(Box::new(expr))], vec![]),
)
}
/// Parse the global level statements.
fn parse_global_level<'a>(
input: &mut Peekable<TokenIterator<'a>>,
) -> Result<(Vec<Stmt>, Vec<FnDef>), ParseError> {
let mut statements = Vec::<Stmt>::new();
let mut functions = Vec::<FnDef>::new();
while input.peek().is_some() {
#[cfg(not(feature = "no_function"))]
{
// Collect all the function definitions
if matches!(input.peek().expect("should not be None"), (Token::Fn, _)) {
let f = parse_fn(input, true)?;
// Ensure list is sorted
match functions.binary_search_by(|fn_def| fn_def.compare(&f.name, f.params.len())) {
Ok(n) => functions[n] = f, // Override previous definition
Err(n) => functions.insert(n, f), // New function definition
}
continue;
}
}
// Actual statement
let stmt = parse_stmt(input, false, true)?;
let need_semicolon = !stmt.is_self_terminated();
statements.push(stmt);
match input.peek() {
// EOF
None => break,
// stmt ;
Some((Token::SemiColon, _)) if need_semicolon => {
input.next();
}
// stmt ;
Some((Token::SemiColon, _)) if !need_semicolon => (),
// { stmt } ???
Some((_, _)) if !need_semicolon => (),
// stmt ??? - error
Some((_, pos)) => {
// Semicolons are not optional between statements
return Err(ParseError::new(
PERR::MissingSemicolon("terminating a statement".into()),
*pos,
));
}
}
}
Ok((statements, functions))
}
/// Run the parser on an input stream, returning an AST.
pub fn parse<'a, 'e>(
input: &mut Peekable<TokenIterator<'a>>,
engine: &Engine<'e>,
scope: &Scope,
) -> Result<AST, ParseError> {
let (statements, functions) = parse_global_level(input)?;
Ok(
// Optimize AST
#[cfg(not(feature = "no_optimize"))]
optimize_into_ast(engine, scope, statements, functions),
//
// Do not optimize AST if `no_optimize`
#[cfg(feature = "no_optimize")]
AST(statements, functions.into_iter().map(Arc::new).collect()),
)
}
/// Map a `Dynamic` value to an expression.
///
/// Returns Some(expression) if conversion is successful. Otherwise None.
pub fn map_dynamic_to_expr(value: Dynamic, pos: Position) -> (Option<Expr>, Dynamic) {
if value.is::<INT>() {
let value2 = value.clone();
(
Some(Expr::IntegerConstant(
*value.downcast::<INT>().expect("value should be INT"),
pos,
)),
value2,
)
} else if value.is::<char>() {
let value2 = value.clone();
(
Some(Expr::CharConstant(
*value.downcast::<char>().expect("value should be char"),
pos,
)),
value2,
)
} else if value.is::<String>() {
let value2 = value.clone();
(
Some(Expr::StringConstant(
*value.downcast::<String>().expect("value should be String"),
pos,
)),
value2,
)
} else if value.is::<bool>() {
let value2 = value.clone();
(
Some(
if *value.downcast::<bool>().expect("value should be bool") {
Expr::True(pos)
} else {
Expr::False(pos)
},
),
value2,
)
} else {
#[cfg(not(feature = "no_float"))]
{
if value.is::<FLOAT>() {
let value2 = value.clone();
return (
Some(Expr::FloatConstant(
*value.downcast::<FLOAT>().expect("value should be FLOAT"),
pos,
)),
value2,
);
}
}
(None, value)
}
}