rhai/src/utils.rs
2020-11-13 18:32:18 +08:00

490 lines
12 KiB
Rust

//! Module containing various utility types and functions.
use crate::fn_native::{shared_make_mut, shared_take, Shared};
use crate::stdlib::{
any::TypeId,
borrow::Borrow,
boxed::Box,
cmp::Ordering,
fmt,
hash::{BuildHasher, Hash, Hasher},
iter::{empty, FromIterator},
ops::{Add, AddAssign, Deref},
str::FromStr,
string::{String, ToString},
};
#[cfg(not(feature = "no_std"))]
use crate::stdlib::collections::hash_map::DefaultHasher;
#[cfg(feature = "no_std")]
use ahash::AHasher;
/// A hasher that only takes one single `u64` and returns it as a hash key.
///
/// # Panics
///
/// Panics when hashing any data type other than a `u64`.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash, Default)]
pub struct StraightHasher(u64);
impl Hasher for StraightHasher {
#[inline(always)]
fn finish(&self) -> u64 {
self.0
}
#[inline(always)]
fn write(&mut self, bytes: &[u8]) {
let mut key = [0_u8; 8];
key.copy_from_slice(&bytes[..8]); // Panics if fewer than 8 bytes
self.0 = u64::from_le_bytes(key);
}
}
/// A hash builder for `StraightHasher`.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash, Default)]
pub struct StraightHasherBuilder;
impl BuildHasher for StraightHasherBuilder {
type Hasher = StraightHasher;
#[inline(always)]
fn build_hasher(&self) -> Self::Hasher {
Default::default()
}
}
/// _[INTERNALS]_ Calculate a `u64` hash key from a namespace-qualified function name and parameter types.
/// Exported under the `internals` feature only.
///
/// Module names are passed in via `&str` references from an iterator.
/// Parameter types are passed in via `TypeId` values from an iterator.
///
/// # Note
///
/// The first module name is skipped. Hashing starts from the _second_ module in the chain.
#[inline(always)]
pub fn calc_native_fn_hash<'a>(
modules: impl Iterator<Item = &'a str>,
fn_name: &str,
params: impl Iterator<Item = TypeId>,
) -> u64 {
calc_fn_hash(modules, fn_name, None, params)
}
/// _[INTERNALS]_ Calculate a `u64` hash key from a namespace-qualified function name
/// and the number of parameters, but no parameter types.
/// Exported under the `internals` feature only.
///
/// Module names are passed in via `&str` references from an iterator.
/// Parameter types are passed in via `TypeId` values from an iterator.
///
/// # Note
///
/// The first module name is skipped. Hashing starts from the _second_ module in the chain.
#[inline(always)]
pub fn calc_script_fn_hash<'a>(
modules: impl Iterator<Item = &'a str>,
fn_name: &str,
num: usize,
) -> u64 {
calc_fn_hash(modules, fn_name, Some(num), empty())
}
/// Create an instance of the default hasher.
pub fn get_hasher() -> impl Hasher {
#[cfg(feature = "no_std")]
let s: AHasher = Default::default();
#[cfg(not(feature = "no_std"))]
let s = DefaultHasher::new();
s
}
/// Calculate a `u64` hash key from a namespace-qualified function name and parameter types.
///
/// Module names are passed in via `&str` references from an iterator.
/// Parameter types are passed in via `TypeId` values from an iterator.
///
/// # Note
///
/// The first module name is skipped. Hashing starts from the _second_ module in the chain.
fn calc_fn_hash<'a>(
modules: impl Iterator<Item = &'a str>,
fn_name: &str,
num: Option<usize>,
params: impl Iterator<Item = TypeId>,
) -> u64 {
let s = &mut get_hasher();
// We always skip the first module
modules.skip(1).for_each(|m| m.hash(s));
s.write(fn_name.as_bytes());
if let Some(num) = num {
s.write_usize(num);
} else {
params.for_each(|t| t.hash(s));
}
s.finish()
}
/// The system immutable string type.
///
/// An `ImmutableString` wraps an `Rc<String>` (or `Arc<String>` under the `sync` feature)
/// so that it can be simply shared and not cloned.
///
/// # Example
///
/// ```
/// use rhai::ImmutableString;
///
/// let s1: ImmutableString = "hello".into();
///
/// // No actual cloning of the string is involved below.
/// let s2 = s1.clone();
/// let s3 = s2.clone();
///
/// assert_eq!(s1, s2);
///
/// // Clones the underlying string (because it is already shared) and extracts it.
/// let mut s: String = s1.into_owned();
///
/// // Changing the clone has no impact on the previously shared version.
/// s.push_str(", world!");
///
/// // The old version still exists.
/// assert_eq!(s2, s3);
/// assert_eq!(s2.as_str(), "hello");
///
/// // Not equals!
/// assert_ne!(s2.as_str(), s.as_str());
/// assert_eq!(s, "hello, world!");
/// ```
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Default)]
pub struct ImmutableString(Shared<String>);
impl Deref for ImmutableString {
type Target = String;
#[inline(always)]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<String> for ImmutableString {
#[inline(always)]
fn as_ref(&self) -> &String {
&self.0
}
}
impl Borrow<String> for ImmutableString {
#[inline(always)]
fn borrow(&self) -> &String {
&self.0
}
}
impl Borrow<str> for ImmutableString {
#[inline(always)]
fn borrow(&self) -> &str {
self.0.as_str()
}
}
impl From<&str> for ImmutableString {
#[inline(always)]
fn from(value: &str) -> Self {
Self(value.to_string().into())
}
}
impl From<String> for ImmutableString {
#[inline(always)]
fn from(value: String) -> Self {
Self(value.into())
}
}
impl From<Box<String>> for ImmutableString {
#[inline(always)]
fn from(value: Box<String>) -> Self {
Self(value.into())
}
}
impl From<ImmutableString> for String {
#[inline(always)]
fn from(value: ImmutableString) -> Self {
value.into_owned()
}
}
impl FromStr for ImmutableString {
type Err = ();
#[inline(always)]
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(Self(s.to_string().into()))
}
}
impl FromIterator<char> for ImmutableString {
#[inline(always)]
fn from_iter<T: IntoIterator<Item = char>>(iter: T) -> Self {
Self(iter.into_iter().collect::<String>().into())
}
}
impl<'a> FromIterator<&'a char> for ImmutableString {
#[inline(always)]
fn from_iter<T: IntoIterator<Item = &'a char>>(iter: T) -> Self {
Self(iter.into_iter().cloned().collect::<String>().into())
}
}
impl<'a> FromIterator<&'a str> for ImmutableString {
#[inline(always)]
fn from_iter<T: IntoIterator<Item = &'a str>>(iter: T) -> Self {
Self(iter.into_iter().collect::<String>().into())
}
}
impl<'a> FromIterator<String> for ImmutableString {
#[inline(always)]
fn from_iter<T: IntoIterator<Item = String>>(iter: T) -> Self {
Self(iter.into_iter().collect::<String>().into())
}
}
impl fmt::Display for ImmutableString {
#[inline(always)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.0.as_str(), f)
}
}
impl fmt::Debug for ImmutableString {
#[inline(always)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.0.as_str(), f)
}
}
impl Add for ImmutableString {
type Output = Self;
#[inline]
fn add(mut self, rhs: Self) -> Self::Output {
if rhs.is_empty() {
self
} else if self.is_empty() {
rhs
} else {
self.make_mut().push_str(rhs.0.as_str());
self
}
}
}
impl Add for &ImmutableString {
type Output = ImmutableString;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
if rhs.is_empty() {
self.clone()
} else if self.is_empty() {
rhs.clone()
} else {
let mut s = self.clone();
s.make_mut().push_str(rhs.0.as_str());
s
}
}
}
impl AddAssign<&ImmutableString> for ImmutableString {
#[inline]
fn add_assign(&mut self, rhs: &ImmutableString) {
if !rhs.is_empty() {
if self.is_empty() {
self.0 = rhs.0.clone();
} else {
self.make_mut().push_str(rhs.0.as_str());
}
}
}
}
impl AddAssign<ImmutableString> for ImmutableString {
#[inline]
fn add_assign(&mut self, rhs: ImmutableString) {
if !rhs.is_empty() {
if self.is_empty() {
self.0 = rhs.0;
} else {
self.make_mut().push_str(rhs.0.as_str());
}
}
}
}
impl Add<&str> for ImmutableString {
type Output = Self;
#[inline]
fn add(mut self, rhs: &str) -> Self::Output {
if rhs.is_empty() {
self
} else {
self.make_mut().push_str(rhs);
self
}
}
}
impl Add<&str> for &ImmutableString {
type Output = ImmutableString;
#[inline]
fn add(self, rhs: &str) -> Self::Output {
if rhs.is_empty() {
self.clone()
} else {
let mut s = self.clone();
s.make_mut().push_str(rhs);
s
}
}
}
impl AddAssign<&str> for ImmutableString {
#[inline(always)]
fn add_assign(&mut self, rhs: &str) {
if !rhs.is_empty() {
self.make_mut().push_str(rhs);
}
}
}
impl Add<String> for ImmutableString {
type Output = Self;
#[inline]
fn add(mut self, rhs: String) -> Self::Output {
if rhs.is_empty() {
self
} else if self.is_empty() {
rhs.into()
} else {
self.make_mut().push_str(&rhs);
self
}
}
}
impl Add<String> for &ImmutableString {
type Output = ImmutableString;
#[inline]
fn add(self, rhs: String) -> Self::Output {
if rhs.is_empty() {
self.clone()
} else if self.is_empty() {
rhs.into()
} else {
let mut s = self.clone();
s.make_mut().push_str(&rhs);
s
}
}
}
impl Add<char> for ImmutableString {
type Output = Self;
#[inline(always)]
fn add(mut self, rhs: char) -> Self::Output {
self.make_mut().push(rhs);
self
}
}
impl Add<char> for &ImmutableString {
type Output = ImmutableString;
#[inline(always)]
fn add(self, rhs: char) -> Self::Output {
let mut s = self.clone();
s.make_mut().push(rhs);
s
}
}
impl AddAssign<char> for ImmutableString {
#[inline(always)]
fn add_assign(&mut self, rhs: char) {
self.make_mut().push(rhs);
}
}
impl<S: AsRef<str>> PartialEq<S> for ImmutableString {
#[inline(always)]
fn eq(&self, other: &S) -> bool {
self.as_str().eq(other.as_ref())
}
}
impl PartialEq<ImmutableString> for str {
#[inline(always)]
fn eq(&self, other: &ImmutableString) -> bool {
self.eq(other.as_str())
}
}
impl PartialEq<ImmutableString> for String {
#[inline(always)]
fn eq(&self, other: &ImmutableString) -> bool {
self.eq(other.as_str())
}
}
impl<S: AsRef<str>> PartialOrd<S> for ImmutableString {
#[inline(always)]
fn partial_cmp(&self, other: &S) -> Option<Ordering> {
self.as_str().partial_cmp(other.as_ref())
}
}
impl PartialOrd<ImmutableString> for str {
#[inline(always)]
fn partial_cmp(&self, other: &ImmutableString) -> Option<Ordering> {
self.partial_cmp(other.as_str())
}
}
impl PartialOrd<ImmutableString> for String {
#[inline(always)]
fn partial_cmp(&self, other: &ImmutableString) -> Option<Ordering> {
self.as_str().partial_cmp(other.as_str())
}
}
impl ImmutableString {
/// Consume the `ImmutableString` and convert it into a `String`.
/// If there are other references to the same string, a cloned copy is returned.
#[inline(always)]
pub fn into_owned(mut self) -> String {
self.make_mut(); // Make sure it is unique reference
shared_take(self.0) // Should succeed
}
/// Make sure that the `ImmutableString` is unique (i.e. no other outstanding references).
/// Then return a mutable reference to the `String`.
#[inline(always)]
pub fn make_mut(&mut self) -> &mut String {
shared_make_mut(&mut self.0)
}
}