rhai/src/func/builtin.rs
Stephen Chung 05b9c83bb8 Reformat.
2022-10-24 23:33:33 +08:00

978 lines
38 KiB
Rust

//! Built-in implementations for common operators.
use super::call::FnCallArgs;
use super::native::FnBuiltin;
use crate::tokenizer::{Token, Token::*};
use crate::{
Dynamic, ExclusiveRange, ImmutableString, InclusiveRange, NativeCallContext, RhaiResult, INT,
};
use std::any::TypeId;
#[cfg(feature = "no_std")]
use std::prelude::v1::*;
#[cfg(not(feature = "no_float"))]
use crate::FLOAT;
#[cfg(not(feature = "no_float"))]
#[cfg(feature = "no_std")]
use num_traits::Float;
#[cfg(feature = "decimal")]
use rust_decimal::Decimal;
/// The message: data type was checked
const BUILTIN: &str = "data type was checked";
/// Is the type a numeric type?
#[inline]
#[must_use]
fn is_numeric(type_id: TypeId) -> bool {
if type_id == TypeId::of::<INT>() {
return true;
}
#[cfg(not(feature = "only_i64"))]
#[cfg(not(feature = "only_i32"))]
if type_id == TypeId::of::<u8>()
|| type_id == TypeId::of::<u16>()
|| type_id == TypeId::of::<u32>()
|| type_id == TypeId::of::<u64>()
|| type_id == TypeId::of::<i8>()
|| type_id == TypeId::of::<i16>()
|| type_id == TypeId::of::<i32>()
|| type_id == TypeId::of::<i64>()
{
return true;
}
#[cfg(not(feature = "only_i64"))]
#[cfg(not(feature = "only_i32"))]
#[cfg(not(target_family = "wasm"))]
if type_id == TypeId::of::<u128>() || type_id == TypeId::of::<i128>() {
return true;
}
#[cfg(not(feature = "no_float"))]
if type_id == TypeId::of::<f32>() || type_id == TypeId::of::<f64>() {
return true;
}
#[cfg(feature = "decimal")]
if type_id == TypeId::of::<rust_decimal::Decimal>() {
return true;
}
false
}
/// A function that returns `true`.
#[inline(always)]
#[must_use]
fn const_true_fn(_: NativeCallContext, _: &mut [&mut Dynamic]) -> RhaiResult {
Ok(Dynamic::TRUE)
}
/// A function that returns `false`.
#[inline(always)]
#[must_use]
fn const_false_fn(_: NativeCallContext, _: &mut [&mut Dynamic]) -> RhaiResult {
Ok(Dynamic::FALSE)
}
/// Build in common binary operator implementations to avoid the cost of calling a registered function.
///
/// The return function will be registered as a _method_, so the first parameter cannot be consumed.
#[must_use]
pub fn get_builtin_binary_op_fn(op: &Token, x: &Dynamic, y: &Dynamic) -> Option<FnBuiltin> {
let type1 = x.type_id();
let type2 = y.type_id();
macro_rules! impl_op {
($xx:ident $op:tt $yy:ident) => { |_, args| {
let x = &*args[0].read_lock::<$xx>().expect(BUILTIN);
let y = &*args[1].read_lock::<$yy>().expect(BUILTIN);
Ok((x $op y).into())
} };
($xx:ident . $func:ident ( $yy:ty )) => { |_, args| {
let x = &*args[0].read_lock::<$xx>().expect(BUILTIN);
let y = &*args[1].read_lock::<$yy>().expect(BUILTIN);
Ok(x.$func(y).into())
} };
($xx:ident . $func:ident ( $yy:ident . $yyy:ident () )) => { |_, args| {
let x = &*args[0].read_lock::<$xx>().expect(BUILTIN);
let y = &*args[1].read_lock::<$yy>().expect(BUILTIN);
Ok(x.$func(y.$yyy()).into())
} };
($func:ident ( $op:tt )) => { |_, args| {
let (x, y) = $func(args);
Ok((x $op y).into())
} };
($base:ty => $xx:ident $op:tt $yy:ident) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN) as $base;
let y = args[1].$yy().expect(BUILTIN) as $base;
Ok((x $op y).into())
} };
($base:ty => $xx:ident . $func:ident ( $yy:ident as $yyy:ty)) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN) as $base;
let y = args[1].$yy().expect(BUILTIN) as $base;
Ok(x.$func(y as $yyy).into())
} };
($base:ty => $func:ident ( $xx:ident, $yy:ident )) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN) as $base;
let y = args[1].$yy().expect(BUILTIN) as $base;
$func(x, y).map(Into::into)
} };
(from $base:ty => $xx:ident $op:tt $yy:ident) => { |_, args| {
let x = <$base>::from(args[0].$xx().expect(BUILTIN));
let y = <$base>::from(args[1].$yy().expect(BUILTIN));
Ok((x $op y).into())
} };
(from $base:ty => $xx:ident . $func:ident ( $yy:ident )) => { |_, args| {
let x = <$base>::from(args[0].$xx().expect(BUILTIN));
let y = <$base>::from(args[1].$yy().expect(BUILTIN));
Ok(x.$func(y).into())
} };
(from $base:ty => $func:ident ( $xx:ident, $yy:ident )) => { |_, args| {
let x = <$base>::from(args[0].$xx().expect(BUILTIN));
let y = <$base>::from(args[1].$yy().expect(BUILTIN));
$func(x, y).map(Into::into)
} };
}
// Check for common patterns
if type1 == type2 {
if type1 == TypeId::of::<INT>() {
#[cfg(not(feature = "unchecked"))]
use crate::packages::arithmetic::arith_basic::INT::functions::*;
#[cfg(not(feature = "unchecked"))]
match op {
Plus => return Some(impl_op!(INT => add(as_int, as_int))),
Minus => return Some(impl_op!(INT => subtract(as_int, as_int))),
Multiply => return Some(impl_op!(INT => multiply(as_int, as_int))),
Divide => return Some(impl_op!(INT => divide(as_int, as_int))),
Modulo => return Some(impl_op!(INT => modulo(as_int, as_int))),
PowerOf => return Some(impl_op!(INT => power(as_int, as_int))),
RightShift => return Some(impl_op!(INT => shift_right(as_int, as_int))),
LeftShift => return Some(impl_op!(INT => shift_left(as_int, as_int))),
_ => (),
}
#[cfg(feature = "unchecked")]
match op {
Plus => return Some(impl_op!(INT => as_int + as_int)),
Minus => return Some(impl_op!(INT => as_int - as_int)),
Multiply => return Some(impl_op!(INT => as_int * as_int)),
Divide => return Some(impl_op!(INT => as_int / as_int)),
Modulo => return Some(impl_op!(INT => as_int % as_int)),
PowerOf => return Some(impl_op!(INT => as_int.pow(as_int as u32))),
RightShift => return Some(impl_op!(INT => as_int >> as_int)),
LeftShift => return Some(impl_op!(INT => as_int << as_int)),
_ => (),
}
return match op {
EqualsTo => Some(impl_op!(INT => as_int == as_int)),
NotEqualsTo => Some(impl_op!(INT => as_int != as_int)),
GreaterThan => Some(impl_op!(INT => as_int > as_int)),
GreaterThanEqualsTo => Some(impl_op!(INT => as_int >= as_int)),
LessThan => Some(impl_op!(INT => as_int < as_int)),
LessThanEqualsTo => Some(impl_op!(INT => as_int <= as_int)),
Ampersand => Some(impl_op!(INT => as_int & as_int)),
Pipe => Some(impl_op!(INT => as_int | as_int)),
XOr => Some(impl_op!(INT => as_int ^ as_int)),
ExclusiveRange => Some(|_, args| {
let x = args[0].as_int().expect(BUILTIN);
let y = args[1].as_int().expect(BUILTIN);
Ok((x..y).into())
}),
InclusiveRange => Some(|_, args| {
let x = args[0].as_int().expect(BUILTIN);
let y = args[1].as_int().expect(BUILTIN);
Ok((x..=y).into())
}),
_ => None,
};
}
if type1 == TypeId::of::<bool>() {
return match op {
EqualsTo => Some(impl_op!(bool => as_bool == as_bool)),
NotEqualsTo => Some(impl_op!(bool => as_bool != as_bool)),
GreaterThan => Some(impl_op!(bool => as_bool > as_bool)),
GreaterThanEqualsTo => Some(impl_op!(bool => as_bool >= as_bool)),
LessThan => Some(impl_op!(bool => as_bool < as_bool)),
LessThanEqualsTo => Some(impl_op!(bool => as_bool <= as_bool)),
Ampersand => Some(impl_op!(bool => as_bool & as_bool)),
Pipe => Some(impl_op!(bool => as_bool | as_bool)),
XOr => Some(impl_op!(bool => as_bool ^ as_bool)),
_ => None,
};
}
if type1 == TypeId::of::<ImmutableString>() {
return match op {
Plus => Some(|_ctx, args| {
let s1 = &*args[0].read_lock::<ImmutableString>().expect(BUILTIN);
let s2 = &*args[1].read_lock::<ImmutableString>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
if !s1.is_empty() && !s2.is_empty() {
let total_len = s1.len() + s2.len();
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, total_len))?;
}
Ok((s1 + s2).into())
}),
Minus => Some(impl_op!(ImmutableString - ImmutableString)),
EqualsTo => Some(impl_op!(ImmutableString == ImmutableString)),
NotEqualsTo => Some(impl_op!(ImmutableString != ImmutableString)),
GreaterThan => Some(impl_op!(ImmutableString > ImmutableString)),
GreaterThanEqualsTo => Some(impl_op!(ImmutableString >= ImmutableString)),
LessThan => Some(impl_op!(ImmutableString < ImmutableString)),
LessThanEqualsTo => Some(impl_op!(ImmutableString <= ImmutableString)),
_ => None,
};
}
if type1 == TypeId::of::<char>() {
return match op {
Plus => Some(|_ctx, args| {
let x = args[0].as_char().expect(BUILTIN);
let y = args[1].as_char().expect(BUILTIN);
let result = format!("{x}{y}");
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, result.len()))?;
Ok(result.into())
}),
EqualsTo => Some(impl_op!(char => as_char == as_char)),
NotEqualsTo => Some(impl_op!(char => as_char != as_char)),
GreaterThan => Some(impl_op!(char => as_char > as_char)),
GreaterThanEqualsTo => Some(impl_op!(char => as_char >= as_char)),
LessThan => Some(impl_op!(char => as_char < as_char)),
LessThanEqualsTo => Some(impl_op!(char => as_char <= as_char)),
_ => None,
};
}
#[cfg(not(feature = "no_index"))]
if type1 == TypeId::of::<crate::Blob>() {
use crate::Blob;
return match op {
Plus => Some(|_ctx, args| {
let blob1 = &*args[0].read_lock::<Blob>().expect(BUILTIN);
let blob2 = &*args[1].read_lock::<Blob>().expect(BUILTIN);
Ok(Dynamic::from_blob(if blob2.is_empty() {
blob1.clone()
} else if blob1.is_empty() {
blob2.clone()
} else {
#[cfg(not(feature = "unchecked"))]
_ctx.engine().raise_err_if_over_data_size_limit((
blob1.len() + blob2.len(),
0,
0,
))?;
let mut blob = blob1.clone();
blob.extend(blob2);
blob
}))
}),
EqualsTo => Some(impl_op!(Blob == Blob)),
NotEqualsTo => Some(impl_op!(Blob != Blob)),
_ => None,
};
}
if type1 == TypeId::of::<()>() {
return match op {
EqualsTo => Some(const_true_fn),
NotEqualsTo | GreaterThan | GreaterThanEqualsTo | LessThan | LessThanEqualsTo => {
Some(const_false_fn)
}
_ => None,
};
}
}
#[cfg(not(feature = "no_float"))]
macro_rules! impl_float {
($x:ty, $xx:ident, $y:ty, $yy:ident) => {
if (type1, type2) == (TypeId::of::<$x>(), TypeId::of::<$y>()) {
return match op {
Plus => Some(impl_op!(FLOAT => $xx + $yy)),
Minus => Some(impl_op!(FLOAT => $xx - $yy)),
Multiply => Some(impl_op!(FLOAT => $xx * $yy)),
Divide => Some(impl_op!(FLOAT => $xx / $yy)),
Modulo => Some(impl_op!(FLOAT => $xx % $yy)),
PowerOf => Some(impl_op!(FLOAT => $xx.powf($yy as FLOAT))),
EqualsTo => Some(impl_op!(FLOAT => $xx == $yy)),
NotEqualsTo => Some(impl_op!(FLOAT => $xx != $yy)),
GreaterThan => Some(impl_op!(FLOAT => $xx > $yy)),
GreaterThanEqualsTo => Some(impl_op!(FLOAT => $xx >= $yy)),
LessThan => Some(impl_op!(FLOAT => $xx < $yy)),
LessThanEqualsTo => Some(impl_op!(FLOAT => $xx <= $yy)),
_ => None,
};
}
};
}
#[cfg(not(feature = "no_float"))]
{
impl_float!(FLOAT, as_float, FLOAT, as_float);
impl_float!(FLOAT, as_float, INT, as_int);
impl_float!(INT, as_int, FLOAT, as_float);
}
#[cfg(feature = "decimal")]
macro_rules! impl_decimal {
($x:ty, $xx:ident, $y:ty, $yy:ident) => {
if (type1, type2) == (TypeId::of::<$x>(), TypeId::of::<$y>()) {
#[cfg(not(feature = "unchecked"))]
use crate::packages::arithmetic::decimal_functions::builtin::*;
#[cfg(not(feature = "unchecked"))]
match op {
Plus => return Some(impl_op!(from Decimal => add($xx, $yy))),
Minus => return Some(impl_op!(from Decimal => subtract($xx, $yy))),
Multiply => return Some(impl_op!(from Decimal => multiply($xx, $yy))),
Divide => return Some(impl_op!(from Decimal => divide($xx, $yy))),
Modulo => return Some(impl_op!(from Decimal => modulo($xx, $yy))),
PowerOf => return Some(impl_op!(from Decimal => power($xx, $yy))),
_ => ()
}
#[cfg(feature = "unchecked")]
use rust_decimal::MathematicalOps;
#[cfg(feature = "unchecked")]
match op {
Plus => return Some(impl_op!(from Decimal => $xx + $yy)),
Minus => return Some(impl_op!(from Decimal => $xx - $yy)),
Multiply => return Some(impl_op!(from Decimal => $xx * $yy)),
Divide => return Some(impl_op!(from Decimal => $xx / $yy)),
Modulo => return Some(impl_op!(from Decimal => $xx % $yy)),
PowerOf => return Some(impl_op!(from Decimal => $xx.powd($yy))),
_ => ()
}
return match op {
EqualsTo => Some(impl_op!(from Decimal => $xx == $yy)),
NotEqualsTo => Some(impl_op!(from Decimal => $xx != $yy)),
GreaterThan => Some(impl_op!(from Decimal => $xx > $yy)),
GreaterThanEqualsTo => Some(impl_op!(from Decimal => $xx >= $yy)),
LessThan => Some(impl_op!(from Decimal => $xx < $yy)),
LessThanEqualsTo => Some(impl_op!(from Decimal => $xx <= $yy)),
_ => None
};
}
};
}
#[cfg(feature = "decimal")]
{
impl_decimal!(Decimal, as_decimal, Decimal, as_decimal);
impl_decimal!(Decimal, as_decimal, INT, as_int);
impl_decimal!(INT, as_int, Decimal, as_decimal);
}
// char op string
if (type1, type2) == (TypeId::of::<char>(), TypeId::of::<ImmutableString>()) {
fn get_s1s2(args: &FnCallArgs) -> ([char; 2], [char; 2]) {
let x = args[0].as_char().expect(BUILTIN);
let y = &*args[1].read_lock::<ImmutableString>().expect(BUILTIN);
let s1 = [x, '\0'];
let mut y = y.chars();
let s2 = [y.next().unwrap_or('\0'), y.next().unwrap_or('\0')];
(s1, s2)
}
return match op {
Plus => Some(|_ctx, args| {
let x = args[0].as_char().expect(BUILTIN);
let y = &*args[1].read_lock::<ImmutableString>().expect(BUILTIN);
let result = format!("{x}{y}");
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, result.len()))?;
Ok(result.into())
}),
EqualsTo => Some(impl_op!(get_s1s2(==))),
NotEqualsTo => Some(impl_op!(get_s1s2(!=))),
GreaterThan => Some(impl_op!(get_s1s2(>))),
GreaterThanEqualsTo => Some(impl_op!(get_s1s2(>=))),
LessThan => Some(impl_op!(get_s1s2(<))),
LessThanEqualsTo => Some(impl_op!(get_s1s2(<=))),
_ => None,
};
}
// string op char
if (type1, type2) == (TypeId::of::<ImmutableString>(), TypeId::of::<char>()) {
fn get_s1s2(args: &FnCallArgs) -> ([char; 2], [char; 2]) {
let x = &*args[0].read_lock::<ImmutableString>().expect(BUILTIN);
let y = args[1].as_char().expect(BUILTIN);
let mut x = x.chars();
let s1 = [x.next().unwrap_or('\0'), x.next().unwrap_or('\0')];
let s2 = [y, '\0'];
(s1, s2)
}
return match op {
Plus => Some(|_ctx, args| {
let x = &*args[0].read_lock::<ImmutableString>().expect(BUILTIN);
let y = args[1].as_char().expect(BUILTIN);
let result = x + y;
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, result.len()))?;
Ok(result.into())
}),
Minus => Some(|_, args| {
let x = &*args[0].read_lock::<ImmutableString>().expect(BUILTIN);
let y = args[1].as_char().expect(BUILTIN);
Ok((x - y).into())
}),
EqualsTo => Some(impl_op!(get_s1s2(==))),
NotEqualsTo => Some(impl_op!(get_s1s2(!=))),
GreaterThan => Some(impl_op!(get_s1s2(>))),
GreaterThanEqualsTo => Some(impl_op!(get_s1s2(>=))),
LessThan => Some(impl_op!(get_s1s2(<))),
LessThanEqualsTo => Some(impl_op!(get_s1s2(<=))),
_ => None,
};
}
// () op string
if (type1, type2) == (TypeId::of::<()>(), TypeId::of::<ImmutableString>()) {
return match op {
Plus => Some(|_, args| Ok(args[1].clone())),
EqualsTo | GreaterThan | GreaterThanEqualsTo | LessThan | LessThanEqualsTo => {
Some(const_false_fn)
}
NotEqualsTo => Some(const_true_fn),
_ => None,
};
}
// string op ()
if (type1, type2) == (TypeId::of::<ImmutableString>(), TypeId::of::<()>()) {
return match op {
Plus => Some(|_, args| Ok(args[0].clone())),
EqualsTo | GreaterThan | GreaterThanEqualsTo | LessThan | LessThanEqualsTo => {
Some(const_false_fn)
}
NotEqualsTo => Some(const_true_fn),
_ => None,
};
}
// blob
#[cfg(not(feature = "no_index"))]
if type1 == TypeId::of::<crate::Blob>() {
use crate::Blob;
if type2 == TypeId::of::<char>() {
return match op {
Plus => Some(|_ctx, args| {
let mut blob = args[0].read_lock::<Blob>().expect(BUILTIN).clone();
let mut buf = [0_u8; 4];
let x = args[1].as_char().expect(BUILTIN).encode_utf8(&mut buf);
#[cfg(not(feature = "unchecked"))]
_ctx.engine().raise_err_if_over_data_size_limit((
blob.len() + x.len(),
0,
0,
))?;
blob.extend(x.as_bytes());
Ok(Dynamic::from_blob(blob))
}),
_ => None,
};
}
}
// Non-compatible ranges
if (type1, type2)
== (
TypeId::of::<ExclusiveRange>(),
TypeId::of::<InclusiveRange>(),
)
|| (type1, type2)
== (
TypeId::of::<InclusiveRange>(),
TypeId::of::<ExclusiveRange>(),
)
{
return match op {
NotEqualsTo => Some(const_true_fn),
Equals => Some(const_false_fn),
_ => None,
};
}
// Handle ranges here because ranges are implemented as custom type
if type1 == TypeId::of::<ExclusiveRange>() {
if type1 == type2 {
return match op {
EqualsTo => Some(impl_op!(ExclusiveRange == ExclusiveRange)),
NotEqualsTo => Some(impl_op!(ExclusiveRange != ExclusiveRange)),
_ => None,
};
}
}
if type1 == TypeId::of::<InclusiveRange>() {
if type1 == type2 {
return match op {
EqualsTo => Some(impl_op!(InclusiveRange == InclusiveRange)),
NotEqualsTo => Some(impl_op!(InclusiveRange != InclusiveRange)),
_ => None,
};
}
}
// One of the operands is a custom type, so it is never built-in
if x.is_variant() || y.is_variant() {
return if is_numeric(type1) && is_numeric(type2) {
// Disallow comparisons between different numeric types
None
} else if type1 != type2 {
// If the types are not the same, default to not compare
match op {
NotEqualsTo => Some(const_true_fn),
EqualsTo | GreaterThan | GreaterThanEqualsTo | LessThan | LessThanEqualsTo => {
Some(const_false_fn)
}
_ => None,
}
} else {
// Disallow comparisons between the same type
None
};
}
// Default comparison operators for different types
if type2 != type1 {
return match op {
NotEqualsTo => Some(const_true_fn),
EqualsTo | GreaterThan | GreaterThanEqualsTo | LessThan | LessThanEqualsTo => {
Some(const_false_fn)
}
_ => None,
};
}
// Beyond here, type1 == type2
None
}
/// Build in common operator assignment implementations to avoid the cost of calling a registered function.
///
/// The return function is registered as a _method_, so the first parameter cannot be consumed.
#[must_use]
pub fn get_builtin_op_assignment_fn(op: &Token, x: &Dynamic, y: &Dynamic) -> Option<FnBuiltin> {
let type1 = x.type_id();
let type2 = y.type_id();
macro_rules! impl_op {
($x:ty = x $op:tt $yy:ident) => { |_, args| {
let x = args[0].$yy().expect(BUILTIN);
let y = args[1].$yy().expect(BUILTIN) as $x;
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) = x $op y).into())
} };
($x:ident $op:tt $yy:ident) => { |_, args| {
let y = args[1].$yy().expect(BUILTIN) as $x;
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) $op y).into())
} };
($x:ident $op:tt $yy:ident as $yyy:ty) => { |_, args| {
let y = args[1].$yy().expect(BUILTIN) as $yyy;
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) $op y).into())
} };
($x:ty => $xx:ident . $func:ident ( $yy:ident as $yyy:ty )) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN);
let y = args[1].$yy().expect(BUILTIN) as $x;
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) = x.$func(y as $yyy)).into())
} };
($x:ty => $func:ident ( $xx:ident, $yy:ident )) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN);
let y = args[1].$yy().expect(BUILTIN) as $x;
Ok((*args[0].write_lock().expect(BUILTIN) = $func(x, y)?).into())
} };
(from $x:ident $op:tt $yy:ident) => { |_, args| {
let y = <$x>::from(args[1].$yy().expect(BUILTIN));
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) $op y).into())
} };
(from $x:ty => $xx:ident . $func:ident ( $yy:ident )) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN);
let y = <$x>::from(args[1].$yy().expect(BUILTIN));
Ok((*args[0].write_lock::<$x>().expect(BUILTIN) = x.$func(y)).into())
} };
(from $x:ty => $func:ident ( $xx:ident, $yy:ident )) => { |_, args| {
let x = args[0].$xx().expect(BUILTIN);
let y = <$x>::from(args[1].$yy().expect(BUILTIN));
Ok((*args[0].write_lock().expect(BUILTIN) = $func(x, y)?).into())
} };
}
// Check for common patterns
if type1 == type2 {
if type1 == TypeId::of::<INT>() {
#[cfg(not(feature = "unchecked"))]
use crate::packages::arithmetic::arith_basic::INT::functions::*;
#[cfg(not(feature = "unchecked"))]
match op {
PlusAssign => return Some(impl_op!(INT => add(as_int, as_int))),
MinusAssign => return Some(impl_op!(INT => subtract(as_int, as_int))),
MultiplyAssign => return Some(impl_op!(INT => multiply(as_int, as_int))),
DivideAssign => return Some(impl_op!(INT => divide(as_int, as_int))),
ModuloAssign => return Some(impl_op!(INT => modulo(as_int, as_int))),
PowerOfAssign => return Some(impl_op!(INT => power(as_int, as_int))),
RightShiftAssign => return Some(impl_op!(INT => shift_right(as_int, as_int))),
LeftShiftAssign => return Some(impl_op!(INT => shift_left(as_int, as_int))),
_ => (),
}
#[cfg(feature = "unchecked")]
match op {
PlusAssign => return Some(impl_op!(INT += as_int)),
MinusAssign => return Some(impl_op!(INT -= as_int)),
MultiplyAssign => return Some(impl_op!(INT *= as_int)),
DivideAssign => return Some(impl_op!(INT /= as_int)),
ModuloAssign => return Some(impl_op!(INT %= as_int)),
PowerOfAssign => return Some(impl_op!(INT => as_int.pow(as_int as u32))),
RightShiftAssign => return Some(impl_op!(INT >>= as_int)),
LeftShiftAssign => return Some(impl_op!(INT <<= as_int)),
_ => (),
}
return match op {
AndAssign => Some(impl_op!(INT &= as_int)),
OrAssign => Some(impl_op!(INT |= as_int)),
XOrAssign => Some(impl_op!(INT ^= as_int)),
_ => None,
};
}
if type1 == TypeId::of::<bool>() {
return match op {
AndAssign => Some(impl_op!(bool = x && as_bool)),
OrAssign => Some(impl_op!(bool = x || as_bool)),
_ => None,
};
}
if type1 == TypeId::of::<char>() {
return match op {
PlusAssign => Some(|_, args| {
let y = args[1].as_char().expect(BUILTIN);
let x = &mut *args[0].write_lock::<Dynamic>().expect(BUILTIN);
Ok((*x = format!("{x}{y}").into()).into())
}),
_ => None,
};
}
if type1 == TypeId::of::<ImmutableString>() {
return match op {
PlusAssign => Some(|_ctx, args| {
let (first, second) = args.split_first_mut().expect(BUILTIN);
let x = &mut *first.write_lock::<ImmutableString>().expect(BUILTIN);
let y = std::mem::take(second[0]).cast::<ImmutableString>();
#[cfg(not(feature = "unchecked"))]
if !x.is_empty() && !y.is_empty() {
let total_len = x.len() + y.len();
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, total_len))?;
}
Ok((*x += y).into())
}),
MinusAssign => Some(|_, args| {
let (first, second) = args.split_first_mut().expect(BUILTIN);
let x = &mut *first.write_lock::<ImmutableString>().expect(BUILTIN);
let y = std::mem::take(second[0]).cast::<ImmutableString>();
Ok((*x -= y).into())
}),
_ => None,
};
}
#[cfg(not(feature = "no_index"))]
if type1 == TypeId::of::<crate::Array>() {
use crate::packages::array_basic::array_functions::*;
use crate::Array;
return match op {
PlusAssign => Some(|_ctx, args| {
let x = std::mem::take(args[1]).cast::<Array>();
if x.is_empty() {
return Ok(Dynamic::UNIT);
}
let _array_is_empty = args[0].read_lock::<Array>().expect(BUILTIN).is_empty();
#[cfg(not(feature = "unchecked"))]
if !_array_is_empty {
_ctx.engine().check_data_size(
&*args[0].read_lock().expect(BUILTIN),
crate::Position::NONE,
)?;
}
let array = &mut *args[0].write_lock::<Array>().expect(BUILTIN);
Ok(append(array, x).into())
}),
_ => None,
};
}
#[cfg(not(feature = "no_index"))]
if type1 == TypeId::of::<crate::Blob>() {
use crate::packages::blob_basic::blob_functions::*;
use crate::Blob;
return match op {
PlusAssign => Some(|_ctx, args| {
let blob2 = std::mem::take(args[1]).cast::<Blob>();
let blob1 = &mut *args[0].write_lock::<Blob>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
_ctx.engine().raise_err_if_over_data_size_limit((
blob1.len() + blob2.len(),
0,
0,
))?;
Ok(append(blob1, blob2).into())
}),
_ => None,
};
}
}
#[cfg(not(feature = "no_float"))]
macro_rules! impl_float {
($x:ident, $xx:ident, $y:ty, $yy:ident) => {
if (type1, type2) == (TypeId::of::<$x>(), TypeId::of::<$y>()) {
return match op {
PlusAssign => Some(impl_op!($x += $yy)),
MinusAssign => Some(impl_op!($x -= $yy)),
MultiplyAssign => Some(impl_op!($x *= $yy)),
DivideAssign => Some(impl_op!($x /= $yy)),
ModuloAssign => Some(impl_op!($x %= $yy)),
PowerOfAssign => Some(impl_op!($x => $xx.powf($yy as $x))),
_ => None,
};
}
}
}
#[cfg(not(feature = "no_float"))]
{
impl_float!(FLOAT, as_float, FLOAT, as_float);
impl_float!(FLOAT, as_float, INT, as_int);
}
#[cfg(feature = "decimal")]
macro_rules! impl_decimal {
($x:ident, $xx:ident, $y:ty, $yy:ident) => {
if (type1, type2) == (TypeId::of::<$x>(), TypeId::of::<$y>()) {
#[cfg(not(feature = "unchecked"))]
use crate::packages::arithmetic::decimal_functions::builtin::*;
#[cfg(not(feature = "unchecked"))]
return match op {
PlusAssign => Some(impl_op!(from $x => add($xx, $yy))),
MinusAssign => Some(impl_op!(from $x => subtract($xx, $yy))),
MultiplyAssign => Some(impl_op!(from $x => multiply($xx, $yy))),
DivideAssign => Some(impl_op!(from $x => divide($xx, $yy))),
ModuloAssign => Some(impl_op!(from $x => modulo($xx, $yy))),
PowerOfAssign => Some(impl_op!(from $x => power($xx, $yy))),
_ => None,
};
#[cfg(feature = "unchecked")]
use rust_decimal::MathematicalOps;
#[cfg(feature = "unchecked")]
return match op {
PlusAssign => Some(impl_op!(from $x += $yy)),
MinusAssign => Some(impl_op!(from $x -= $yy)),
MultiplyAssign => Some(impl_op!(from $x *= $yy)),
DivideAssign => Some(impl_op!(from $x /= $yy)),
ModuloAssign => Some(impl_op!(from $x %= $yy)),
PowerOfAssign => Some(impl_op!(from $x => $xx.powd($yy))),
_ => None,
};
}
};
}
#[cfg(feature = "decimal")]
{
impl_decimal!(Decimal, as_decimal, Decimal, as_decimal);
impl_decimal!(Decimal, as_decimal, INT, as_int);
}
// string op= char
if (type1, type2) == (TypeId::of::<ImmutableString>(), TypeId::of::<char>()) {
return match op {
PlusAssign => Some(|_ctx, args| {
let mut buf = [0_u8; 4];
let ch = &*args[1].as_char().expect(BUILTIN).encode_utf8(&mut buf);
let mut x = args[0].write_lock::<ImmutableString>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, x.len() + ch.len()))?;
Ok((*x += ch).into())
}),
MinusAssign => Some(impl_op!(ImmutableString -= as_char as char)),
_ => None,
};
}
// char op= string
if (type1, type2) == (TypeId::of::<char>(), TypeId::of::<ImmutableString>()) {
return match op {
PlusAssign => Some(|_ctx, args| {
let ch = {
let s = &*args[1].read_lock::<ImmutableString>().expect(BUILTIN);
if s.is_empty() {
return Ok(Dynamic::UNIT);
}
let mut ch = args[0].as_char().expect(BUILTIN).to_string();
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((0, 0, ch.len() + s.len()))?;
ch.push_str(s);
ch
};
*args[0].write_lock::<Dynamic>().expect(BUILTIN) = ch.into();
Ok(Dynamic::UNIT)
}),
_ => None,
};
}
// array op= any
#[cfg(not(feature = "no_index"))]
if type1 == TypeId::of::<crate::Array>() {
use crate::packages::array_basic::array_functions::*;
use crate::Array;
return match op {
PlusAssign => Some(|_ctx, args| {
{
let x = std::mem::take(args[1]);
let array = &mut *args[0].write_lock::<Array>().expect(BUILTIN);
push(array, x);
}
#[cfg(not(feature = "unchecked"))]
_ctx.engine().check_data_size(
&*args[0].read_lock().expect(BUILTIN),
crate::Position::NONE,
)?;
Ok(Dynamic::UNIT)
}),
_ => None,
};
}
#[cfg(not(feature = "no_index"))]
{
use crate::Blob;
// blob op= int
if (type1, type2) == (TypeId::of::<Blob>(), TypeId::of::<INT>()) {
use crate::packages::blob_basic::blob_functions::*;
return match op {
PlusAssign => Some(|_ctx, args| {
let x = args[1].as_int().expect(BUILTIN);
let blob = &mut *args[0].write_lock::<Blob>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((blob.len() + 1, 0, 0))?;
Ok(push(blob, x).into())
}),
_ => None,
};
}
// blob op= char
if (type1, type2) == (TypeId::of::<Blob>(), TypeId::of::<char>()) {
use crate::packages::blob_basic::blob_functions::*;
return match op {
PlusAssign => Some(|_ctx, args| {
let x = args[1].as_char().expect(BUILTIN);
let blob = &mut *args[0].write_lock::<Blob>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
_ctx.engine()
.raise_err_if_over_data_size_limit((blob.len() + 1, 0, 0))?;
Ok(append_char(blob, x).into())
}),
_ => None,
};
}
// blob op= string
if (type1, type2) == (TypeId::of::<Blob>(), TypeId::of::<ImmutableString>()) {
use crate::packages::blob_basic::blob_functions::*;
return match op {
PlusAssign => Some(|_ctx, args| {
let s = std::mem::take(args[1]).cast::<ImmutableString>();
if s.is_empty() {
return Ok(Dynamic::UNIT);
}
let blob = &mut *args[0].write_lock::<Blob>().expect(BUILTIN);
#[cfg(not(feature = "unchecked"))]
_ctx.engine().raise_err_if_over_data_size_limit((
blob.len() + s.len(),
0,
0,
))?;
Ok(append_str(blob, &s).into())
}),
_ => None,
};
}
}
None
}