rhai/src/optimize.rs
2020-05-05 15:00:10 +08:00

758 lines
27 KiB
Rust

use crate::any::Dynamic;
use crate::calc_fn_hash;
use crate::engine::{
Engine, FnAny, FnCallArgs, FunctionsLib, KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_PRINT,
KEYWORD_TYPE_OF,
};
use crate::packages::PackageLibrary;
use crate::parser::{map_dynamic_to_expr, Expr, FnDef, ReturnType, Stmt, AST};
use crate::result::EvalAltResult;
use crate::scope::{Entry as ScopeEntry, EntryType as ScopeEntryType, Scope};
use crate::token::Position;
use crate::stdlib::{
boxed::Box,
collections::HashMap,
string::{String, ToString},
vec,
vec::Vec,
};
/// Level of optimization performed.
///
/// Not available under the `no_optimize` feature.
#[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)]
pub enum OptimizationLevel {
/// No optimization performed.
None,
/// Only perform simple optimizations without evaluating functions.
Simple,
/// Full optimizations performed, including evaluating functions.
/// Take care that this may cause side effects as it essentially assumes that all functions are pure.
Full,
}
impl OptimizationLevel {
/// Is the `OptimizationLevel` None.
pub fn is_none(self) -> bool {
self == Self::None
}
/// Is the `OptimizationLevel` Full.
pub fn is_full(self) -> bool {
self == Self::Full
}
}
/// Mutable state throughout an optimization pass.
struct State<'a> {
/// Has the AST been changed during this pass?
changed: bool,
/// Collection of constants to use for eager function evaluations.
constants: Vec<(String, Expr)>,
/// An `Engine` instance for eager function evaluation.
engine: &'a Engine,
/// Library of script-defined functions.
fn_lib: &'a [(&'a str, usize)],
/// Optimization level.
optimization_level: OptimizationLevel,
}
impl<'a> State<'a> {
/// Create a new State.
pub fn new(
engine: &'a Engine,
fn_lib: &'a [(&'a str, usize)],
level: OptimizationLevel,
) -> Self {
Self {
changed: false,
constants: vec![],
engine,
fn_lib,
optimization_level: level,
}
}
/// Reset the state from dirty to clean.
pub fn reset(&mut self) {
self.changed = false;
}
/// Set the AST state to be dirty (i.e. changed).
pub fn set_dirty(&mut self) {
self.changed = true;
}
/// Is the AST dirty (i.e. changed)?
pub fn is_dirty(&self) -> bool {
self.changed
}
/// Does a constant exist?
pub fn contains_constant(&self, name: &str) -> bool {
self.constants.iter().any(|(n, _)| n == name)
}
/// Prune the list of constants back to a specified size.
pub fn restore_constants(&mut self, len: usize) {
self.constants.truncate(len)
}
/// Add a new constant to the list.
pub fn push_constant(&mut self, name: &str, value: Expr) {
self.constants.push((name.to_string(), value))
}
/// Look up a constant from the list.
pub fn find_constant(&self, name: &str) -> Option<&Expr> {
for (n, expr) in self.constants.iter().rev() {
if n == name {
return Some(expr);
}
}
None
}
}
/// Call a registered function
fn call_fn(
packages: &Vec<PackageLibrary>,
functions: &HashMap<u64, Box<FnAny>>,
fn_name: &str,
args: &mut FnCallArgs,
pos: Position,
) -> Result<Option<Dynamic>, Box<EvalAltResult>> {
// Search built-in's and external functions
let hash = calc_fn_hash(fn_name, args.iter().map(|a| a.type_id()));
functions
.get(&hash)
.or_else(|| {
packages
.iter()
.find(|p| p.functions.contains_key(&hash))
.and_then(|p| p.functions.get(&hash))
})
.map(|func| func(args, pos))
.transpose()
}
/// Optimize a statement.
fn optimize_stmt<'a>(stmt: Stmt, state: &mut State<'a>, preserve_result: bool) -> Stmt {
match stmt {
// if expr { Noop }
Stmt::IfThenElse(expr, if_block, None) if matches!(*if_block, Stmt::Noop(_)) => {
state.set_dirty();
let pos = expr.position();
let expr = optimize_expr(*expr, state);
if preserve_result {
// -> { expr, Noop }
Stmt::Block(vec![Stmt::Expr(Box::new(expr)), *if_block], pos)
} else {
// -> expr
Stmt::Expr(Box::new(expr))
}
}
// if expr { if_block }
Stmt::IfThenElse(expr, if_block, None) => match *expr {
// if false { if_block } -> Noop
Expr::False(pos) => {
state.set_dirty();
Stmt::Noop(pos)
}
// if true { if_block } -> if_block
Expr::True(_) => optimize_stmt(*if_block, state, true),
// if expr { if_block }
expr => Stmt::IfThenElse(
Box::new(optimize_expr(expr, state)),
Box::new(optimize_stmt(*if_block, state, true)),
None,
),
},
// if expr { if_block } else { else_block }
Stmt::IfThenElse(expr, if_block, Some(else_block)) => match *expr {
// if false { if_block } else { else_block } -> else_block
Expr::False(_) => optimize_stmt(*else_block, state, true),
// if true { if_block } else { else_block } -> if_block
Expr::True(_) => optimize_stmt(*if_block, state, true),
// if expr { if_block } else { else_block }
expr => Stmt::IfThenElse(
Box::new(optimize_expr(expr, state)),
Box::new(optimize_stmt(*if_block, state, true)),
match optimize_stmt(*else_block, state, true) {
Stmt::Noop(_) => None, // Noop -> no else block
stmt => Some(Box::new(stmt)),
},
),
},
// while expr { block }
Stmt::While(expr, block) => match *expr {
// while false { block } -> Noop
Expr::False(pos) => {
state.set_dirty();
Stmt::Noop(pos)
}
// while true { block } -> loop { block }
Expr::True(_) => Stmt::Loop(Box::new(optimize_stmt(*block, state, false))),
// while expr { block }
expr => match optimize_stmt(*block, state, false) {
// while expr { break; } -> { expr; }
Stmt::Break(pos) => {
// Only a single break statement - turn into running the guard expression once
state.set_dirty();
let mut statements = vec![Stmt::Expr(Box::new(optimize_expr(expr, state)))];
if preserve_result {
statements.push(Stmt::Noop(pos))
}
Stmt::Block(statements, pos)
}
// while expr { block }
stmt => Stmt::While(Box::new(optimize_expr(expr, state)), Box::new(stmt)),
},
},
// loop { block }
Stmt::Loop(block) => match optimize_stmt(*block, state, false) {
// loop { break; } -> Noop
Stmt::Break(pos) => {
// Only a single break statement
state.set_dirty();
Stmt::Noop(pos)
}
// loop { block }
stmt => Stmt::Loop(Box::new(stmt)),
},
// for id in expr { block }
Stmt::For(id, expr, block) => Stmt::For(
id,
Box::new(optimize_expr(*expr, state)),
Box::new(optimize_stmt(*block, state, false)),
),
// let id = expr;
Stmt::Let(id, Some(expr), pos) => {
Stmt::Let(id, Some(Box::new(optimize_expr(*expr, state))), pos)
}
// let id;
Stmt::Let(_, None, _) => stmt,
// import expr as id;
Stmt::Import(expr, id, pos) => Stmt::Import(Box::new(optimize_expr(*expr, state)), id, pos),
// { block }
Stmt::Block(block, pos) => {
let orig_len = block.len(); // Original number of statements in the block, for change detection
let orig_constants_len = state.constants.len(); // Original number of constants in the state, for restore later
// Optimize each statement in the block
let mut result: Vec<_> = block
.into_iter()
.map(|stmt| match stmt {
// Add constant into the state
Stmt::Const(name, value, pos) => {
state.push_constant(&name, *value);
state.set_dirty();
Stmt::Noop(pos) // No need to keep constants
}
// Optimize the statement
_ => optimize_stmt(stmt, state, preserve_result),
})
.collect();
// Remove all raw expression statements that are pure except for the very last statement
let last_stmt = if preserve_result { result.pop() } else { None };
result.retain(|stmt| !stmt.is_pure());
if let Some(stmt) = last_stmt {
result.push(stmt);
}
// Remove all let/import statements at the end of a block - the new variables will go away anyway.
// But be careful only remove ones that have no initial values or have values that are pure expressions,
// otherwise there may be side effects.
let mut removed = false;
while let Some(expr) = result.pop() {
match expr {
Stmt::Let(_, None, _) => removed = true,
Stmt::Let(_, Some(val_expr), _) => removed = val_expr.is_pure(),
Stmt::Import(expr, _, _) => removed = expr.is_pure(),
_ => {
result.push(expr);
break;
}
}
}
if preserve_result {
if removed {
result.push(Stmt::Noop(pos))
}
// Optimize all the statements again
result = result
.into_iter()
.rev()
.enumerate()
.map(|(i, s)| optimize_stmt(s, state, i == 0))
.rev()
.collect();
}
// Remove everything following the the first return/throw
let mut dead_code = false;
result.retain(|stmt| {
if dead_code {
return false;
}
match stmt {
Stmt::ReturnWithVal(_, _, _) | Stmt::Break(_) => {
dead_code = true;
}
_ => (),
}
true
});
// Change detection
if orig_len != result.len() {
state.set_dirty();
}
// Pop the stack and remove all the local constants
state.restore_constants(orig_constants_len);
match result[..] {
// No statements in block - change to No-op
[] => {
state.set_dirty();
Stmt::Noop(pos)
}
// Only one let/import statement - leave it alone
[Stmt::Let(_, _, _)] | [Stmt::Import(_, _, _)] => Stmt::Block(result, pos),
// Only one statement - promote
[_] => {
state.set_dirty();
result.remove(0)
}
_ => Stmt::Block(result, pos),
}
}
// expr;
Stmt::Expr(expr) => Stmt::Expr(Box::new(optimize_expr(*expr, state))),
// return expr;
Stmt::ReturnWithVal(Some(expr), is_return, pos) => {
Stmt::ReturnWithVal(Some(Box::new(optimize_expr(*expr, state))), is_return, pos)
}
// All other statements - skip
stmt => stmt,
}
}
/// Optimize an expression.
fn optimize_expr<'a>(expr: Expr, state: &mut State<'a>) -> Expr {
// These keywords are handled specially
const DONT_EVAL_KEYWORDS: [&str; 3] = [KEYWORD_PRINT, KEYWORD_DEBUG, KEYWORD_EVAL];
match expr {
// ( stmt )
Expr::Stmt(stmt, pos) => match optimize_stmt(*stmt, state, true) {
// ( Noop ) -> ()
Stmt::Noop(_) => {
state.set_dirty();
Expr::Unit(pos)
}
// ( expr ) -> expr
Stmt::Expr(expr) => {
state.set_dirty();
*expr
}
// ( stmt )
stmt => Expr::Stmt(Box::new(stmt), pos),
},
// id = expr
Expr::Assignment(id, expr, pos) => match *expr {
//id = id2 = expr2
Expr::Assignment(id2, expr2, pos2) => match (*id, *id2) {
// var = var = expr2 -> var = expr2
(Expr::Variable(var, None, sp, _), Expr::Variable(var2, None, sp2, _))
if var == var2 && sp == sp2 =>
{
// Assignment to the same variable - fold
state.set_dirty();
Expr::Assignment(Box::new(Expr::Variable(var, None, sp, pos)), Box::new(optimize_expr(*expr2, state)), pos)
}
// id1 = id2 = expr2
(id1, id2) => Expr::Assignment(
Box::new(id1),
Box::new(Expr::Assignment(
Box::new(id2),
Box::new(optimize_expr(*expr2, state)),
pos2,
)),
pos,
),
},
// id = expr
expr => Expr::Assignment(id, Box::new(optimize_expr(expr, state)), pos),
},
// lhs.rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(lhs, rhs, pos) => match (*lhs, *rhs) {
// map.string
(Expr::Map(items, pos), Expr::Property(s, _)) if items.iter().all(|(_, x, _)| x.is_pure()) => {
// Map literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
items.into_iter().find(|(name, _, _)| name == &s)
.map(|(_, expr, _)| expr.set_position(pos))
.unwrap_or_else(|| Expr::Unit(pos))
}
// lhs.rhs
(lhs, rhs) => Expr::Dot(
Box::new(optimize_expr(lhs, state)),
Box::new(optimize_expr(rhs, state)),
pos,
)
}
// lhs[rhs]
#[cfg(not(feature = "no_index"))]
Expr::Index(lhs, rhs, pos) => match (*lhs, *rhs) {
// array[int]
(Expr::Array(mut items, pos), Expr::IntegerConstant(i, _))
if i >= 0 && (i as usize) < items.len() && items.iter().all(Expr::is_pure) =>
{
// Array literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
items.remove(i as usize).set_position(pos)
}
// map[string]
(Expr::Map(items, pos), Expr::StringConstant(s, _)) if items.iter().all(|(_, x, _)| x.is_pure()) => {
// Map literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
items.into_iter().find(|(name, _, _)| name == &s)
.map(|(_, expr, _)| expr.set_position(pos))
.unwrap_or_else(|| Expr::Unit(pos))
}
// string[int]
(Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if i >= 0 && (i as usize) < s.chars().count() => {
// String literal indexing - get the character
state.set_dirty();
Expr::CharConstant(s.chars().nth(i as usize).expect("should get char"), pos)
}
// lhs[rhs]
(lhs, rhs) => Expr::Index(
Box::new(optimize_expr(lhs, state)),
Box::new(optimize_expr(rhs, state)),
pos,
),
},
// [ items .. ]
#[cfg(not(feature = "no_index"))]
Expr::Array(items, pos) => Expr::Array(items
.into_iter()
.map(|expr| optimize_expr(expr, state))
.collect(), pos),
// [ items .. ]
#[cfg(not(feature = "no_object"))]
Expr::Map(items, pos) => Expr::Map(items
.into_iter()
.map(|(key, expr, pos)| (key, optimize_expr(expr, state), pos))
.collect(), pos),
// lhs in rhs
Expr::In(lhs, rhs, pos) => match (*lhs, *rhs) {
// "xxx" in "xxxxx"
(Expr::StringConstant(lhs, pos), Expr::StringConstant(rhs, _)) => {
state.set_dirty();
if rhs.contains(&lhs) {
Expr::True(pos)
} else {
Expr::False(pos)
}
}
// 'x' in "xxxxx"
(Expr::CharConstant(lhs, pos), Expr::StringConstant(rhs, _)) => {
state.set_dirty();
if rhs.contains(&lhs.to_string()) {
Expr::True(pos)
} else {
Expr::False(pos)
}
}
// "xxx" in #{...}
(Expr::StringConstant(lhs, pos), Expr::Map(items, _)) => {
state.set_dirty();
if items.iter().find(|(name, _, _)| name == &lhs).is_some() {
Expr::True(pos)
} else {
Expr::False(pos)
}
}
// 'x' in #{...}
(Expr::CharConstant(lhs, pos), Expr::Map(items, _)) => {
state.set_dirty();
let lhs = lhs.to_string();
if items.iter().find(|(name, _, _)| name == &lhs).is_some() {
Expr::True(pos)
} else {
Expr::False(pos)
}
}
// lhs in rhs
(lhs, rhs) => Expr::In(
Box::new(optimize_expr(lhs, state)),
Box::new(optimize_expr(rhs, state)),
pos
),
},
// lhs && rhs
Expr::And(lhs, rhs, pos) => match (*lhs, *rhs) {
// true && rhs -> rhs
(Expr::True(_), rhs) => {
state.set_dirty();
rhs
}
// false && rhs -> false
(Expr::False(pos), _) => {
state.set_dirty();
Expr::False(pos)
}
// lhs && true -> lhs
(lhs, Expr::True(_)) => {
state.set_dirty();
optimize_expr(lhs, state)
}
// lhs && rhs
(lhs, rhs) => Expr::And(
Box::new(optimize_expr(lhs, state)),
Box::new(optimize_expr(rhs, state)),
pos
),
},
// lhs || rhs
Expr::Or(lhs, rhs, pos) => match (*lhs, *rhs) {
// false || rhs -> rhs
(Expr::False(_), rhs) => {
state.set_dirty();
rhs
}
// true || rhs -> true
(Expr::True(pos), _) => {
state.set_dirty();
Expr::True(pos)
}
// lhs || false
(lhs, Expr::False(_)) => {
state.set_dirty();
optimize_expr(lhs, state)
}
// lhs || rhs
(lhs, rhs) => Expr::Or(Box::new(optimize_expr(lhs, state)), Box::new(optimize_expr(rhs, state)), pos),
},
// Do not call some special keywords
Expr::FnCall(id, None, args, def_value, pos) if DONT_EVAL_KEYWORDS.contains(&id.as_ref().as_ref())=>
Expr::FnCall(id, None, Box::new(args.into_iter().map(|a| optimize_expr(a, state)).collect()), def_value, pos),
// Eagerly call functions
Expr::FnCall(id, None, args, def_value, pos)
if state.optimization_level == OptimizationLevel::Full // full optimizations
&& args.iter().all(|expr| expr.is_constant()) // all arguments are constants
=> {
// First search in script-defined functions (can override built-in)
if state.fn_lib.iter().find(|(name, len)| name == id.as_ref() && *len == args.len()).is_some() {
// A script-defined function overrides the built-in function - do not make the call
return Expr::FnCall(id, None, Box::new(args.into_iter().map(|a| optimize_expr(a, state)).collect()), def_value, pos);
}
let mut arg_values: Vec<_> = args.iter().map(Expr::get_constant_value).collect();
let mut call_args: Vec<_> = arg_values.iter_mut().collect();
// Save the typename of the first argument if it is `type_of()`
// This is to avoid `call_args` being passed into the closure
let arg_for_type_of = if *id == KEYWORD_TYPE_OF && call_args.len() == 1 {
state.engine.map_type_name(call_args[0].type_name())
} else {
""
};
call_fn(&state.engine.packages, &state.engine.functions, &id, &mut call_args, pos).ok()
.and_then(|result|
result.or_else(|| {
if !arg_for_type_of.is_empty() {
// Handle `type_of()`
Some(arg_for_type_of.to_string().into())
} else {
// Otherwise use the default value, if any
def_value.clone().map(|v| *v)
}
}).and_then(|result| map_dynamic_to_expr(result, pos))
.map(|expr| {
state.set_dirty();
expr
})
).unwrap_or_else(||
// Optimize function call arguments
Expr::FnCall(id, None, Box::new(args.into_iter().map(|a| optimize_expr(a, state)).collect()), def_value, pos)
)
}
// id(args ..) -> optimize function call arguments
Expr::FnCall(id, modules, args, def_value, pos) =>
Expr::FnCall(id, modules, Box::new(args.into_iter().map(|a| optimize_expr(a, state)).collect()), def_value, pos),
// constant-name
Expr::Variable(name, None, _, pos) if state.contains_constant(&name) => {
state.set_dirty();
// Replace constant with value
state.find_constant(&name).expect("should find constant in scope!").clone().set_position(pos)
}
// All other expressions - skip
expr => expr,
}
}
fn optimize<'a>(
statements: Vec<Stmt>,
engine: &Engine,
scope: &Scope,
fn_lib: &'a [(&'a str, usize)],
level: OptimizationLevel,
) -> Vec<Stmt> {
// If optimization level is None then skip optimizing
if level == OptimizationLevel::None {
return statements;
}
// Set up the state
let mut state = State::new(engine, fn_lib, level);
// Add constants from the scope into the state
scope
.iter()
.filter(|ScopeEntry { typ, expr, .. }| {
// Get all the constants with definite constant expressions
*typ == ScopeEntryType::Constant
&& expr.as_ref().map(|v| v.is_constant()).unwrap_or(false)
})
.for_each(|ScopeEntry { name, expr, .. }| {
state.push_constant(
name.as_ref(),
(**expr.as_ref().expect("should be Some(expr)")).clone(),
)
});
let orig_constants_len = state.constants.len();
let mut result = statements;
// Optimization loop
loop {
state.reset();
state.restore_constants(orig_constants_len);
let num_statements = result.len();
result = result
.into_iter()
.enumerate()
.map(|(i, stmt)| {
match stmt {
Stmt::Const(ref name, ref value, _) => {
// Load constants
state.push_constant(name.as_ref(), value.as_ref().clone());
stmt // Keep it in the global scope
}
_ => {
// Keep all variable declarations at this level
// and always keep the last return value
let keep = match stmt {
Stmt::Let(_, _, _) | Stmt::Import(_, _, _) => true,
_ => i == num_statements - 1,
};
optimize_stmt(stmt, &mut state, keep)
}
}
})
.collect();
if !state.is_dirty() {
break;
}
}
// Eliminate code that is pure but always keep the last statement
let last_stmt = result.pop();
// Remove all pure statements at global level
result.retain(|stmt| !stmt.is_pure());
// Add back the last statement unless it is a lone No-op
if let Some(stmt) = last_stmt {
if !result.is_empty() || !matches!(stmt, Stmt::Noop(_)) {
result.push(stmt);
}
}
result
}
/// Optimize an AST.
pub fn optimize_into_ast(
engine: &Engine,
scope: &Scope,
statements: Vec<Stmt>,
functions: Vec<FnDef>,
level: OptimizationLevel,
) -> AST {
#[cfg(feature = "no_optimize")]
const level: OptimizationLevel = OptimizationLevel::None;
let fn_lib: Vec<_> = functions
.iter()
.map(|fn_def| (fn_def.name.as_str(), fn_def.params.len()))
.collect();
let lib = FunctionsLib::from_vec(
functions
.iter()
.cloned()
.map(|mut fn_def| {
if !level.is_none() {
let pos = fn_def.body.position();
// Optimize the function body
let mut body =
optimize(vec![*fn_def.body], engine, &Scope::new(), &fn_lib, level);
// {} -> Noop
fn_def.body = Box::new(match body.pop().unwrap_or_else(|| Stmt::Noop(pos)) {
// { return val; } -> val
Stmt::ReturnWithVal(Some(val), ReturnType::Return, _) => Stmt::Expr(val),
// { return; } -> ()
Stmt::ReturnWithVal(None, ReturnType::Return, pos) => {
Stmt::Expr(Box::new(Expr::Unit(pos)))
}
// All others
stmt => stmt,
});
}
fn_def
})
.collect(),
);
AST::new(
match level {
OptimizationLevel::None => statements,
OptimizationLevel::Simple | OptimizationLevel::Full => {
optimize(statements, engine, &scope, &fn_lib, level)
}
},
lib,
)
}