rhai/src/optimizer.rs
2023-03-23 13:37:10 +08:00

1394 lines
54 KiB
Rust

//! Module implementing the [`AST`] optimizer.
#![cfg(not(feature = "no_optimize"))]
use crate::ast::{
ASTFlags, Expr, FlowControl, OpAssignment, Stmt, StmtBlock, StmtBlockContainer,
SwitchCasesCollection,
};
use crate::engine::{
KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF, OP_NOT,
};
use crate::eval::{Caches, GlobalRuntimeState};
use crate::func::builtin::get_builtin_binary_op_fn;
use crate::func::hashing::get_hasher;
use crate::module::ModuleFlags;
use crate::tokenizer::Token;
use crate::types::dynamic::AccessMode;
use crate::{
calc_fn_hash, calc_fn_hash_full, Dynamic, Engine, FnPtr, Identifier, ImmutableString, Position,
Scope, StaticVec, AST,
};
#[cfg(feature = "no_std")]
use std::prelude::v1::*;
use std::{
any::TypeId,
convert::TryFrom,
hash::{Hash, Hasher},
mem,
};
/// Level of optimization performed.
#[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)]
#[non_exhaustive]
pub enum OptimizationLevel {
/// No optimization performed.
None,
/// Only perform simple optimizations without evaluating functions.
Simple,
/// Full optimizations performed, including evaluating functions.
/// Take care that this may cause side effects as it essentially assumes that all functions are pure.
Full,
}
impl Default for OptimizationLevel {
#[inline(always)]
#[must_use]
fn default() -> Self {
Self::Simple
}
}
/// Mutable state throughout an optimization pass.
#[derive(Debug, Clone)]
struct OptimizerState<'a> {
/// Has the [`AST`] been changed during this pass?
changed: bool,
/// Collection of constants to use for eager function evaluations.
variables: StaticVec<(Identifier, AccessMode, Option<Dynamic>)>,
/// Activate constants propagation?
propagate_constants: bool,
/// An [`Engine`] instance for eager function evaluation.
engine: &'a Engine,
/// The global runtime state.
global: GlobalRuntimeState,
/// Function resolution caches.
caches: Caches,
/// Optimization level.
optimization_level: OptimizationLevel,
}
impl<'a> OptimizerState<'a> {
/// Create a new [`OptimizerState`].
#[inline(always)]
pub fn new(
engine: &'a Engine,
lib: &'a [crate::SharedModule],
optimization_level: OptimizationLevel,
) -> Self {
let mut _global = GlobalRuntimeState::new(engine);
let _lib = lib;
#[cfg(not(feature = "no_function"))]
{
_global.lib = _lib.iter().cloned().collect();
}
Self {
changed: false,
variables: StaticVec::new_const(),
propagate_constants: true,
engine,
global: _global,
caches: Caches::new(),
optimization_level,
}
}
/// Set the [`AST`] state to be dirty (i.e. changed).
#[inline(always)]
pub fn set_dirty(&mut self) {
self.changed = true;
}
/// Set the [`AST`] state to be not dirty (i.e. unchanged).
#[inline(always)]
pub fn clear_dirty(&mut self) {
self.changed = false;
}
/// Is the [`AST`] dirty (i.e. changed)?
#[inline(always)]
pub const fn is_dirty(&self) -> bool {
self.changed
}
/// Prune the list of constants back to a specified size.
#[inline(always)]
pub fn restore_var(&mut self, len: usize) {
self.variables.truncate(len);
}
/// Add a new variable to the list.
#[inline(always)]
pub fn push_var(
&mut self,
name: impl Into<Identifier>,
access: AccessMode,
value: Option<Dynamic>,
) {
self.variables.push((name.into(), access, value));
}
/// Look up a constant from the list.
#[inline]
pub fn find_constant(&self, name: &str) -> Option<&Dynamic> {
if !self.propagate_constants {
return None;
}
for (n, access, value) in self.variables.iter().rev() {
if n == name {
return match access {
AccessMode::ReadWrite => None,
AccessMode::ReadOnly => value.as_ref(),
};
}
}
None
}
/// Call a registered function
#[inline]
pub fn call_fn_with_constant_arguments(
&mut self,
fn_name: &str,
op_token: Option<&Token>,
arg_values: &mut [Dynamic],
) -> Option<Dynamic> {
self.engine
.exec_native_fn_call(
&mut self.global,
&mut self.caches,
fn_name,
op_token,
calc_fn_hash(None, fn_name, arg_values.len()),
&mut arg_values.iter_mut().collect::<StaticVec<_>>(),
false,
Position::NONE,
)
.ok()
.map(|(v, ..)| v)
}
}
/// Optimize a block of [statements][Stmt].
fn optimize_stmt_block(
mut statements: StmtBlockContainer,
state: &mut OptimizerState,
preserve_result: bool,
is_internal: bool,
reduce_return: bool,
) -> StmtBlockContainer {
if statements.is_empty() {
return statements;
}
let mut is_dirty = state.is_dirty();
let is_pure = if is_internal {
Stmt::is_internally_pure
} else {
Stmt::is_pure
};
// Flatten blocks
while let Some(n) = statements.iter().position(
|s| matches!(s, Stmt::Block(block, ..) if !block.iter().any(Stmt::is_block_dependent)),
) {
let (first, second) = statements.split_at_mut(n);
let stmt = mem::take(&mut second[0]);
let mut stmts = match stmt {
Stmt::Block(block, ..) => block,
stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt),
};
statements = first
.iter_mut()
.map(mem::take)
.chain(stmts.iter_mut().map(mem::take))
.chain(second.iter_mut().skip(1).map(mem::take))
.collect();
is_dirty = true;
}
// Optimize
loop {
state.clear_dirty();
let orig_constants_len = state.variables.len(); // Original number of constants in the state, for restore later
let orig_propagate_constants = state.propagate_constants;
// Remove everything following control flow breaking statements
let mut dead_code = false;
statements.retain(|stmt| {
if dead_code {
state.set_dirty();
false
} else if stmt.is_control_flow_break() {
dead_code = true;
true
} else {
true
}
});
// Optimize each statement in the block
statements.iter_mut().for_each(|stmt| {
match stmt {
Stmt::Var(x, options, ..) => {
if options.contains(ASTFlags::CONSTANT) {
// Add constant literals into the state
optimize_expr(&mut x.1, state, false);
if x.1.is_constant() {
state.push_var(
x.0.as_str(),
AccessMode::ReadOnly,
x.1.get_literal_value(),
);
}
} else {
// Add variables into the state
optimize_expr(&mut x.1, state, false);
state.push_var(x.0.as_str(), AccessMode::ReadWrite, None);
}
}
// Optimize the statement
_ => optimize_stmt(stmt, state, preserve_result),
}
});
// Remove all pure statements except the last one
let mut index = 0;
let mut first_non_constant = statements
.iter()
.rev()
.enumerate()
.find_map(|(i, stmt)| match stmt {
stmt if !is_pure(stmt) => Some(i),
Stmt::Var(x, ..) if x.1.is_constant() => Some(i),
Stmt::Expr(e) if !e.is_constant() => Some(i),
#[cfg(not(feature = "no_module"))]
Stmt::Import(x, ..) if !x.0.is_constant() => Some(i),
_ => None,
})
.map_or(0, |n| statements.len() - n - 1);
while index < statements.len() {
if preserve_result && index >= statements.len() - 1 {
break;
}
match statements[index] {
ref stmt if is_pure(stmt) && index >= first_non_constant => {
state.set_dirty();
statements.remove(index);
}
ref stmt if stmt.is_pure() => {
state.set_dirty();
if index < first_non_constant {
first_non_constant -= 1;
}
statements.remove(index);
}
_ => index += 1,
}
}
// Remove all pure statements that do not return values at the end of a block.
// We cannot remove anything for non-pure statements due to potential side-effects.
if preserve_result {
loop {
match statements[..] {
// { return; } -> {}
[Stmt::Return(None, options, ..)]
if reduce_return && !options.contains(ASTFlags::BREAK) =>
{
state.set_dirty();
statements.clear();
}
[ref stmt] if !stmt.returns_value() && is_pure(stmt) => {
state.set_dirty();
statements.clear();
}
// { ...; return; } -> { ... }
[.., ref last_stmt, Stmt::Return(None, options, ..)]
if reduce_return
&& !options.contains(ASTFlags::BREAK)
&& !last_stmt.returns_value() =>
{
state.set_dirty();
statements.pop().unwrap();
}
// { ...; return val; } -> { ...; val }
[.., Stmt::Return(ref mut expr, options, pos)]
if reduce_return && !options.contains(ASTFlags::BREAK) =>
{
state.set_dirty();
*statements.last_mut().unwrap() = expr
.as_mut()
.map_or_else(|| Stmt::Noop(pos), |e| Stmt::Expr(mem::take(e)));
}
// { ...; stmt; noop } -> done
[.., ref second_last_stmt, Stmt::Noop(..)]
if second_last_stmt.returns_value() =>
{
break
}
// { ...; stmt_that_returns; pure_non_value_stmt } -> { ...; stmt_that_returns; noop }
// { ...; stmt; pure_non_value_stmt } -> { ...; stmt }
[.., ref second_last_stmt, ref last_stmt]
if !last_stmt.returns_value() && is_pure(last_stmt) =>
{
state.set_dirty();
if second_last_stmt.returns_value() {
*statements.last_mut().unwrap() = Stmt::Noop(last_stmt.position());
} else {
statements.pop().unwrap();
}
}
_ => break,
}
}
} else {
loop {
match statements[..] {
[ref stmt] if is_pure(stmt) => {
state.set_dirty();
statements.clear();
}
// { ...; return; } -> { ... }
[.., Stmt::Return(None, options, ..)]
if reduce_return && !options.contains(ASTFlags::BREAK) =>
{
state.set_dirty();
statements.pop().unwrap();
}
// { ...; return pure_val; } -> { ... }
[.., Stmt::Return(Some(ref expr), options, ..)]
if reduce_return
&& !options.contains(ASTFlags::BREAK)
&& expr.is_pure() =>
{
state.set_dirty();
statements.pop().unwrap();
}
[.., ref last_stmt] if is_pure(last_stmt) => {
state.set_dirty();
statements.pop().unwrap();
}
_ => break,
}
}
}
// Pop the stack and remove all the local constants
state.restore_var(orig_constants_len);
state.propagate_constants = orig_propagate_constants;
if !state.is_dirty() {
break;
}
is_dirty = true;
}
if is_dirty {
state.set_dirty();
}
statements.shrink_to_fit();
statements
}
/// Optimize a [statement][Stmt].
fn optimize_stmt(stmt: &mut Stmt, state: &mut OptimizerState, preserve_result: bool) {
match stmt {
// var = var op expr => var op= expr
Stmt::Assignment(x, ..)
if !x.0.is_op_assignment()
&& x.1.lhs.is_variable_access(true)
&& matches!(&x.1.rhs, Expr::FnCall(x2, ..)
if Token::lookup_symbol_from_syntax(&x2.name).map_or(false, |t| t.has_op_assignment())
&& x2.args.len() == 2
&& x2.args[0].get_variable_name(true) == x.1.lhs.get_variable_name(true)
) =>
{
match x.1.rhs {
Expr::FnCall(ref mut x2, pos) => {
state.set_dirty();
x.0 = OpAssignment::new_op_assignment_from_base(&x2.name, pos);
x.1.rhs = mem::take(&mut x2.args[1]);
}
ref expr => unreachable!("Expr::FnCall expected but gets {:?}", expr),
}
}
// expr op= expr
Stmt::Assignment(x, ..) => {
if !x.1.lhs.is_variable_access(false) {
optimize_expr(&mut x.1.lhs, state, false);
}
optimize_expr(&mut x.1.rhs, state, false);
}
// if expr {}
Stmt::If(x, ..) if x.body.is_empty() && x.branch.is_empty() => {
let condition = &mut x.expr;
state.set_dirty();
let pos = condition.start_position();
let mut expr = mem::take(condition);
optimize_expr(&mut expr, state, false);
*stmt = if preserve_result {
// -> { expr, Noop }
(
[Stmt::Expr(expr.into()), Stmt::Noop(pos)],
pos,
Position::NONE,
)
.into()
} else {
// -> expr
Stmt::Expr(expr.into())
};
}
// if false { if_block } -> Noop
Stmt::If(x, ..)
if matches!(x.expr, Expr::BoolConstant(false, ..)) && x.branch.is_empty() =>
{
if let Expr::BoolConstant(false, pos) = x.expr {
state.set_dirty();
*stmt = Stmt::Noop(pos);
} else {
unreachable!("`Expr::BoolConstant`");
}
}
// if false { if_block } else { else_block } -> else_block
Stmt::If(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) => {
state.set_dirty();
let body = mem::take(&mut *x.branch);
*stmt = match optimize_stmt_block(body, state, preserve_result, true, false) {
statements if statements.is_empty() => Stmt::Noop(x.branch.position()),
statements => (statements, x.branch.span()).into(),
}
}
// if true { if_block } else { else_block } -> if_block
Stmt::If(x, ..) if matches!(x.expr, Expr::BoolConstant(true, ..)) => {
state.set_dirty();
let body = mem::take(&mut *x.body);
*stmt = match optimize_stmt_block(body, state, preserve_result, true, false) {
statements if statements.is_empty() => Stmt::Noop(x.body.position()),
statements => (statements, x.body.span()).into(),
}
}
// if expr { if_block } else { else_block }
Stmt::If(x, ..) => {
let FlowControl { expr, body, branch } = &mut **x;
optimize_expr(expr, state, false);
let statements = mem::take(&mut **body);
**body = optimize_stmt_block(statements, state, preserve_result, true, false);
let statements = mem::take(&mut **branch);
**branch = optimize_stmt_block(statements, state, preserve_result, true, false);
}
// switch const { ... }
Stmt::Switch(x, pos) if x.0.is_constant() => {
let (
match_expr,
SwitchCasesCollection {
expressions,
cases,
ranges,
def_case,
},
) = &mut **x;
let value = match_expr.get_literal_value().unwrap();
let hasher = &mut get_hasher();
value.hash(hasher);
let hash = hasher.finish();
// First check hashes
if let Some(case_blocks_list) = cases.get(&hash) {
match &case_blocks_list[..] {
[] => (),
[index] => {
let mut b = mem::take(&mut expressions[*index]);
cases.clear();
if b.is_always_true() {
// Promote the matched case
let mut statements = Stmt::Expr(mem::take(&mut b.expr).into());
optimize_stmt(&mut statements, state, true);
*stmt = statements;
} else {
// switch const { case if condition => stmt, _ => def } => if condition { stmt } else { def }
optimize_expr(&mut b.condition, state, false);
let branch = match def_case {
Some(index) => {
let mut def_stmt =
Stmt::Expr(mem::take(&mut expressions[*index].expr).into());
optimize_stmt(&mut def_stmt, state, true);
def_stmt.into()
}
_ => StmtBlock::NONE,
};
let body = Stmt::Expr(mem::take(&mut b.expr).into()).into();
let expr = mem::take(&mut b.condition);
*stmt = Stmt::If(
FlowControl { expr, body, branch }.into(),
match_expr.start_position(),
);
}
state.set_dirty();
return;
}
_ => {
for &index in case_blocks_list {
let mut b = mem::take(&mut expressions[index]);
if b.is_always_true() {
// Promote the matched case
let mut statements = Stmt::Expr(mem::take(&mut b.expr).into());
optimize_stmt(&mut statements, state, true);
*stmt = statements;
state.set_dirty();
return;
}
}
}
}
}
// Then check ranges
if !ranges.is_empty() {
// Only one range or all ranges without conditions
if ranges.len() == 1
|| ranges
.iter()
.all(|r| expressions[r.index()].is_always_true())
{
if let Some(r) = ranges.iter().find(|r| r.contains(&value)) {
let range_block = &mut expressions[r.index()];
if range_block.is_always_true() {
// Promote the matched case
let block = &mut expressions[r.index()];
let mut statements = Stmt::Expr(mem::take(&mut block.expr).into());
optimize_stmt(&mut statements, state, true);
*stmt = statements;
} else {
let mut expr = mem::take(&mut range_block.condition);
// switch const { range if condition => stmt, _ => def } => if condition { stmt } else { def }
optimize_expr(&mut expr, state, false);
let branch = match def_case {
Some(index) => {
let mut def_stmt =
Stmt::Expr(mem::take(&mut expressions[*index].expr).into());
optimize_stmt(&mut def_stmt, state, true);
def_stmt.into()
}
_ => StmtBlock::NONE,
};
let body =
Stmt::Expr(mem::take(&mut expressions[r.index()].expr).into())
.into();
*stmt = Stmt::If(
FlowControl { expr, body, branch }.into(),
match_expr.start_position(),
);
}
state.set_dirty();
return;
}
} else {
// Multiple ranges - clear the table and just keep the right ranges
if !cases.is_empty() {
state.set_dirty();
cases.clear();
}
let old_ranges_len = ranges.len();
ranges.retain(|r| r.contains(&value));
if ranges.len() != old_ranges_len {
state.set_dirty();
}
ranges.iter().for_each(|r| {
let b = &mut expressions[r.index()];
optimize_expr(&mut b.condition, state, false);
optimize_expr(&mut b.expr, state, false);
});
return;
}
}
// Promote the default case
state.set_dirty();
match def_case {
Some(index) => {
let mut def_stmt = Stmt::Expr(mem::take(&mut expressions[*index].expr).into());
optimize_stmt(&mut def_stmt, state, true);
*stmt = def_stmt;
}
_ => *stmt = StmtBlock::empty(*pos).into(),
}
}
// switch
Stmt::Switch(x, ..) => {
let (
match_expr,
SwitchCasesCollection {
expressions,
cases,
ranges,
def_case,
..
},
) = &mut **x;
optimize_expr(match_expr, state, false);
// Optimize blocks
expressions.iter_mut().for_each(|b| {
optimize_expr(&mut b.condition, state, false);
optimize_expr(&mut b.expr, state, false);
if b.is_always_false() && !b.expr.is_unit() {
b.expr = Expr::Unit(b.expr.position());
state.set_dirty();
}
});
// Remove false cases
cases.retain(|_, list| {
// Remove all entries that have false conditions
list.retain(|index| {
if expressions[*index].is_always_false() {
state.set_dirty();
false
} else {
true
}
});
// Remove all entries after a `true` condition
if let Some(n) = list
.iter()
.position(|&index| expressions[index].is_always_true())
{
if n + 1 < list.len() {
state.set_dirty();
list.truncate(n + 1);
}
}
// Remove if no entry left
if list.is_empty() {
state.set_dirty();
false
} else {
true
}
});
// Remove false ranges
ranges.retain(|r| {
if expressions[r.index()].is_always_false() {
state.set_dirty();
false
} else {
true
}
});
if let Some(index) = def_case {
optimize_expr(&mut expressions[*index].expr, state, false);
}
// Remove unused block statements
(0..expressions.len()).into_iter().for_each(|index| {
if *def_case == Some(index)
|| cases.values().flat_map(|c| c.iter()).any(|&n| n == index)
|| ranges.iter().any(|r| r.index() == index)
{
return;
}
let b = &mut expressions[index];
if !b.expr.is_unit() {
b.expr = Expr::Unit(b.expr.position());
state.set_dirty();
}
});
}
// while false { block } -> Noop
Stmt::While(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) => match x.expr {
Expr::BoolConstant(false, pos) => {
state.set_dirty();
*stmt = Stmt::Noop(pos);
}
_ => unreachable!("`Expr::BoolConstant"),
},
// while expr { block }
Stmt::While(x, ..) => {
let FlowControl { expr, body, .. } = &mut **x;
optimize_expr(expr, state, false);
if let Expr::BoolConstant(true, pos) = expr {
*expr = Expr::Unit(*pos);
}
**body = optimize_stmt_block(mem::take(&mut **body), state, false, true, false);
}
// do { block } while|until expr
Stmt::Do(x, ..) => {
optimize_expr(&mut x.expr, state, false);
*x.body = optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false);
}
// for id in expr { block }
Stmt::For(x, ..) => {
optimize_expr(&mut x.2.expr, state, false);
*x.2.body = optimize_stmt_block(mem::take(&mut *x.2.body), state, false, true, false);
}
// let id = expr;
Stmt::Var(x, options, ..) if !options.contains(ASTFlags::CONSTANT) => {
optimize_expr(&mut x.1, state, false);
}
// import expr as var;
#[cfg(not(feature = "no_module"))]
Stmt::Import(x, ..) => optimize_expr(&mut x.0, state, false),
// { block }
Stmt::Block(block) => {
let span = block.span();
let statements = block.take_statements().into_vec().into();
let mut block = optimize_stmt_block(statements, state, preserve_result, true, false);
match block.as_mut_slice() {
[] => {
state.set_dirty();
*stmt = Stmt::Noop(span.start());
}
// Only one statement which is not block-dependent - promote
[s] if !s.is_block_dependent() => {
state.set_dirty();
*stmt = mem::take(s);
}
_ => *stmt = (block, span).into(),
}
}
// try { pure try_block } catch ( var ) { catch_block } -> try_block
Stmt::TryCatch(x, ..) if x.body.iter().all(Stmt::is_pure) => {
// If try block is pure, there will never be any exceptions
state.set_dirty();
*stmt = (
optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false),
x.body.span(),
)
.into();
}
// try { try_block } catch ( var ) { catch_block }
Stmt::TryCatch(x, ..) => {
*x.body = optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false);
*x.branch = optimize_stmt_block(mem::take(&mut *x.branch), state, false, true, false);
}
// expr(stmt)
Stmt::Expr(expr) if matches!(**expr, Expr::Stmt(..)) => {
state.set_dirty();
match expr.as_mut() {
Expr::Stmt(block) if !block.is_empty() => {
let mut stmt_block = *mem::take(block);
*stmt_block =
optimize_stmt_block(mem::take(&mut *stmt_block), state, true, true, false);
*stmt = stmt_block.into();
}
Expr::Stmt(..) => *stmt = Stmt::Noop(expr.position()),
_ => unreachable!("`Expr::Stmt`"),
}
}
Stmt::Expr(expr) => {
optimize_expr(expr, state, false);
// Do not promote until the expression is fully optimized
if !state.is_dirty() && matches!(**expr, Expr::FnCall(..) | Expr::Stmt(..)) {
*stmt = match *mem::take(expr) {
// func(...);
Expr::FnCall(x, pos) => Stmt::FnCall(x, pos),
// {};
Expr::Stmt(x) if x.is_empty() => Stmt::Noop(x.position()),
// {...};
Expr::Stmt(x) => (*x).into(),
_ => unreachable!(),
};
state.set_dirty();
}
}
// break expr;
Stmt::BreakLoop(Some(ref mut expr), ..) => optimize_expr(expr, state, false),
// return expr;
Stmt::Return(Some(ref mut expr), ..) => optimize_expr(expr, state, false),
// All other statements - skip
_ => (),
}
}
/// Optimize an [expression][Expr].
fn optimize_expr(expr: &mut Expr, state: &mut OptimizerState, _chaining: bool) {
// These keywords are handled specially
const DONT_EVAL_KEYWORDS: &[&str] = &[
KEYWORD_PRINT, // side effects
KEYWORD_DEBUG, // side effects
KEYWORD_EVAL, // arbitrary scripts
];
match expr {
// {}
Expr::Stmt(x) if x.is_empty() => { state.set_dirty(); *expr = Expr::Unit(x.position()) }
Expr::Stmt(x) if x.len() == 1 && matches!(x.statements()[0], Stmt::Expr(..)) => {
state.set_dirty();
match x.take_statements().remove(0) {
Stmt::Expr(mut e) => {
optimize_expr(&mut e, state, false);
*expr = *e;
}
_ => unreachable!("`Expr::Stmt`")
}
}
// { stmt; ... } - do not count promotion as dirty because it gets turned back into an array
Expr::Stmt(x) => {
***x = optimize_stmt_block(mem::take(&mut **x), state, true, true, false);
// { Stmt(Expr) } - promote
if let [ Stmt::Expr(e) ] = &mut ****x { state.set_dirty(); *expr = mem::take(e); }
}
// ()?.rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(x, options, ..) if options.contains(ASTFlags::NEGATED) && matches!(x.lhs, Expr::Unit(..)) => {
state.set_dirty();
*expr = mem::take(&mut x.lhs);
}
// lhs.rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(x, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) {
// map.string
(Expr::Map(m, pos), Expr::Property(p, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => {
let prop = p.2.as_str();
// Map literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
*expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == prop)
.map_or_else(|| Expr::Unit(*pos), |(.., mut expr)| { expr.set_position(*pos); expr });
}
// var.rhs
(Expr::Variable(..), rhs) => optimize_expr(rhs, state, true),
// const.type_of()
(lhs, Expr::MethodCall(x, pos)) if lhs.is_constant() && x.name == KEYWORD_TYPE_OF && x.args.is_empty() => {
if let Some(value) = lhs.get_literal_value() {
state.set_dirty();
let typ = state.engine.map_type_name(value.type_name()).into();
*expr = Expr::from_dynamic(typ, *pos);
}
}
// const.is_shared()
#[cfg(not(feature = "no_closure"))]
(lhs, Expr::MethodCall(x, pos)) if lhs.is_constant() && x.name == crate::engine::KEYWORD_IS_SHARED && x.args.is_empty() => {
if let Some(..) = lhs.get_literal_value() {
state.set_dirty();
*expr = Expr::from_dynamic(Dynamic::FALSE, *pos);
}
}
// lhs.rhs
(lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); }
}
// ....lhs.rhs
#[cfg(not(feature = "no_object"))]
Expr::Dot(x,..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); }
// ()?[rhs]
#[cfg(not(feature = "no_index"))]
Expr::Index(x, options, ..) if options.contains(ASTFlags::NEGATED) && matches!(x.lhs, Expr::Unit(..)) => {
state.set_dirty();
*expr = mem::take(&mut x.lhs);
}
// lhs[rhs]
#[cfg(not(feature = "no_index"))]
#[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
Expr::Index(x, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) {
// array[int]
(Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => {
// Array literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
let mut result = mem::take(&mut a[*i as usize]);
result.set_position(*pos);
*expr = result;
}
// array[-int]
(Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= a.len() as u64 && a.iter().all(Expr::is_pure) => {
// Array literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
let index = a.len() - i.unsigned_abs() as usize;
let mut result = mem::take(&mut a[index]);
result.set_position(*pos);
*expr = result;
}
// map[string]
(Expr::Map(m, pos), Expr::StringConstant(s, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => {
// Map literal where everything is pure - promote the indexed item.
// All other items can be thrown away.
state.set_dirty();
*expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == s.as_str())
.map_or_else(|| Expr::Unit(*pos), |(.., mut expr)| { expr.set_position(*pos); expr });
}
// int[int]
(Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < crate::INT_BITS => {
// Bit-field literal indexing - get the bit
state.set_dirty();
*expr = Expr::BoolConstant((*n & (1 << (*i as usize))) != 0, *pos);
}
// int[-int]
(Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= crate::INT_BITS as u64 => {
// Bit-field literal indexing - get the bit
state.set_dirty();
*expr = Expr::BoolConstant((*n & (1 << (crate::INT_BITS - i.unsigned_abs() as usize))) != 0, *pos);
}
// string[int]
(Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < s.chars().count() => {
// String literal indexing - get the character
state.set_dirty();
*expr = Expr::CharConstant(s.chars().nth(*i as usize).unwrap(), *pos);
}
// string[-int]
(Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= s.chars().count() as u64 => {
// String literal indexing - get the character
state.set_dirty();
*expr = Expr::CharConstant(s.chars().rev().nth(i.unsigned_abs() as usize - 1).unwrap(), *pos);
}
// var[rhs]
(Expr::Variable(..), rhs) => optimize_expr(rhs, state, true),
// lhs[rhs]
(lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); }
},
// ...[lhs][rhs]
#[cfg(not(feature = "no_index"))]
Expr::Index(x, ..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); }
// ``
Expr::InterpolatedString(x, pos) if x.is_empty() => {
state.set_dirty();
*expr = Expr::StringConstant(state.engine.const_empty_string(), *pos);
}
// `... ${const} ...`
Expr::InterpolatedString(..) if expr.is_constant() => {
state.set_dirty();
*expr = Expr::StringConstant(expr.get_literal_value().unwrap().cast::<ImmutableString>(), expr.position());
}
// `... ${ ... } ...`
Expr::InterpolatedString(x, ..) => {
x.iter_mut().for_each(|expr| optimize_expr(expr, state, false));
let mut n = 0;
// Merge consecutive strings
while n < x.len() - 1 {
match (mem::take(&mut x[n]), mem::take(&mut x[n+1])) {
(Expr::StringConstant(mut s1, pos), Expr::StringConstant(s2, ..)) => { s1 += s2; x[n] = Expr::StringConstant(s1, pos); x.remove(n+1); state.set_dirty(); }
(expr1, Expr::Unit(..)) => { x[n] = expr1; x.remove(n+1); state.set_dirty(); }
(Expr::Unit(..), expr2) => { x[n+1] = expr2; x.remove(n); state.set_dirty(); }
(expr1, Expr::StringConstant(s, ..)) if s.is_empty() => { x[n] = expr1; x.remove(n+1); state.set_dirty(); }
(Expr::StringConstant(s, ..), expr2) if s.is_empty()=> { x[n+1] = expr2; x.remove(n); state.set_dirty(); }
(expr1, expr2) => { x[n] = expr1; x[n+1] = expr2; n += 1; }
}
}
x.shrink_to_fit();
}
// [ constant .. ]
#[cfg(not(feature = "no_index"))]
Expr::Array(..) if expr.is_constant() => {
state.set_dirty();
*expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position());
}
// [ items .. ]
#[cfg(not(feature = "no_index"))]
Expr::Array(x, ..) => x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)),
// #{ key:constant, .. }
#[cfg(not(feature = "no_object"))]
Expr::Map(..) if expr.is_constant() => {
state.set_dirty();
*expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position());
}
// #{ key:value, .. }
#[cfg(not(feature = "no_object"))]
Expr::Map(x, ..) => x.0.iter_mut().for_each(|(.., expr)| optimize_expr(expr, state, false)),
// lhs && rhs
Expr::And(x, ..) => match (&mut x.lhs, &mut x.rhs) {
// true && rhs -> rhs
(Expr::BoolConstant(true, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); }
// false && rhs -> false
(Expr::BoolConstant(false, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(false, *pos); }
// lhs && true -> lhs
(lhs, Expr::BoolConstant(true, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); }
// lhs && rhs
(lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); }
},
// lhs || rhs
Expr::Or(ref mut x, ..) => match (&mut x.lhs, &mut x.rhs) {
// false || rhs -> rhs
(Expr::BoolConstant(false, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); }
// true || rhs -> true
(Expr::BoolConstant(true, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(true, *pos); }
// lhs || false
(lhs, Expr::BoolConstant(false, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); }
// lhs || rhs
(lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); }
},
// () ?? rhs -> rhs
Expr::Coalesce(x, ..) if matches!(x.lhs, Expr::Unit(..)) => {
state.set_dirty();
*expr = mem::take(&mut x.rhs);
},
// lhs:constant ?? rhs -> lhs
Expr::Coalesce(x, ..) if x.lhs.is_constant() => {
state.set_dirty();
*expr = mem::take(&mut x.lhs);
},
// !true or !false
Expr::FnCall(x,..)
if x.name == OP_NOT
&& x.args.len() == 1
&& matches!(x.args[0], Expr::BoolConstant(..))
=> {
state.set_dirty();
if let Expr::BoolConstant(b, pos) = x.args[0] {
*expr = Expr::BoolConstant(!b, pos)
} else {
unreachable!()
}
}
// eval!
Expr::FnCall(x, ..) if x.name == KEYWORD_EVAL => {
state.propagate_constants = false;
}
// Fn
Expr::FnCall(x, pos)
if !x.is_qualified() // Non-qualified
&& state.optimization_level == OptimizationLevel::Simple // simple optimizations
&& x.args.len() == 1
&& x.name == KEYWORD_FN_PTR
&& x.constant_args()
=> {
let fn_name = match x.args[0] {
Expr::StringConstant(ref s, ..) => s.clone().into(),
_ => Dynamic::UNIT
};
if let Ok(fn_ptr) = fn_name.into_immutable_string().map_err(Into::into).and_then(FnPtr::try_from) {
state.set_dirty();
*expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), *pos);
} else {
optimize_expr(&mut x.args[0], state, false);
}
}
// Do not call some special keywords
Expr::FnCall(x, ..) if DONT_EVAL_KEYWORDS.contains(&x.name.as_str()) => {
x.args.iter_mut().for_each(|a| optimize_expr(a, state, false));
}
// Call built-in operators
Expr::FnCall(x, pos)
if !x.is_qualified() // Non-qualified
&& state.optimization_level == OptimizationLevel::Simple // simple optimizations
&& x.constant_args() // all arguments are constants
=> {
let arg_values = &mut x.args.iter().map(|e| e.get_literal_value().unwrap()).collect::<StaticVec<_>>();
let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect();
match x.name.as_str() {
KEYWORD_TYPE_OF if arg_values.len() == 1 => {
state.set_dirty();
let typ = state.engine.map_type_name(arg_values[0].type_name()).into();
*expr = Expr::from_dynamic(typ, *pos);
return;
}
#[cfg(not(feature = "no_closure"))]
crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => {
state.set_dirty();
*expr = Expr::from_dynamic(Dynamic::FALSE, *pos);
return;
}
// Overloaded operators can override built-in.
_ if x.args.len() == 2 && x.op_token.is_some() && (state.engine.fast_operators() || !state.engine.has_native_fn_override(x.hashes.native(), &arg_types)) => {
if let Some(result) = get_builtin_binary_op_fn(x.op_token.as_ref().unwrap(), &arg_values[0], &arg_values[1])
.and_then(|(f, ctx)| {
let context = ctx.then(|| (state.engine, x.name.as_str(), None, &state.global, *pos).into());
let (first, second) = arg_values.split_first_mut().unwrap();
f(context, &mut [ first, &mut second[0] ]).ok()
}) {
state.set_dirty();
*expr = Expr::from_dynamic(result, *pos);
return;
}
}
_ => ()
}
x.args.iter_mut().for_each(|a| optimize_expr(a, state, false));
// Move constant arguments
x.args.iter_mut().for_each(|arg| match arg {
Expr::DynamicConstant(..) | Expr::Unit(..)
| Expr::StringConstant(..) | Expr::CharConstant(..)
| Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (),
#[cfg(not(feature = "no_float"))]
Expr:: FloatConstant(..) => (),
_ => if let Some(value) = arg.get_literal_value() {
state.set_dirty();
*arg = Expr::DynamicConstant(value.into(), arg.start_position());
},
});
}
// Eagerly call functions
Expr::FnCall(x, pos)
if !x.is_qualified() // non-qualified
&& state.optimization_level == OptimizationLevel::Full // full optimizations
&& x.constant_args() // all arguments are constants
=> {
// First search for script-defined functions (can override built-in)
#[cfg(not(feature = "no_function"))]
let has_script_fn = !x.hashes.is_native_only() && state.global.lib.iter().find_map(|m| m.get_script_fn(&x.name, x.args.len())).is_some();
#[cfg(feature = "no_function")]
let has_script_fn = false;
if !has_script_fn {
let arg_values = &mut x.args.iter().map(Expr::get_literal_value).collect::<Option<StaticVec<_>>>().unwrap();
let result = match x.name.as_str() {
KEYWORD_TYPE_OF if arg_values.len() == 1 => Some(state.engine.map_type_name(arg_values[0].type_name()).into()),
#[cfg(not(feature = "no_closure"))]
crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => Some(Dynamic::FALSE),
_ => state.call_fn_with_constant_arguments(&x.name, x.op_token.as_ref(), arg_values)
};
if let Some(r) = result {
state.set_dirty();
*expr = Expr::from_dynamic(r, *pos);
return;
}
}
x.args.iter_mut().for_each(|a| optimize_expr(a, state, false));
}
// id(args ..) or xxx.id(args ..) -> optimize function call arguments
Expr::FnCall(x, ..) | Expr::MethodCall(x, ..) => x.args.iter_mut().for_each(|arg| {
optimize_expr(arg, state, false);
// Move constant arguments
match arg {
Expr::DynamicConstant(..) | Expr::Unit(..)
| Expr::StringConstant(..) | Expr::CharConstant(..)
| Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (),
#[cfg(not(feature = "no_float"))]
Expr:: FloatConstant(..) => (),
_ => if let Some(value) = arg.get_literal_value() {
state.set_dirty();
*arg = Expr::DynamicConstant(value.into(), arg.start_position());
},
}
}),
// constant-name
#[cfg(not(feature = "no_module"))]
Expr::Variable(x, ..) if !x.1.is_empty() => (),
Expr::Variable(x, .., pos) if state.find_constant(&x.3).is_some() => {
// Replace constant with value
*expr = Expr::from_dynamic(state.find_constant(&x.3).unwrap().clone(), *pos);
state.set_dirty();
}
// Custom syntax
#[cfg(not(feature = "no_custom_syntax"))]
Expr::Custom(x, ..) => {
if x.scope_may_be_changed {
state.propagate_constants = false;
}
// Do not optimize custom syntax expressions as you won't know how they would be called
}
// All other expressions - skip
_ => (),
}
}
impl Engine {
/// Has a system function a Rust-native override?
fn has_native_fn_override(&self, hash_script: u64, arg_types: impl AsRef<[TypeId]>) -> bool {
let hash = calc_fn_hash_full(hash_script, arg_types.as_ref().iter().copied());
// First check the global namespace and packages, but skip modules that are standard because
// they should never conflict with system functions.
if self
.global_modules
.iter()
.filter(|m| !m.flags.contains(ModuleFlags::STANDARD_LIB))
.any(|m| m.contains_fn(hash))
{
return true;
}
// Then check sub-modules
#[cfg(not(feature = "no_module"))]
if self
.global_sub_modules
.as_ref()
.into_iter()
.flatten()
.any(|(_, m)| m.contains_qualified_fn(hash))
{
return true;
}
false
}
/// Optimize a block of [statements][Stmt] at top level.
///
/// Constants and variables from the scope are added.
fn optimize_top_level(
&self,
statements: StmtBlockContainer,
scope: Option<&Scope>,
lib: &[crate::SharedModule],
optimization_level: OptimizationLevel,
) -> StmtBlockContainer {
let mut statements = statements;
// If optimization level is None then skip optimizing
if optimization_level == OptimizationLevel::None {
statements.shrink_to_fit();
return statements;
}
// Set up the state
let mut state = OptimizerState::new(self, lib, optimization_level);
// Add constants from global modules
self.global_modules
.iter()
.rev()
.flat_map(|m| m.iter_var())
.for_each(|(name, value)| {
state.push_var(name, AccessMode::ReadOnly, Some(value.clone()))
});
// Add constants and variables from the scope
scope
.into_iter()
.flat_map(Scope::iter)
.for_each(|(name, constant, value)| {
if constant {
state.push_var(name, AccessMode::ReadOnly, Some(value));
} else {
state.push_var(name, AccessMode::ReadWrite, None);
}
});
optimize_stmt_block(statements, &mut state, true, false, true)
}
/// Optimize a collection of statements and functions into an [`AST`].
pub(crate) fn optimize_into_ast(
&self,
scope: Option<&Scope>,
statements: StmtBlockContainer,
#[cfg(not(feature = "no_function"))] functions: StaticVec<
crate::Shared<crate::ast::ScriptFnDef>,
>,
optimization_level: OptimizationLevel,
) -> AST {
let mut statements = statements;
#[cfg(not(feature = "no_function"))]
let lib: crate::Shared<_> = {
let mut module = crate::Module::new();
if optimization_level == OptimizationLevel::None {
functions.into_iter().for_each(|fn_def| {
module.set_script_fn(fn_def);
});
} else {
// We only need the script library's signatures for optimization purposes
let mut lib2 = crate::Module::new();
functions
.iter()
.map(|fn_def| crate::ast::ScriptFnDef {
name: fn_def.name.clone(),
access: fn_def.access,
body: crate::ast::StmtBlock::NONE,
#[cfg(not(feature = "no_object"))]
this_type: fn_def.this_type.clone(),
params: fn_def.params.clone(),
#[cfg(feature = "metadata")]
comments: Box::default(),
})
.for_each(|script_def| {
lib2.set_script_fn(script_def);
});
let lib2 = &[lib2.into()];
functions.into_iter().for_each(|fn_def| {
let mut fn_def = crate::func::shared_take_or_clone(fn_def);
// Optimize the function body
let body = mem::take(&mut *fn_def.body);
*fn_def.body = self.optimize_top_level(body, scope, lib2, optimization_level);
module.set_script_fn(fn_def);
});
}
module.into()
};
#[cfg(feature = "no_function")]
let lib: crate::Shared<_> = crate::Module::new().into();
statements.shrink_to_fit();
AST::new(
match optimization_level {
OptimizationLevel::None => statements,
OptimizationLevel::Simple | OptimizationLevel::Full => {
self.optimize_top_level(statements, scope, &[lib.clone()], optimization_level)
}
},
#[cfg(not(feature = "no_function"))]
lib,
)
}
}