rhai/src/parser.rs
2023-05-07 22:25:01 +08:00

4155 lines
158 KiB
Rust

//! Main module defining the lexer and parser.
use crate::api::events::VarDefInfo;
use crate::api::options::LangOptions;
use crate::ast::{
ASTFlags, BinaryExpr, CaseBlocksList, ConditionalExpr, Expr, FlowControl, FnCallExpr,
FnCallHashes, Ident, Namespace, OpAssignment, RangeCase, ScriptFnDef, Stmt, StmtBlock,
StmtBlockContainer, SwitchCasesCollection,
};
use crate::engine::{Precedence, OP_CONTAINS, OP_NOT};
use crate::eval::{Caches, GlobalRuntimeState};
use crate::func::{hashing::get_hasher, StraightHashMap};
use crate::tokenizer::{
is_reserved_keyword_or_symbol, is_valid_function_name, is_valid_identifier, Token, TokenStream,
TokenizerControl,
};
use crate::types::dynamic::{AccessMode, Union};
use crate::types::StringsInterner;
use crate::{
calc_fn_hash, Dynamic, Engine, EvalAltResult, EvalContext, ExclusiveRange, FnArgsVec,
Identifier, ImmutableString, InclusiveRange, LexError, OptimizationLevel, ParseError, Position,
Scope, Shared, SmartString, StaticVec, AST, PERR,
};
use bitflags::bitflags;
#[cfg(feature = "no_std")]
use std::prelude::v1::*;
use std::{
convert::TryFrom,
fmt,
hash::{Hash, Hasher},
num::{NonZeroU8, NonZeroUsize},
};
pub type ParseResult<T> = Result<T, ParseError>;
type FnLib = StraightHashMap<Shared<ScriptFnDef>>;
/// Invalid variable name that acts as a search barrier in a [`Scope`].
const SCOPE_SEARCH_BARRIER_MARKER: &str = "$ BARRIER $";
/// The message: `TokenStream` never ends
const NEVER_ENDS: &str = "`Token`";
/// _(internals)_ A type that encapsulates the current state of the parser.
/// Exported under the `internals` feature only.
pub struct ParseState<'e, 's> {
/// Input stream buffer containing the next character to read.
pub tokenizer_control: TokenizerControl,
/// Controls whether parsing of an expression should stop given the next token.
pub expr_filter: fn(&Token) -> bool,
/// Strings interner.
pub interned_strings: &'s mut StringsInterner,
/// External [scope][Scope] with constants.
pub external_constants: Option<&'e Scope<'e>>,
/// Global runtime state.
pub global: Option<Box<GlobalRuntimeState>>,
/// Encapsulates a local stack with variable names to simulate an actual runtime scope.
pub stack: Option<Scope<'e>>,
/// Size of the local variables stack upon entry of the current block scope.
pub block_stack_len: usize,
/// Tracks a list of external variables (variables that are not explicitly declared in the scope).
#[cfg(not(feature = "no_closure"))]
pub external_vars: Option<Box<crate::FnArgsVec<Ident>>>,
/// An indicator that, when set to `false`, disables variable capturing into externals one
/// single time up until the nearest consumed Identifier token.
///
/// If set to `false` the next call to [`access_var`][ParseState::access_var] will not capture
/// the variable.
///
/// All consequent calls to [`access_var`][ParseState::access_var] will not be affected.
pub allow_capture: bool,
/// Encapsulates a local stack with imported [module][crate::Module] names.
#[cfg(not(feature = "no_module"))]
pub imports: Option<Box<StaticVec<ImmutableString>>>,
/// List of globally-imported [module][crate::Module] names.
#[cfg(not(feature = "no_module"))]
pub global_imports: Option<Box<StaticVec<ImmutableString>>>,
}
impl fmt::Debug for ParseState<'_, '_> {
#[cold]
#[inline(never)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut f = f.debug_struct("ParseState");
f.field("tokenizer_control", &self.tokenizer_control)
.field("interned_strings", &self.interned_strings)
.field("external_constants_scope", &self.external_constants)
.field("global", &self.global)
.field("stack", &self.stack)
.field("block_stack_len", &self.block_stack_len);
#[cfg(not(feature = "no_closure"))]
f.field("external_vars", &self.external_vars)
.field("allow_capture", &self.allow_capture);
#[cfg(not(feature = "no_module"))]
f.field("imports", &self.imports)
.field("global_imports", &self.global_imports);
f.finish()
}
}
impl<'e, 's> ParseState<'e, 's> {
/// Create a new [`ParseState`].
#[inline]
#[must_use]
pub fn new(
external_constants: Option<&'e Scope>,
interned_strings: &'s mut StringsInterner,
tokenizer_control: TokenizerControl,
) -> Self {
Self {
tokenizer_control,
expr_filter: |_| true,
#[cfg(not(feature = "no_closure"))]
external_vars: None,
allow_capture: true,
interned_strings,
external_constants,
global: None,
stack: None,
block_stack_len: 0,
#[cfg(not(feature = "no_module"))]
imports: None,
#[cfg(not(feature = "no_module"))]
global_imports: None,
}
}
/// Find explicitly declared variable by name in the [`ParseState`], searching in reverse order.
///
/// The first return value is the offset to be deducted from `ParseState::stack::len()`,
/// i.e. the top element of [`ParseState`]'s variables stack is offset 1.
///
/// If the variable is not present in the scope, the first return value is zero.
///
/// The second return value indicates whether the barrier has been hit before finding the variable.
#[must_use]
pub fn find_var(&self, name: &str) -> (usize, bool) {
let mut hit_barrier = false;
let index = self
.stack
.as_ref()
.into_iter()
.flat_map(Scope::iter_rev_raw)
.enumerate()
.find(|&(.., (n, ..))| {
if n == SCOPE_SEARCH_BARRIER_MARKER {
// Do not go beyond the barrier
hit_barrier = true;
false
} else {
n == name
}
})
.map_or(0, |(i, ..)| i + 1);
(index, hit_barrier)
}
/// Find explicitly declared variable by name in the [`ParseState`], searching in reverse order.
///
/// If the variable is not present in the scope adds it to the list of external variables.
///
/// The return value is the offset to be deducted from `ParseState::stack::len()`,
/// i.e. the top element of [`ParseState`]'s variables stack is offset 1.
///
/// # Return value: `(index, is_func_name)`
///
/// * `index`: [`None`] when the variable name is not found in the `stack`,
/// otherwise the index value.
///
/// * `is_func_name`: `true` if the variable is actually the name of a function
/// (in which case it will be converted into a function pointer).
#[must_use]
pub fn access_var(
&mut self,
name: &str,
lib: &FnLib,
pos: Position,
) -> (Option<NonZeroUsize>, bool) {
let _lib = lib;
let _pos = pos;
let (index, hit_barrier) = self.find_var(name);
#[cfg(not(feature = "no_function"))]
let is_func_name = _lib.values().any(|f| f.name == name);
#[cfg(feature = "no_function")]
let is_func_name = false;
#[cfg(not(feature = "no_closure"))]
if self.allow_capture {
if !is_func_name
&& index == 0
&& !self
.external_vars
.as_deref()
.into_iter()
.flatten()
.any(|v| v.name == name)
{
self.external_vars
.get_or_insert_with(Default::default)
.push(Ident {
name: name.into(),
pos: _pos,
});
}
} else {
self.allow_capture = true;
}
let index = (!hit_barrier).then(|| NonZeroUsize::new(index)).flatten();
(index, is_func_name)
}
/// Find a module by name in the [`ParseState`], searching in reverse.
///
/// Returns the offset to be deducted from `Stack::len`,
/// i.e. the top element of the [`ParseState`] is offset 1.
///
/// Returns [`None`] when the variable name is not found in the [`ParseState`].
///
/// # Panics
///
/// Panics when called under `no_module`.
#[cfg(not(feature = "no_module"))]
#[must_use]
pub fn find_module(&self, name: &str) -> Option<NonZeroUsize> {
self.imports
.as_deref()
.into_iter()
.flatten()
.rev()
.enumerate()
.find(|(.., n)| n.as_str() == name)
.and_then(|(i, ..)| NonZeroUsize::new(i + 1))
}
/// Get an interned string, creating one if it is not yet interned.
#[inline(always)]
#[must_use]
pub fn get_interned_string(
&mut self,
text: impl AsRef<str> + Into<ImmutableString>,
) -> ImmutableString {
self.interned_strings.get(text)
}
/// Get an interned property getter, creating one if it is not yet interned.
#[cfg(not(feature = "no_object"))]
#[inline]
#[must_use]
pub fn get_interned_getter(
&mut self,
text: impl AsRef<str> + Into<ImmutableString>,
) -> ImmutableString {
self.interned_strings.get_with_mapper(
b'g',
|s| crate::engine::make_getter(s.as_ref()).into(),
text,
)
}
/// Get an interned property setter, creating one if it is not yet interned.
#[cfg(not(feature = "no_object"))]
#[inline]
#[must_use]
pub fn get_interned_setter(
&mut self,
text: impl AsRef<str> + Into<ImmutableString>,
) -> ImmutableString {
self.interned_strings.get_with_mapper(
b's',
|s| crate::engine::make_setter(s.as_ref()).into(),
text,
)
}
}
bitflags! {
/// Bit-flags containing all status for [`ParseSettings`].
pub struct ParseSettingFlags: u8 {
/// Is the construct being parsed located at global level?
const GLOBAL_LEVEL = 0b0000_0001;
/// Is the construct being parsed located inside a function definition?
const FN_SCOPE = 0b0000_0010;
/// Is the construct being parsed located inside a closure definition?
const CLOSURE_SCOPE = 0b0000_0100;
/// Is the construct being parsed located inside a breakable loop?
const BREAKABLE = 0b0000_1000;
/// Disallow statements in blocks?
const DISALLOW_STATEMENTS_IN_BLOCKS = 0b0001_0000;
/// Disallow unquoted map properties?
const DISALLOW_UNQUOTED_MAP_PROPERTIES = 0b0010_0000;
}
}
bitflags! {
/// Bit-flags containing all status for parsing property/indexing/namespace chains.
struct ChainingFlags: u8 {
/// Is the construct being parsed a property?
const PROPERTY = 0b0000_0001;
/// Disallow namespaces?
const DISALLOW_NAMESPACES = 0b0000_0010;
}
}
/// A type that encapsulates all the settings for a particular parsing function.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct ParseSettings {
/// Flags.
pub flags: ParseSettingFlags,
/// Language options in effect (overrides Engine options).
pub options: LangOptions,
/// Current expression nesting level.
pub level: usize,
/// Current position.
pub pos: Position,
/// Maximum levels of expression nesting (0 for unlimited).
#[cfg(not(feature = "unchecked"))]
pub max_expr_depth: usize,
}
impl ParseSettings {
/// Is a particular flag on?
#[inline(always)]
#[must_use]
pub const fn has_flag(&self, flag: ParseSettingFlags) -> bool {
self.flags.contains(flag)
}
/// Is a particular language option on?
#[inline(always)]
#[must_use]
pub const fn has_option(&self, option: LangOptions) -> bool {
self.options.contains(option)
}
/// Create a new `ParseSettings` with one higher expression level.
#[inline]
pub fn level_up(&self) -> ParseResult<Self> {
#[cfg(not(feature = "unchecked"))]
if self.max_expr_depth > 0 && self.level >= self.max_expr_depth {
return Err(PERR::ExprTooDeep.into_err(self.pos));
}
Ok(Self {
level: self.level + 1,
..*self
})
}
}
/// Make an anonymous function.
#[cfg(not(feature = "no_function"))]
#[inline]
#[must_use]
pub fn make_anonymous_fn(hash: u64) -> Identifier {
use std::fmt::Write;
let mut buf = Identifier::new_const();
write!(&mut buf, "{}{hash:016x}", crate::engine::FN_ANONYMOUS).unwrap();
buf
}
/// Is this function an anonymous function?
#[cfg(not(feature = "no_function"))]
#[inline(always)]
#[must_use]
pub fn is_anonymous_fn(fn_name: &str) -> bool {
fn_name.starts_with(crate::engine::FN_ANONYMOUS)
}
impl Expr {
/// Convert a [`Variable`][Expr::Variable] into a [`Property`][Expr::Property].
/// All other variants are untouched.
#[cfg(not(feature = "no_object"))]
#[inline]
#[must_use]
fn into_property(self, state: &mut ParseState) -> Self {
match self {
#[cfg(not(feature = "no_module"))]
Self::Variable(x, ..) if !x.1.is_empty() => unreachable!("qualified property"),
Self::Variable(x, .., pos) => {
let ident = x.3.clone();
let getter = state.get_interned_getter(ident.as_str());
let hash_get = calc_fn_hash(None, &getter, 1);
let setter = state.get_interned_setter(ident.as_str());
let hash_set = calc_fn_hash(None, &setter, 2);
Self::Property(
Box::new(((getter, hash_get), (setter, hash_set), ident)),
pos,
)
}
_ => self,
}
}
/// Raise an error if the expression can never yield a boolean value.
fn ensure_bool_expr(self) -> ParseResult<Expr> {
let type_name = match self {
Expr::Unit(..) => "()",
Expr::DynamicConstant(ref v, ..) if !v.is_bool() => v.type_name(),
Expr::IntegerConstant(..) => "a number",
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(..) => "a floating-point number",
Expr::CharConstant(..) => "a character",
Expr::StringConstant(..) => "a string",
Expr::InterpolatedString(..) => "a string",
Expr::Array(..) => "an array",
Expr::Map(..) => "an object map",
_ => return Ok(self),
};
Err(
PERR::MismatchedType("a boolean expression".into(), type_name.into())
.into_err(self.start_position()),
)
}
/// Raise an error if the expression can never yield an iterable value.
fn ensure_iterable(self) -> ParseResult<Expr> {
let type_name = match self {
Expr::Unit(..) => "()",
Expr::BoolConstant(..) => "a boolean",
Expr::IntegerConstant(..) => "a number",
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(..) => "a floating-point number",
Expr::CharConstant(..) => "a character",
Expr::Map(..) => "an object map",
_ => return Ok(self),
};
Err(
PERR::MismatchedType("an iterable value".into(), type_name.into())
.into_err(self.start_position()),
)
}
}
/// Make sure that the next expression is not a statement expression (i.e. wrapped in `{}`).
fn ensure_not_statement_expr(
input: &mut TokenStream,
type_name: &(impl ToString + ?Sized),
) -> ParseResult<()> {
match input.peek().expect(NEVER_ENDS) {
(Token::LeftBrace, pos) => Err(PERR::ExprExpected(type_name.to_string()).into_err(*pos)),
_ => Ok(()),
}
}
/// Make sure that the next expression is not a mis-typed assignment (i.e. `a = b` instead of `a == b`).
fn ensure_not_assignment(input: &mut TokenStream) -> ParseResult<()> {
match input.peek().expect(NEVER_ENDS) {
(token @ Token::Equals, pos) => Err(LexError::ImproperSymbol(
token.literal_syntax().into(),
"Possibly a typo of '=='?".into(),
)
.into_err(*pos)),
_ => Ok(()),
}
}
/// Consume a particular [token][Token], checking that it is the expected one.
///
/// # Panics
///
/// Panics if the next token is not the expected one, or either tokens is not a literal symbol.
fn eat_token(input: &mut TokenStream, expected_token: Token) -> Position {
let (t, pos) = input.next().expect(NEVER_ENDS);
if t != expected_token {
unreachable!(
"{} expected but gets {} at {}",
expected_token.literal_syntax(),
t.literal_syntax(),
pos
);
}
pos
}
/// Match a particular [token][Token], consuming it if matched.
fn match_token(input: &mut TokenStream, token: Token) -> (bool, Position) {
let (t, pos) = input.peek().expect(NEVER_ENDS);
if *t == token {
(true, eat_token(input, token))
} else {
(false, *pos)
}
}
/// Process a block comment such that it indents properly relative to the start token.
#[cfg(not(feature = "no_function"))]
#[cfg(feature = "metadata")]
#[inline]
fn unindent_block_comment(comment: String, pos: usize) -> String {
if pos == 0 || !comment.contains('\n') {
return comment;
}
let offset = comment
.split('\n')
.skip(1)
.map(|s| s.len() - s.trim_start().len())
.min()
.unwrap_or(pos)
.min(pos);
if offset == 0 {
return comment;
}
comment
.split('\n')
.enumerate()
.map(|(i, s)| if i > 0 { &s[offset..] } else { s })
.collect::<Vec<_>>()
.join("\n")
}
/// Parse a variable name.
fn parse_var_name(input: &mut TokenStream) -> ParseResult<(SmartString, Position)> {
match input.next().expect(NEVER_ENDS) {
// Variable name
(Token::Identifier(s), pos) => Ok((*s, pos)),
// Reserved keyword
(Token::Reserved(s), pos) if is_valid_identifier(s.as_str()) => {
Err(PERR::Reserved(s.to_string()).into_err(pos))
}
// Bad identifier
(Token::LexError(err), pos) => Err(err.into_err(pos)),
// Not a variable name
(.., pos) => Err(PERR::VariableExpected.into_err(pos)),
}
}
/// Optimize the structure of a chained expression where the root expression is another chained expression.
///
/// # Panics
///
/// Panics if the expression is not a combo chain.
#[cfg(any(not(feature = "no_index"), not(feature = "no_object")))]
fn optimize_combo_chain(expr: &mut Expr) {
let (mut x, x_options, x_pos, mut root, mut root_options, root_pos, make_sub, make_root): (
_,
_,
_,
_,
_,
_,
fn(_, _, _) -> Expr,
fn(_, _, _) -> Expr,
) = match expr.take() {
#[cfg(not(feature = "no_index"))]
Expr::Index(mut x, opt, pos) => match x.lhs.take() {
Expr::Index(x2, opt2, pos2) => (x, opt, pos, x2, opt2, pos2, Expr::Index, Expr::Index),
#[cfg(not(feature = "no_object"))]
Expr::Dot(x2, opt2, pos2) => (x, opt, pos, x2, opt2, pos2, Expr::Index, Expr::Dot),
_ => panic!("combo chain expected"),
},
#[cfg(not(feature = "no_object"))]
Expr::Dot(mut x, opt, pos) => match x.lhs.take() {
#[cfg(not(feature = "no_index"))]
Expr::Index(x2, opt2, pos2) => (x, opt, pos, x2, opt2, pos2, Expr::Dot, Expr::Index),
Expr::Dot(x2, opt2, pos2) => (x, opt, pos, x2, opt2, pos2, Expr::Dot, Expr::Index),
_ => panic!("combo chain expected"),
},
_ => panic!("combo chain expected"),
};
// Rewrite the chains like this:
//
// Source: ( x[y].prop_a )[z].prop_b
// ^ ^
// parentheses that generated the combo chain
//
// From: Index( Index( x, Dot(y, prop_a) ), Dot(z, prop_b) )
// ^ ^ ^
// x root tail
//
// To: Index( x, Dot(y, Index(prop_a, Dot(z, prop_b) ) ) )
//
// Equivalent to: x[y].prop_a[z].prop_b
// Find the end of the root chain.
let mut tail = root.as_mut();
let mut tail_options = &mut root_options;
while !tail_options.contains(ASTFlags::BREAK) {
match tail.rhs {
Expr::Index(ref mut x, ref mut options2, ..) => {
tail = x.as_mut();
tail_options = options2;
}
#[cfg(not(feature = "no_object"))]
Expr::Dot(ref mut x, ref mut options2, ..) => {
tail = x.as_mut();
tail_options = options2;
}
_ => break,
}
}
// Since we attach the outer chain to the root chain, we no longer terminate at the end of the
// root chain, so remove the ASTFlags::BREAK flag.
tail_options.remove(ASTFlags::BREAK);
x.lhs = tail.rhs.take(); // remove tail and insert it into head of outer chain
tail.rhs = make_sub(x, x_options, x_pos); // attach outer chain to tail
*expr = make_root(root, root_options, root_pos);
}
impl Engine {
/// Parse a function call.
fn parse_fn_call(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
id: ImmutableString,
no_args: bool,
capture_parent_scope: bool,
namespace: Namespace,
) -> ParseResult<Expr> {
let (token, token_pos) = if no_args {
&(Token::RightParen, Position::NONE)
} else {
input.peek().expect(NEVER_ENDS)
};
let mut _namespace = namespace;
let mut args = FnArgsVec::new_const();
match token {
// id( <EOF>
Token::EOF => {
return Err(PERR::MissingToken(
Token::RightParen.into(),
format!("to close the arguments list of this function call '{id}'"),
)
.into_err(*token_pos))
}
// id( <error>
Token::LexError(err) => return Err(err.clone().into_err(*token_pos)),
// id()
Token::RightParen => {
if !no_args {
eat_token(input, Token::RightParen);
}
#[cfg(not(feature = "no_module"))]
let hash = if _namespace.is_empty() {
calc_fn_hash(None, &id, 0)
} else {
let root = _namespace.root();
let index = state.find_module(root);
let is_global = false;
#[cfg(not(feature = "no_function"))]
#[cfg(not(feature = "no_module"))]
let is_global = is_global || root == crate::engine::KEYWORD_GLOBAL;
if settings.has_option(LangOptions::STRICT_VAR)
&& index.is_none()
&& !is_global
&& !state
.global_imports
.as_deref()
.into_iter()
.flatten()
.any(|m| m.as_str() == root)
&& !self
.global_sub_modules
.as_ref()
.map_or(false, |m| m.contains_key(root))
{
return Err(
PERR::ModuleUndefined(root.into()).into_err(_namespace.position())
);
}
_namespace.set_index(index);
calc_fn_hash(_namespace.iter().map(Ident::as_str), &id, 0)
};
#[cfg(feature = "no_module")]
let hash = calc_fn_hash(None, &id, 0);
let hashes = if is_valid_function_name(&id) {
FnCallHashes::from_hash(hash)
} else {
FnCallHashes::from_native_only(hash)
};
args.shrink_to_fit();
return Ok(FnCallExpr {
name: state.get_interned_string(id),
capture_parent_scope,
op_token: None,
namespace: _namespace,
hashes,
args,
}
.into_fn_call_expr(settings.pos));
}
// id...
_ => (),
}
let settings = settings.level_up()?;
loop {
match input.peek().expect(NEVER_ENDS) {
// id(...args, ) - handle trailing comma
(Token::RightParen, ..) => (),
_ => args.push(self.parse_expr(input, state, lib, settings)?),
}
match input.peek().expect(NEVER_ENDS) {
// id(...args)
(Token::RightParen, ..) => {
eat_token(input, Token::RightParen);
#[cfg(not(feature = "no_module"))]
let hash = if _namespace.is_empty() {
calc_fn_hash(None, &id, args.len())
} else {
let root = _namespace.root();
let index = state.find_module(root);
#[cfg(not(feature = "no_function"))]
#[cfg(not(feature = "no_module"))]
let is_global = root == crate::engine::KEYWORD_GLOBAL;
#[cfg(any(feature = "no_function", feature = "no_module"))]
let is_global = false;
if settings.has_option(LangOptions::STRICT_VAR)
&& index.is_none()
&& !is_global
&& !state
.global_imports
.as_deref()
.into_iter()
.flatten()
.any(|m| m.as_str() == root)
&& !self
.global_sub_modules
.as_ref()
.map_or(false, |m| m.contains_key(root))
{
return Err(
PERR::ModuleUndefined(root.into()).into_err(_namespace.position())
);
}
_namespace.set_index(index);
calc_fn_hash(_namespace.iter().map(Ident::as_str), &id, args.len())
};
#[cfg(feature = "no_module")]
let hash = calc_fn_hash(None, &id, args.len());
let hashes = if is_valid_function_name(&id) {
FnCallHashes::from_hash(hash)
} else {
FnCallHashes::from_native_only(hash)
};
args.shrink_to_fit();
return Ok(FnCallExpr {
name: state.get_interned_string(id),
capture_parent_scope,
op_token: None,
namespace: _namespace,
hashes,
args,
}
.into_fn_call_expr(settings.pos));
}
// id(...args,
(Token::Comma, ..) => {
eat_token(input, Token::Comma);
}
// id(...args <EOF>
(Token::EOF, pos) => {
return Err(PERR::MissingToken(
Token::RightParen.into(),
format!("to close the arguments list of this function call '{id}'"),
)
.into_err(*pos))
}
// id(...args <error>
(Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)),
// id(...args ???
(.., pos) => {
return Err(PERR::MissingToken(
Token::Comma.into(),
format!("to separate the arguments to function call '{id}'"),
)
.into_err(*pos))
}
}
}
}
/// Parse an indexing chain.
/// Indexing binds to the right, so this call parses all possible levels of indexing following in the input.
#[cfg(not(feature = "no_index"))]
fn parse_index_chain(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
lhs: Expr,
options: ASTFlags,
check_index_type: bool,
) -> ParseResult<Expr> {
let mut settings = settings;
let idx_expr = self.parse_expr(input, state, lib, settings.level_up()?)?;
// Check types of indexing that cannot be overridden
// - arrays, maps, strings, bit-fields
match lhs {
_ if !check_index_type => (),
Expr::Map(..) => match idx_expr {
// lhs[int]
Expr::IntegerConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Object map expects string index, not a number".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[string]
Expr::StringConstant(..) | Expr::InterpolatedString(..) => (),
// lhs[float]
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Object map expects string index, not a float".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[char]
Expr::CharConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Object map expects string index, not a character".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[()]
Expr::Unit(..) => {
return Err(PERR::MalformedIndexExpr(
"Object map expects string index, not ()".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[??? && ???], lhs[??? || ???], lhs[true], lhs[false]
Expr::And(..) | Expr::Or(..) | Expr::BoolConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Object map expects string index, not a boolean".into(),
)
.into_err(idx_expr.start_position()))
}
_ => (),
},
Expr::IntegerConstant(..)
| Expr::Array(..)
| Expr::StringConstant(..)
| Expr::InterpolatedString(..) => match idx_expr {
// lhs[int]
Expr::IntegerConstant(..) => (),
// lhs[string]
Expr::StringConstant(..) | Expr::InterpolatedString(..) => {
return Err(PERR::MalformedIndexExpr(
"Array, string or bit-field expects numeric index, not a string".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[float]
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Array, string or bit-field expects integer index, not a float".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[char]
Expr::CharConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Array, string or bit-field expects integer index, not a character".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[()]
Expr::Unit(..) => {
return Err(PERR::MalformedIndexExpr(
"Array, string or bit-field expects integer index, not ()".into(),
)
.into_err(idx_expr.start_position()))
}
// lhs[??? && ???], lhs[??? || ???], lhs[true], lhs[false]
Expr::And(..) | Expr::Or(..) | Expr::BoolConstant(..) => {
return Err(PERR::MalformedIndexExpr(
"Array, string or bit-field expects integer index, not a boolean".into(),
)
.into_err(idx_expr.start_position()))
}
_ => (),
},
_ => (),
}
// Check if there is a closing bracket
match input.peek().expect(NEVER_ENDS) {
(Token::RightBracket, ..) => {
eat_token(input, Token::RightBracket);
// Any more indexing following?
match input.peek().expect(NEVER_ENDS) {
// If another indexing level, right-bind it
(Token::LeftBracket | Token::QuestionBracket, ..) => {
let (token, pos) = input.next().expect(NEVER_ENDS);
let prev_pos = settings.pos;
settings.pos = pos;
let settings = settings.level_up()?;
// Recursively parse the indexing chain, right-binding each
let options = match token {
Token::LeftBracket => ASTFlags::empty(),
Token::QuestionBracket => ASTFlags::NEGATED,
_ => unreachable!("`[` or `?[`"),
};
let idx_expr = self.parse_index_chain(
input, state, lib, settings, idx_expr, options, false,
)?;
// Indexing binds to right
Ok(Expr::Index(
BinaryExpr { lhs, rhs: idx_expr }.into(),
options,
prev_pos,
))
}
// Otherwise terminate the indexing chain
_ => Ok(Expr::Index(
BinaryExpr { lhs, rhs: idx_expr }.into(),
options | ASTFlags::BREAK,
settings.pos,
)),
}
}
(Token::LexError(err), pos) => Err(err.clone().into_err(*pos)),
(.., pos) => Err(PERR::MissingToken(
Token::RightBracket.into(),
"for a matching [ in this index expression".into(),
)
.into_err(*pos)),
}
}
/// Parse an array literal.
#[cfg(not(feature = "no_index"))]
fn parse_array_literal(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Expr> {
// [ ...
let mut settings = settings;
settings.pos = eat_token(input, Token::LeftBracket);
let mut array = FnArgsVec::new_const();
loop {
const MISSING_RBRACKET: &str = "to end this array literal";
if self.max_array_size() > 0 && array.len() >= self.max_array_size() {
return Err(PERR::LiteralTooLarge(
"Size of array literal".into(),
self.max_array_size(),
)
.into_err(input.peek().expect(NEVER_ENDS).1));
}
match input.peek().expect(NEVER_ENDS) {
(Token::RightBracket, ..) => {
eat_token(input, Token::RightBracket);
break;
}
(Token::EOF, pos) => {
return Err(PERR::MissingToken(
Token::RightBracket.into(),
MISSING_RBRACKET.into(),
)
.into_err(*pos))
}
_ => array.push(self.parse_expr(input, state, lib, settings.level_up()?)?),
}
match input.peek().expect(NEVER_ENDS) {
(Token::Comma, ..) => {
eat_token(input, Token::Comma);
}
(Token::RightBracket, ..) => (),
(Token::EOF, pos) => {
return Err(PERR::MissingToken(
Token::RightBracket.into(),
MISSING_RBRACKET.into(),
)
.into_err(*pos))
}
(Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::Comma.into(),
"to separate the items of this array literal".into(),
)
.into_err(*pos))
}
};
}
array.shrink_to_fit();
Ok(Expr::Array(array.into(), settings.pos))
}
/// Parse a map literal.
#[cfg(not(feature = "no_object"))]
fn parse_map_literal(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Expr> {
// #{ ...
let mut settings = settings;
settings.pos = eat_token(input, Token::MapStart);
let mut map = StaticVec::<(Ident, Expr)>::new();
let mut template = std::collections::BTreeMap::<Identifier, crate::Dynamic>::new();
loop {
const MISSING_RBRACE: &str = "to end this object map literal";
match input.peek().expect(NEVER_ENDS) {
(Token::RightBrace, ..) => {
eat_token(input, Token::RightBrace);
break;
}
(Token::EOF, pos) => {
return Err(
PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into())
.into_err(*pos),
)
}
_ => (),
}
let (name, pos) = match input.next().expect(NEVER_ENDS) {
(Token::Identifier(..), pos)
if settings.has_flag(ParseSettingFlags::DISALLOW_UNQUOTED_MAP_PROPERTIES) =>
{
return Err(PERR::PropertyExpected.into_err(pos))
}
(Token::Identifier(s) | Token::StringConstant(s), pos) => {
if map.iter().any(|(p, ..)| **p == *s) {
return Err(PERR::DuplicatedProperty(s.to_string()).into_err(pos));
}
(*s, pos)
}
(Token::InterpolatedString(..), pos) => {
return Err(PERR::PropertyExpected.into_err(pos))
}
(Token::Reserved(s), pos) if is_valid_identifier(s.as_str()) => {
return Err(PERR::Reserved(s.to_string()).into_err(pos));
}
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(Token::EOF, pos) => {
return Err(PERR::MissingToken(
Token::RightBrace.into(),
MISSING_RBRACE.into(),
)
.into_err(pos));
}
(.., pos) if map.is_empty() => {
return Err(PERR::MissingToken(
Token::RightBrace.into(),
MISSING_RBRACE.into(),
)
.into_err(pos));
}
(.., pos) => return Err(PERR::PropertyExpected.into_err(pos)),
};
match input.next().expect(NEVER_ENDS) {
(Token::Colon, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::Colon.into(),
format!("to follow the property '{name}' in this object map literal"),
)
.into_err(pos))
}
};
if self.max_map_size() > 0 && map.len() >= self.max_map_size() {
return Err(PERR::LiteralTooLarge(
"Number of properties in object map literal".into(),
self.max_map_size(),
)
.into_err(input.peek().expect(NEVER_ENDS).1));
}
let expr = self.parse_expr(input, state, lib, settings.level_up()?)?;
template.insert(name.clone(), crate::Dynamic::UNIT);
let name = state.get_interned_string(name);
map.push((Ident { name, pos }, expr));
match input.peek().expect(NEVER_ENDS) {
(Token::Comma, ..) => {
eat_token(input, Token::Comma);
}
(Token::RightBrace, ..) => (),
(Token::Identifier(..), pos) => {
return Err(PERR::MissingToken(
Token::Comma.into(),
"to separate the items of this object map literal".into(),
)
.into_err(*pos))
}
(Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)),
(.., pos) => {
return Err(
PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into())
.into_err(*pos),
)
}
}
}
map.shrink_to_fit();
Ok(Expr::Map((map, template).into(), settings.pos))
}
/// Parse a switch expression.
fn parse_switch(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// switch ...
let mut settings = settings.level_up()?;
settings.pos = eat_token(input, Token::Switch);
let item = self.parse_expr(input, state, lib, settings)?;
match input.next().expect(NEVER_ENDS) {
(Token::LeftBrace, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::LeftBrace.into(),
"to start a switch block".into(),
)
.into_err(pos))
}
}
let mut expressions = StaticVec::<ConditionalExpr>::new();
let mut cases = StraightHashMap::<CaseBlocksList>::default();
let mut ranges = StaticVec::<RangeCase>::new();
let mut def_case = None;
let mut def_case_pos = Position::NONE;
loop {
const MISSING_RBRACE: &str = "to end this switch block";
let (case_expr_list, condition) = match input.peek().expect(NEVER_ENDS) {
(Token::RightBrace, ..) => {
eat_token(input, Token::RightBrace);
break;
}
(Token::EOF, pos) => {
return Err(
PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into())
.into_err(*pos),
)
}
(Token::Underscore, pos) if def_case.is_none() => {
def_case_pos = *pos;
eat_token(input, Token::Underscore);
let (if_clause, if_pos) = match_token(input, Token::If);
if if_clause {
return Err(PERR::WrongSwitchCaseCondition.into_err(if_pos));
}
(
StaticVec::default(),
Expr::BoolConstant(true, Position::NONE),
)
}
_ if def_case.is_some() => {
return Err(PERR::WrongSwitchDefaultCase.into_err(def_case_pos))
}
_ => {
let mut case_expr_list = StaticVec::new();
loop {
let filter = state.expr_filter;
state.expr_filter = |t| t != &Token::Pipe;
let expr = self.parse_expr(input, state, lib, settings);
state.expr_filter = filter;
match expr {
Ok(expr) => case_expr_list.push(expr),
Err(err) => {
return Err(PERR::ExprExpected("literal".into()).into_err(err.1))
}
}
if !match_token(input, Token::Pipe).0 {
break;
}
}
let condition = if match_token(input, Token::If).0 {
ensure_not_statement_expr(input, "a boolean")?;
let guard = self
.parse_expr(input, state, lib, settings)?
.ensure_bool_expr()?;
ensure_not_assignment(input)?;
guard
} else {
Expr::BoolConstant(true, Position::NONE)
};
(case_expr_list, condition)
}
};
match input.next().expect(NEVER_ENDS) {
(Token::DoubleArrow, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::DoubleArrow.into(),
"in this switch case".into(),
)
.into_err(pos))
}
};
let (action_expr, need_comma) =
if settings.has_flag(ParseSettingFlags::DISALLOW_STATEMENTS_IN_BLOCKS) {
(self.parse_expr(input, state, lib, settings)?, true)
} else {
let stmt = self.parse_stmt(input, state, lib, settings)?;
let need_comma = !stmt.is_self_terminated();
let stmt_block: StmtBlock = stmt.into();
(Expr::Stmt(stmt_block.into()), need_comma)
};
expressions.push((condition, action_expr).into());
let index = expressions.len() - 1;
if case_expr_list.is_empty() {
def_case = Some(index);
} else {
for expr in case_expr_list {
let value = expr.get_literal_value().ok_or_else(|| {
PERR::ExprExpected("a literal".into()).into_err(expr.start_position())
})?;
let mut range_value: Option<RangeCase> = None;
let guard = value.read_lock::<ExclusiveRange>();
if let Some(range) = guard {
range_value = Some(range.clone().into());
} else if let Some(range) = value.read_lock::<InclusiveRange>() {
range_value = Some(range.clone().into());
}
if let Some(mut r) = range_value {
if !r.is_empty() {
// Other range
r.set_index(index);
ranges.push(r);
}
continue;
}
if !ranges.is_empty() {
let forbidden = match value {
Dynamic(Union::Int(..)) => true,
#[cfg(not(feature = "no_float"))]
Dynamic(Union::Float(..)) => true,
#[cfg(feature = "decimal")]
Dynamic(Union::Decimal(..)) => true,
_ => false,
};
if forbidden {
return Err(
PERR::WrongSwitchIntegerCase.into_err(expr.start_position())
);
}
}
let hasher = &mut get_hasher();
value.hash(hasher);
let hash = hasher.finish();
cases
.entry(hash)
.and_modify(|cases| cases.push(index))
.or_insert_with(|| [index].into());
}
}
match input.peek().expect(NEVER_ENDS) {
(Token::Comma, ..) => {
eat_token(input, Token::Comma);
}
(Token::RightBrace, ..) => (),
(Token::EOF, pos) => {
return Err(
PERR::MissingToken(Token::RightParen.into(), MISSING_RBRACE.into())
.into_err(*pos),
)
}
(Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)),
(.., pos) if need_comma => {
return Err(PERR::MissingToken(
Token::Comma.into(),
"to separate the items in this switch block".into(),
)
.into_err(*pos))
}
_ => (),
}
}
expressions.shrink_to_fit();
cases.shrink_to_fit();
ranges.shrink_to_fit();
let cases = SwitchCasesCollection {
expressions,
cases,
ranges,
def_case,
};
Ok(Stmt::Switch((item, cases).into(), settings.pos))
}
/// Parse a primary expression.
fn parse_primary(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
options: ChainingFlags,
) -> ParseResult<Expr> {
let (token, token_pos) = input.peek().expect(NEVER_ENDS);
let mut settings = settings;
settings.pos = *token_pos;
let root_expr = match token {
_ if !(state.expr_filter)(token) => {
return Err(LexError::UnexpectedInput(token.to_string()).into_err(settings.pos))
}
Token::EOF => return Err(PERR::UnexpectedEOF.into_err(settings.pos)),
Token::Unit => {
input.next();
Expr::Unit(settings.pos)
}
Token::IntegerConstant(..)
| Token::CharConstant(..)
| Token::StringConstant(..)
| Token::True
| Token::False => match input.next().expect(NEVER_ENDS).0 {
Token::IntegerConstant(x) => Expr::IntegerConstant(x, settings.pos),
Token::CharConstant(c) => Expr::CharConstant(c, settings.pos),
Token::StringConstant(s) => {
Expr::StringConstant(state.get_interned_string(*s), settings.pos)
}
Token::True => Expr::BoolConstant(true, settings.pos),
Token::False => Expr::BoolConstant(false, settings.pos),
token => unreachable!("token is {:?}", token),
},
#[cfg(not(feature = "no_float"))]
Token::FloatConstant(x) => {
let x = *x;
input.next();
Expr::FloatConstant(x, settings.pos)
}
#[cfg(feature = "decimal")]
Token::DecimalConstant(x) => {
let x = (**x).into();
input.next();
Expr::DynamicConstant(Box::new(x), settings.pos)
}
// { - block statement as expression
Token::LeftBrace if settings.has_option(LangOptions::STMT_EXPR) => {
match self.parse_block(input, state, lib, settings.level_up()?)? {
block @ Stmt::Block(..) => Expr::Stmt(Box::new(block.into())),
stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt),
}
}
// ( - grouped expression
Token::LeftParen => {
settings.pos = eat_token(input, Token::LeftParen);
let expr = self.parse_expr(input, state, lib, settings.level_up()?)?;
match input.next().expect(NEVER_ENDS) {
// ( ... )
(Token::RightParen, ..) => expr,
// ( <error>
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
// ( ... ???
(.., pos) => {
return Err(PERR::MissingToken(
Token::RightParen.into(),
"for a matching ( in this expression".into(),
)
.into_err(pos))
}
}
}
// If statement is allowed to act as expressions
Token::If if settings.has_option(LangOptions::IF_EXPR) => Expr::Stmt(Box::new(
self.parse_if(input, state, lib, settings.level_up()?)?
.into(),
)),
// Loops are allowed to act as expressions
Token::While | Token::Loop
if self.allow_looping() && settings.has_option(LangOptions::LOOP_EXPR) =>
{
Expr::Stmt(Box::new(
self.parse_while_loop(input, state, lib, settings.level_up()?)?
.into(),
))
}
Token::Do if self.allow_looping() && settings.has_option(LangOptions::LOOP_EXPR) => {
Expr::Stmt(Box::new(
self.parse_do(input, state, lib, settings.level_up()?)?
.into(),
))
}
Token::For if self.allow_looping() && settings.has_option(LangOptions::LOOP_EXPR) => {
Expr::Stmt(Box::new(
self.parse_for(input, state, lib, settings.level_up()?)?
.into(),
))
}
// Switch statement is allowed to act as expressions
Token::Switch if settings.has_option(LangOptions::SWITCH_EXPR) => Expr::Stmt(Box::new(
self.parse_switch(input, state, lib, settings.level_up()?)?
.into(),
)),
// | ...
#[cfg(not(feature = "no_function"))]
Token::Pipe | Token::Or if settings.has_option(LangOptions::ANON_FN) => {
// Build new parse state
let new_interner = &mut StringsInterner::new();
let new_state = &mut ParseState::new(
state.external_constants,
new_interner,
state.tokenizer_control.clone(),
);
// We move the strings interner to the new parse state object by swapping it...
std::mem::swap(state.interned_strings, new_state.interned_strings);
#[cfg(not(feature = "no_module"))]
{
// Do not allow storing an index to a globally-imported module
// just in case the function is separated from this `AST`.
//
// Keep them in `global_imports` instead so that strict variables
// mode will not complain.
new_state.global_imports.clone_from(&state.global_imports);
new_state
.global_imports
.get_or_insert_with(Default::default)
.extend(state.imports.as_deref().into_iter().flatten().cloned());
}
// Brand new options
#[cfg(not(feature = "no_closure"))]
let options = self.options & !LangOptions::STRICT_VAR; // a capturing closure can access variables not defined locally, so turn off Strict Variables mode
#[cfg(feature = "no_closure")]
let options = self.options | (settings.options & LangOptions::STRICT_VAR);
// Brand new flags, turn on function scope and closure scope
let flags = ParseSettingFlags::FN_SCOPE
| ParseSettingFlags::CLOSURE_SCOPE
| (settings.flags
& (ParseSettingFlags::DISALLOW_UNQUOTED_MAP_PROPERTIES
| ParseSettingFlags::DISALLOW_STATEMENTS_IN_BLOCKS));
let new_settings = ParseSettings {
flags,
options,
..settings
};
let result =
self.parse_anon_fn(input, new_state, lib, new_settings.level_up()?, state);
// Restore the strings interner by swapping it back
std::mem::swap(state.interned_strings, new_state.interned_strings);
let (expr, fn_def) = result?;
#[cfg(not(feature = "no_closure"))]
for Ident { name, pos } in new_state.external_vars.as_deref().into_iter().flatten()
{
let (index, is_func) = state.access_var(name, lib, *pos);
if !is_func
&& index.is_none()
&& !settings.has_flag(ParseSettingFlags::CLOSURE_SCOPE)
&& settings.has_option(LangOptions::STRICT_VAR)
&& !state
.external_constants
.map_or(false, |scope| scope.contains(name))
{
// If the parent scope is not inside another capturing closure
// then we can conclude that the captured variable doesn't exist.
// Under Strict Variables mode, this is not allowed.
return Err(PERR::VariableUndefined(name.to_string()).into_err(*pos));
}
}
let hash_script = calc_fn_hash(None, &fn_def.name, fn_def.params.len());
lib.insert(hash_script, fn_def);
expr
}
// Interpolated string
Token::InterpolatedString(..) => {
let mut segments = FnArgsVec::new_const();
let settings = settings.level_up()?;
match input.next().expect(NEVER_ENDS) {
(Token::InterpolatedString(s), ..) if s.is_empty() => (),
(Token::InterpolatedString(s), pos) => {
segments.push(Expr::StringConstant(state.get_interned_string(*s), pos))
}
token => {
unreachable!("Token::InterpolatedString expected but gets {:?}", token)
}
}
loop {
let expr = match self.parse_block(input, state, lib, settings)? {
block @ Stmt::Block(..) => Expr::Stmt(Box::new(block.into())),
stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt),
};
match expr {
Expr::StringConstant(s, ..) if s.is_empty() => (),
_ => segments.push(expr),
}
// Make sure to parse the following as text
state.tokenizer_control.borrow_mut().is_within_text = true;
match input.next().expect(NEVER_ENDS) {
(Token::StringConstant(s), pos) => {
if !s.is_empty() {
segments
.push(Expr::StringConstant(state.get_interned_string(*s), pos));
}
// End the interpolated string if it is terminated by a back-tick.
break;
}
(Token::InterpolatedString(s), pos) => {
if !s.is_empty() {
segments
.push(Expr::StringConstant(state.get_interned_string(*s), pos));
}
}
(Token::LexError(err), pos)
if matches!(*err, LexError::UnterminatedString) =>
{
return Err(err.into_err(pos))
}
(token, ..) => unreachable!(
"string within an interpolated string literal expected but gets {:?}",
token
),
}
}
if segments.is_empty() {
Expr::StringConstant(state.get_interned_string(""), settings.pos)
} else {
segments.shrink_to_fit();
Expr::InterpolatedString(segments.into(), settings.pos)
}
}
// Array literal
#[cfg(not(feature = "no_index"))]
Token::LeftBracket => {
self.parse_array_literal(input, state, lib, settings.level_up()?)?
}
// Map literal
#[cfg(not(feature = "no_object"))]
Token::MapStart => self.parse_map_literal(input, state, lib, settings.level_up()?)?,
// Custom syntax.
#[cfg(not(feature = "no_custom_syntax"))]
Token::Custom(key) | Token::Reserved(key) | Token::Identifier(key)
if self
.custom_syntax
.as_ref()
.map_or(false, |m| m.contains_key(&**key)) =>
{
let (key, syntax) = self
.custom_syntax
.as_ref()
.and_then(|m| m.get_key_value(&**key))
.unwrap();
let (.., pos) = input.next().expect(NEVER_ENDS);
let settings = settings.level_up()?;
self.parse_custom_syntax(input, state, lib, settings, key, syntax, pos)?
}
// Identifier
Token::Identifier(..) => {
let ns = Namespace::NONE;
let s = match input.next().expect(NEVER_ENDS) {
(Token::Identifier(s), ..) => s,
token => unreachable!("Token::Identifier expected but gets {:?}", token),
};
match input.peek().expect(NEVER_ENDS) {
// Function call
(Token::LeftParen | Token::Bang | Token::Unit, _) => {
// Once the identifier consumed we must enable next variables capturing
state.allow_capture = true;
Expr::Variable(
(None, ns, 0, state.get_interned_string(*s)).into(),
None,
settings.pos,
)
}
// Namespace qualification
#[cfg(not(feature = "no_module"))]
(token @ Token::DoubleColon, pos) => {
if options.contains(ChainingFlags::DISALLOW_NAMESPACES) {
return Err(LexError::ImproperSymbol(
token.literal_syntax().into(),
String::new(),
)
.into_err(*pos));
}
// Once the identifier consumed we must enable next variables capturing
state.allow_capture = true;
let name = state.get_interned_string(*s);
Expr::Variable((None, ns, 0, name).into(), None, settings.pos)
}
// Normal variable access
_ => {
let (index, is_func) = state.access_var(&s, lib, settings.pos);
if !options.contains(ChainingFlags::PROPERTY)
&& !is_func
&& index.is_none()
&& settings.has_option(LangOptions::STRICT_VAR)
&& !state
.external_constants
.map_or(false, |scope| scope.contains(&s))
{
return Err(
PERR::VariableUndefined(s.to_string()).into_err(settings.pos)
);
}
let short_index = index
.and_then(|x| u8::try_from(x.get()).ok())
.and_then(NonZeroU8::new);
let name = state.get_interned_string(*s);
Expr::Variable((index, ns, 0, name).into(), short_index, settings.pos)
}
}
}
// Reserved keyword or symbol
Token::Reserved(..) => {
let ns = Namespace::NONE;
let s = match input.next().expect(NEVER_ENDS) {
(Token::Reserved(s), ..) => s,
token => unreachable!("Token::Reserved expected but gets {:?}", token),
};
match input.peek().expect(NEVER_ENDS).0 {
// Function call is allowed to have reserved keyword
Token::LeftParen | Token::Bang | Token::Unit
if is_reserved_keyword_or_symbol(&s).1 =>
{
Expr::Variable(
(None, ns, 0, state.get_interned_string(*s)).into(),
None,
settings.pos,
)
}
// Access to `this` as a variable
#[cfg(not(feature = "no_function"))]
_ if *s == crate::engine::KEYWORD_THIS => {
// OK within a function scope
if settings.has_flag(ParseSettingFlags::FN_SCOPE) {
Expr::ThisPtr(settings.pos)
} else {
// Cannot access to `this` as a variable not in a function scope
let msg = format!("'{s}' can only be used in functions");
return Err(
LexError::ImproperSymbol(s.to_string(), msg).into_err(settings.pos)
);
}
}
_ => return Err(PERR::Reserved(s.to_string()).into_err(settings.pos)),
}
}
Token::LexError(..) => match input.next().expect(NEVER_ENDS) {
(Token::LexError(err), ..) => return Err(err.into_err(settings.pos)),
token => unreachable!("Token::LexError expected but gets {:?}", token),
},
_ => return Err(LexError::UnexpectedInput(token.to_string()).into_err(settings.pos)),
};
if !(state.expr_filter)(&input.peek().expect(NEVER_ENDS).0) {
return Ok(root_expr);
}
self.parse_postfix(
input,
state,
lib,
settings,
root_expr,
ChainingFlags::empty(),
)
}
/// Tail processing of all possible postfix operators of a primary expression.
fn parse_postfix(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
mut lhs: Expr,
_options: ChainingFlags,
) -> ParseResult<Expr> {
let mut settings = settings;
// Break just in case `lhs` is `Expr::Dot` or `Expr::Index`
let mut parent_options = ASTFlags::BREAK;
// Tail processing all possible postfix operators
loop {
let (tail_token, ..) = input.peek().expect(NEVER_ENDS);
if !lhs.is_valid_postfix(tail_token) {
break;
}
let (tail_token, tail_pos) = input.next().expect(NEVER_ENDS);
settings.pos = tail_pos;
lhs = match (lhs, tail_token) {
// Qualified function call with !
#[cfg(not(feature = "no_module"))]
(Expr::Variable(x, ..), Token::Bang) if !x.1.is_empty() => {
return match input.peek().expect(NEVER_ENDS) {
(Token::LeftParen | Token::Unit, ..) => {
Err(LexError::UnexpectedInput(Token::Bang.into()).into_err(tail_pos))
}
_ => Err(LexError::ImproperSymbol(
"!".into(),
"'!' cannot be used to call module functions".into(),
)
.into_err(tail_pos)),
};
}
// Function call with !
(Expr::Variable(x, .., pos), Token::Bang) => {
match input.peek().expect(NEVER_ENDS) {
(Token::LeftParen | Token::Unit, ..) => (),
(_, pos) => {
return Err(PERR::MissingToken(
Token::LeftParen.into(),
"to start arguments list of function call".into(),
)
.into_err(*pos))
}
}
let no_args = input.next().expect(NEVER_ENDS).0 == Token::Unit;
let (.., ns, _, name) = *x;
settings.pos = pos;
self.parse_fn_call(input, state, lib, settings, name, no_args, true, ns)?
}
// Function call
(Expr::Variable(x, .., pos), t @ (Token::LeftParen | Token::Unit)) => {
let (.., ns, _, name) = *x;
let no_args = t == Token::Unit;
settings.pos = pos;
self.parse_fn_call(input, state, lib, settings, name, no_args, false, ns)?
}
// Disallowed module separator
#[cfg(not(feature = "no_module"))]
(_, token @ Token::DoubleColon)
if _options.contains(ChainingFlags::DISALLOW_NAMESPACES) =>
{
return Err(LexError::ImproperSymbol(
token.literal_syntax().into(),
String::new(),
)
.into_err(tail_pos))
}
// module access
#[cfg(not(feature = "no_module"))]
(Expr::Variable(x, .., pos), Token::DoubleColon) => {
let (id2, pos2) = parse_var_name(input)?;
let (.., mut namespace, _, name) = *x;
let var_name_def = Ident { name, pos };
namespace.push(var_name_def);
let var_name = state.get_interned_string(id2);
Expr::Variable((None, namespace, 0, var_name).into(), None, pos2)
}
// Indexing
#[cfg(not(feature = "no_index"))]
(expr, token @ (Token::LeftBracket | Token::QuestionBracket)) => {
let opt = match token {
Token::LeftBracket => ASTFlags::empty(),
Token::QuestionBracket => ASTFlags::NEGATED,
_ => unreachable!("`[` or `?[`"),
};
let settings = settings.level_up()?;
self.parse_index_chain(input, state, lib, settings, expr, opt, true)?
}
// Property access
#[cfg(not(feature = "no_object"))]
(expr, op @ (Token::Period | Token::Elvis)) => {
// Expression after dot must start with an identifier
match input.peek().expect(NEVER_ENDS) {
(Token::Identifier(..), ..) => {
// Prevents capturing of the object properties as vars: xxx.<var>
state.allow_capture = false;
}
(Token::Reserved(s), ..) if is_reserved_keyword_or_symbol(s).2 => (),
(Token::Reserved(s), pos) => {
return Err(PERR::Reserved(s.to_string()).into_err(*pos))
}
(.., pos) => return Err(PERR::PropertyExpected.into_err(*pos)),
}
let op_flags = match op {
Token::Period => ASTFlags::empty(),
Token::Elvis => ASTFlags::NEGATED,
_ => unreachable!("`.` or `?.`"),
};
let options = ChainingFlags::PROPERTY | ChainingFlags::DISALLOW_NAMESPACES;
let rhs =
self.parse_primary(input, state, lib, settings.level_up()?, options)?;
Self::make_dot_expr(state, expr, rhs, parent_options, op_flags, tail_pos)?
}
// Unknown postfix operator
(expr, token) => {
unreachable!("unknown postfix operator '{}' for {:?}", token, expr)
}
};
// The chain is now extended
parent_options = ASTFlags::empty();
}
// Optimize chain where the root expression is another chain
#[cfg(any(not(feature = "no_index"), not(feature = "no_object")))]
if matches!(lhs, Expr::Index(ref x, ..) | Expr::Dot(ref x, ..) if matches!(x.lhs, Expr::Index(..) | Expr::Dot(..)))
{
optimize_combo_chain(&mut lhs)
}
// Cache the hash key for namespace-qualified variables
#[cfg(not(feature = "no_module"))]
let namespaced_variable = match lhs {
Expr::Variable(ref mut x, ..) if !x.1.is_empty() => Some(&mut **x),
Expr::Index(ref mut x, ..) | Expr::Dot(ref mut x, ..) => match x.lhs {
Expr::Variable(ref mut x, ..) if !x.1.is_empty() => Some(&mut **x),
_ => None,
},
_ => None,
};
#[cfg(not(feature = "no_module"))]
if let Some((.., namespace, hash, name)) = namespaced_variable {
if !namespace.is_empty() {
*hash = crate::calc_var_hash(namespace.iter().map(Ident::as_str), name);
#[cfg(not(feature = "no_module"))]
{
let root = namespace.root();
let index = state.find_module(root);
let is_global = false;
#[cfg(not(feature = "no_function"))]
#[cfg(not(feature = "no_module"))]
let is_global = is_global || root == crate::engine::KEYWORD_GLOBAL;
if settings.has_option(LangOptions::STRICT_VAR)
&& index.is_none()
&& !is_global
&& !state
.global_imports
.as_deref()
.into_iter()
.flatten()
.any(|m| m.as_str() == root)
&& !self
.global_sub_modules
.as_ref()
.map_or(false, |m| m.contains_key(root))
{
return Err(
PERR::ModuleUndefined(root.into()).into_err(namespace.position())
);
}
namespace.set_index(index);
}
}
}
// Make sure identifiers are valid
Ok(lhs)
}
/// Parse a potential unary operator.
fn parse_unary(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Expr> {
let (token, token_pos) = input.peek().expect(NEVER_ENDS);
if !(state.expr_filter)(token) {
return Err(LexError::UnexpectedInput(token.to_string()).into_err(*token_pos));
}
let mut settings = settings;
settings.pos = *token_pos;
match token {
// -expr
Token::Minus | Token::UnaryMinus => {
let token = token.clone();
let pos = eat_token(input, token.clone());
match self.parse_unary(input, state, lib, settings.level_up()?)? {
// Negative integer
Expr::IntegerConstant(num, ..) => num
.checked_neg()
.map(|i| Expr::IntegerConstant(i, pos))
.or_else(|| {
#[cfg(not(feature = "no_float"))]
return Some(Expr::FloatConstant((-(num as crate::FLOAT)).into(), pos));
#[cfg(feature = "no_float")]
return None;
})
.ok_or_else(|| LexError::MalformedNumber(format!("-{num}")).into_err(pos)),
// Negative float
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(x, ..) => Ok(Expr::FloatConstant((-(*x)).into(), pos)),
// Call negative function
expr => {
let mut args = FnArgsVec::new_const();
args.push(expr);
args.shrink_to_fit();
Ok(FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string("-"),
hashes: FnCallHashes::from_native_only(calc_fn_hash(None, "-", 1)),
args,
op_token: Some(token),
capture_parent_scope: false,
}
.into_fn_call_expr(pos))
}
}
}
// +expr
Token::Plus | Token::UnaryPlus => {
let token = token.clone();
let pos = eat_token(input, token.clone());
match self.parse_unary(input, state, lib, settings.level_up()?)? {
expr @ Expr::IntegerConstant(..) => Ok(expr),
#[cfg(not(feature = "no_float"))]
expr @ Expr::FloatConstant(..) => Ok(expr),
// Call plus function
expr => {
let mut args = FnArgsVec::new_const();
args.push(expr);
args.shrink_to_fit();
Ok(FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string("+"),
hashes: FnCallHashes::from_native_only(calc_fn_hash(None, "+", 1)),
args,
op_token: Some(token),
capture_parent_scope: false,
}
.into_fn_call_expr(pos))
}
}
}
// !expr
Token::Bang => {
let token = token.clone();
let pos = eat_token(input, Token::Bang);
let mut args = FnArgsVec::new_const();
args.push(self.parse_unary(input, state, lib, settings.level_up()?)?);
args.shrink_to_fit();
Ok(FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string("!"),
hashes: FnCallHashes::from_native_only(calc_fn_hash(None, "!", 1)),
args,
op_token: Some(token),
capture_parent_scope: false,
}
.into_fn_call_expr(pos))
}
// <EOF>
Token::EOF => Err(PERR::UnexpectedEOF.into_err(settings.pos)),
// All other tokens
_ => self.parse_primary(input, state, lib, settings, ChainingFlags::empty()),
}
}
/// Make an assignment statement.
fn make_assignment_stmt(
op: Option<Token>,
state: &mut ParseState,
lhs: Expr,
rhs: Expr,
op_pos: Position,
) -> ParseResult<Stmt> {
#[must_use]
fn check_lvalue(expr: &Expr, parent_is_dot: bool) -> Option<Position> {
match expr {
Expr::Index(x, options, ..) | Expr::Dot(x, options, ..) if parent_is_dot => {
match x.lhs {
Expr::Property(..) if !options.contains(ASTFlags::BREAK) => {
check_lvalue(&x.rhs, matches!(expr, Expr::Dot(..)))
}
Expr::Property(..) => None,
// Anything other than a property after dotting (e.g. a method call) is not an l-value
ref e => Some(e.position()),
}
}
Expr::Index(x, options, ..) | Expr::Dot(x, options, ..) => match x.lhs {
Expr::Property(..) => unreachable!("unexpected Expr::Property in indexing"),
_ if !options.contains(ASTFlags::BREAK) => {
check_lvalue(&x.rhs, matches!(expr, Expr::Dot(..)))
}
_ => None,
},
Expr::Property(..) if parent_is_dot => None,
Expr::Property(..) => unreachable!("unexpected Expr::Property in indexing"),
e if parent_is_dot => Some(e.position()),
_ => None,
}
}
let op_info = if let Some(op) = op {
OpAssignment::new_op_assignment_from_token(op, op_pos)
} else {
OpAssignment::new_assignment(op_pos)
};
match lhs {
// this = rhs
Expr::ThisPtr(_) => Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into())),
// var (non-indexed) = rhs
Expr::Variable(ref x, None, _) if x.0.is_none() => {
Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into()))
}
// var (indexed) = rhs
Expr::Variable(ref x, i, var_pos) => {
let stack = state.stack.get_or_insert_with(Default::default);
let (index, .., name) = &**x;
let index = i.map_or_else(
|| index.expect("either long or short index is `None`").get(),
|n| n.get() as usize,
);
match stack.get_mut_by_index(stack.len() - index).access_mode() {
AccessMode::ReadWrite => {
Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into()))
}
// Constant values cannot be assigned to
AccessMode::ReadOnly => {
Err(PERR::AssignmentToConstant(name.to_string()).into_err(var_pos))
}
}
}
// xxx[???]... = rhs, xxx.prop... = rhs
Expr::Index(ref x, options, ..) | Expr::Dot(ref x, options, ..) => {
let valid_lvalue = if options.contains(ASTFlags::BREAK) {
None
} else {
check_lvalue(&x.rhs, matches!(lhs, Expr::Dot(..)))
};
match valid_lvalue {
None => {
match x.lhs {
// var[???] = rhs, this[???] = rhs, var.??? = rhs, this.??? = rhs
Expr::Variable(..) | Expr::ThisPtr(..) => {
Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into()))
}
// expr[???] = rhs, expr.??? = rhs
ref expr => Err(PERR::AssignmentToInvalidLHS(String::new())
.into_err(expr.position())),
}
}
Some(err_pos) => {
Err(PERR::AssignmentToInvalidLHS(String::new()).into_err(err_pos))
}
}
}
// const_expr = rhs
ref expr if expr.is_constant() => {
Err(PERR::AssignmentToConstant(String::new()).into_err(lhs.start_position()))
}
// ??? && ??? = rhs, ??? || ??? = rhs, xxx ?? xxx = rhs
Expr::And(..) | Expr::Or(..) | Expr::Coalesce(..) if !op_info.is_op_assignment() => {
Err(LexError::ImproperSymbol(
Token::Equals.literal_syntax().into(),
"Possibly a typo of '=='?".into(),
)
.into_err(op_pos))
}
// expr = rhs
_ => Err(PERR::AssignmentToInvalidLHS(String::new()).into_err(lhs.position())),
}
}
/// Make a dot expression.
#[cfg(not(feature = "no_object"))]
fn make_dot_expr(
state: &mut ParseState,
lhs: Expr,
rhs: Expr,
parent_options: ASTFlags,
op_flags: ASTFlags,
op_pos: Position,
) -> ParseResult<Expr> {
match (lhs, rhs) {
// lhs[...][...].rhs
(Expr::Index(mut x, options, pos), rhs)
if !parent_options.contains(ASTFlags::BREAK) =>
{
let options = options | parent_options;
x.rhs = Self::make_dot_expr(state, x.rhs, rhs, options, op_flags, op_pos)?;
Ok(Expr::Index(x, ASTFlags::empty(), pos))
}
// lhs.module::id - syntax error
#[cfg(not(feature = "no_module"))]
(.., Expr::Variable(x, ..)) if !x.1.is_empty() => unreachable!("lhs.ns::id"),
// lhs.id
(lhs, var_expr @ Expr::Variable(..)) => {
let rhs = var_expr.into_property(state);
Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos))
}
// lhs.prop
(lhs, prop @ Expr::Property(..)) => Ok(Expr::Dot(
BinaryExpr { lhs, rhs: prop }.into(),
op_flags,
op_pos,
)),
// lhs.nnn::func(...) - syntax error
#[cfg(not(feature = "no_module"))]
(.., Expr::FnCall(f, ..)) if f.is_qualified() => unreachable!("lhs.ns::func()"),
// lhs.Fn() or lhs.eval()
(.., Expr::FnCall(f, func_pos))
if f.args.is_empty()
&& [crate::engine::KEYWORD_FN_PTR, crate::engine::KEYWORD_EVAL]
.contains(&f.name.as_str()) =>
{
let err_msg = format!(
"'{}' should not be called in method style. Try {}(...);",
f.name, f.name
);
Err(LexError::ImproperSymbol(f.name.to_string(), err_msg).into_err(func_pos))
}
// lhs.func!(...)
(.., Expr::FnCall(f, func_pos)) if f.capture_parent_scope => {
Err(PERR::MalformedCapture(
"method-call style does not support running within the caller's scope".into(),
)
.into_err(func_pos))
}
// lhs.func(...)
(lhs, Expr::FnCall(mut f, func_pos)) => {
// Recalculate hash
let args_len = f.args.len() + 1;
f.hashes = if is_valid_function_name(&f.name) {
#[cfg(not(feature = "no_function"))]
{
FnCallHashes::from_script_and_native(
calc_fn_hash(None, &f.name, args_len - 1),
calc_fn_hash(None, &f.name, args_len),
)
}
#[cfg(feature = "no_function")]
{
FnCallHashes::from_native_only(calc_fn_hash(None, &f.name, args_len))
}
} else {
FnCallHashes::from_native_only(calc_fn_hash(None, &f.name, args_len))
};
let rhs = Expr::MethodCall(f, func_pos);
Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos))
}
// lhs.dot_lhs.dot_rhs or lhs.dot_lhs[idx_rhs]
(lhs, rhs @ (Expr::Dot(..) | Expr::Index(..))) => {
let (x, options, pos, is_dot) = match rhs {
Expr::Dot(x, options, pos) => (x, options, pos, true),
Expr::Index(x, options, pos) => (x, options, pos, false),
expr => unreachable!("Expr::Dot or Expr::Index expected but gets {:?}", expr),
};
match x.lhs {
// lhs.module::id.dot_rhs or lhs.module::id[idx_rhs] - syntax error
#[cfg(not(feature = "no_module"))]
Expr::Variable(x, ..) if !x.1.is_empty() => unreachable!("lhs.ns::id..."),
// lhs.module::func().dot_rhs or lhs.module::func()[idx_rhs] - syntax error
#[cfg(not(feature = "no_module"))]
Expr::FnCall(f, ..) if f.is_qualified() => {
unreachable!("lhs.ns::func()...")
}
// lhs.id.dot_rhs or lhs.id[idx_rhs]
Expr::Variable(..) | Expr::Property(..) => {
let new_binary = BinaryExpr {
lhs: x.lhs.into_property(state),
rhs: x.rhs,
}
.into();
let rhs = if is_dot {
Expr::Dot(new_binary, options, pos)
} else {
Expr::Index(new_binary, options, pos)
};
Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos))
}
// lhs.func().dot_rhs or lhs.func()[idx_rhs]
Expr::FnCall(mut f, func_pos) => {
// Recalculate hash
let args_len = f.args.len() + 1;
f.hashes = if is_valid_function_name(&f.name) {
#[cfg(not(feature = "no_function"))]
{
FnCallHashes::from_script_and_native(
calc_fn_hash(None, &f.name, args_len - 1),
calc_fn_hash(None, &f.name, args_len),
)
}
#[cfg(feature = "no_function")]
{
FnCallHashes::from_native_only(calc_fn_hash(
None, &f.name, args_len,
))
}
} else {
FnCallHashes::from_native_only(calc_fn_hash(None, &f.name, args_len))
};
let new_lhs = BinaryExpr {
lhs: Expr::MethodCall(f, func_pos),
rhs: x.rhs,
}
.into();
let rhs = if is_dot {
Expr::Dot(new_lhs, options, pos)
} else {
Expr::Index(new_lhs, options, pos)
};
Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos))
}
expr => unreachable!("invalid dot expression: {:?}", expr),
}
}
// lhs.rhs
(.., rhs) => Err(PERR::PropertyExpected.into_err(rhs.start_position())),
}
}
/// Parse a binary expression (if any).
fn parse_binary_op(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
parent_precedence: Option<Precedence>,
lhs: Expr,
) -> ParseResult<Expr> {
let mut settings = settings;
settings.pos = lhs.position();
let mut root = lhs;
loop {
let (current_op, current_pos) = input.peek().expect(NEVER_ENDS);
if !(state.expr_filter)(current_op) {
return Ok(root);
}
let precedence = match current_op {
#[cfg(not(feature = "no_custom_syntax"))]
Token::Custom(c) => self
.custom_keywords
.as_ref()
.and_then(|m| m.get(&**c))
.copied()
.ok_or_else(|| PERR::Reserved(c.to_string()).into_err(*current_pos))?,
Token::Reserved(c) if !is_valid_identifier(c) => {
return Err(PERR::UnknownOperator(c.to_string()).into_err(*current_pos))
}
_ => current_op.precedence(),
};
let bind_right = current_op.is_bind_right();
// Bind left to the parent lhs expression if precedence is higher
// If same precedence, then check if the operator binds right
if precedence < parent_precedence || (precedence == parent_precedence && !bind_right) {
return Ok(root);
}
let (op_token, pos) = input.next().expect(NEVER_ENDS);
let rhs = self.parse_unary(input, state, lib, settings)?;
let (next_op, next_pos) = input.peek().expect(NEVER_ENDS);
let next_precedence = match next_op {
#[cfg(not(feature = "no_custom_syntax"))]
Token::Custom(c) => self
.custom_keywords
.as_ref()
.and_then(|m| m.get(&**c))
.copied()
.ok_or_else(|| PERR::Reserved(c.to_string()).into_err(*next_pos))?,
Token::Reserved(c) if !is_valid_identifier(c) => {
return Err(PERR::UnknownOperator(c.to_string()).into_err(*next_pos))
}
_ => next_op.precedence(),
};
// Bind to right if the next operator has higher precedence
// If same precedence, then check if the operator binds right
let rhs =
if (precedence == next_precedence && bind_right) || precedence < next_precedence {
self.parse_binary_op(input, state, lib, settings, precedence, rhs)?
} else {
// Otherwise bind to left (even if next operator has the same precedence)
rhs
};
settings = settings.level_up()?;
settings.pos = pos;
let op = op_token.to_string();
let hash = calc_fn_hash(None, &op, 2);
let native_only = !is_valid_function_name(&op);
let mut args = FnArgsVec::new_const();
args.push(root);
args.push(rhs);
args.shrink_to_fit();
let mut op_base = FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string(&op),
hashes: FnCallHashes::from_native_only(hash),
args,
op_token: native_only.then(|| op_token.clone()),
capture_parent_scope: false,
};
root = match op_token {
// '!=' defaults to true when passed invalid operands
Token::NotEqualsTo => op_base.into_fn_call_expr(pos),
// Comparison operators default to false when passed invalid operands
Token::EqualsTo
| Token::LessThan
| Token::LessThanEqualsTo
| Token::GreaterThan
| Token::GreaterThanEqualsTo => {
let pos = op_base.args[0].start_position();
op_base.into_fn_call_expr(pos)
}
Token::Or => {
let rhs = op_base.args.pop().unwrap().ensure_bool_expr()?;
let lhs = op_base.args.pop().unwrap().ensure_bool_expr()?;
Expr::Or(BinaryExpr { lhs, rhs }.into(), pos)
}
Token::And => {
let rhs = op_base.args.pop().unwrap().ensure_bool_expr()?;
let lhs = op_base.args.pop().unwrap().ensure_bool_expr()?;
Expr::And(BinaryExpr { lhs, rhs }.into(), pos)
}
Token::DoubleQuestion => {
let rhs = op_base.args.pop().unwrap();
let lhs = op_base.args.pop().unwrap();
Expr::Coalesce(BinaryExpr { lhs, rhs }.into(), pos)
}
Token::In | Token::NotIn => {
// Swap the arguments
let lhs = op_base.args.remove(0);
let pos = lhs.start_position();
op_base.args.push(lhs);
op_base.args.shrink_to_fit();
// Convert into a call to `contains`
op_base.hashes = FnCallHashes::from_hash(calc_fn_hash(None, OP_CONTAINS, 2));
op_base.name = state.get_interned_string(OP_CONTAINS);
let fn_call = op_base.into_fn_call_expr(pos);
if op_token == Token::In {
fn_call
} else {
// Put a `!` call in front
let mut args = FnArgsVec::new_const();
args.push(fn_call);
let not_base = FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string(OP_NOT),
hashes: FnCallHashes::from_native_only(calc_fn_hash(None, OP_NOT, 1)),
args,
op_token: Some(Token::Bang),
capture_parent_scope: false,
};
not_base.into_fn_call_expr(pos)
}
}
#[cfg(not(feature = "no_custom_syntax"))]
Token::Custom(s) if self.is_custom_keyword(s.as_str()) => {
op_base.hashes = if native_only {
FnCallHashes::from_native_only(calc_fn_hash(None, &s, 2))
} else {
FnCallHashes::from_hash(calc_fn_hash(None, &s, 2))
};
op_base.into_fn_call_expr(pos)
}
_ => {
let pos = op_base.args[0].start_position();
op_base.into_fn_call_expr(pos)
}
};
}
}
/// Parse a custom syntax.
#[cfg(not(feature = "no_custom_syntax"))]
fn parse_custom_syntax(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
key: impl Into<ImmutableString>,
syntax: &crate::api::custom_syntax::CustomSyntax,
pos: Position,
) -> ParseResult<Expr> {
#[allow(clippy::wildcard_imports)]
use crate::api::custom_syntax::markers::*;
const KEYWORD_SEMICOLON: &str = Token::SemiColon.literal_syntax();
const KEYWORD_CLOSE_BRACE: &str = Token::RightBrace.literal_syntax();
let mut settings = settings;
let mut inputs = StaticVec::new_const();
let mut segments = StaticVec::new_const();
let mut tokens = StaticVec::new_const();
// Adjust the variables stack
if syntax.scope_may_be_changed {
// Add a barrier variable to the stack so earlier variables will not be matched.
// Variable searches stop at the first barrier.
let marker = state.get_interned_string(SCOPE_SEARCH_BARRIER_MARKER);
state
.stack
.get_or_insert_with(Default::default)
.push(marker, ());
}
let mut user_state = Dynamic::UNIT;
let parse_func = &*syntax.parse;
let mut required_token: ImmutableString = key.into();
tokens.push(required_token.clone());
segments.push(required_token.clone());
loop {
let (fwd_token, fwd_pos) = input.peek().expect(NEVER_ENDS);
settings.pos = *fwd_pos;
let settings = settings.level_up()?;
required_token = match parse_func(&segments, &fwd_token.to_string(), &mut user_state) {
Ok(Some(seg))
if seg.starts_with(CUSTOM_SYNTAX_MARKER_SYNTAX_VARIANT)
&& seg.len() > CUSTOM_SYNTAX_MARKER_SYNTAX_VARIANT.len() =>
{
inputs.push(Expr::StringConstant(state.get_interned_string(seg), pos));
break;
}
Ok(Some(seg)) => seg,
Ok(None) => break,
Err(err) => return Err(err.0.into_err(settings.pos)),
};
match required_token.as_str() {
CUSTOM_SYNTAX_MARKER_IDENT => {
let (name, pos) = parse_var_name(input)?;
let name = state.get_interned_string(name);
let ns = Namespace::NONE;
segments.push(name.clone());
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_IDENT));
inputs.push(Expr::Variable((None, ns, 0, name).into(), None, pos));
}
CUSTOM_SYNTAX_MARKER_SYMBOL => {
let (symbol, pos) = match input.next().expect(NEVER_ENDS) {
// Standard symbol
(token, pos) if token.is_standard_symbol() => {
Ok((token.literal_syntax().into(), pos))
}
// Reserved symbol
(Token::Reserved(s), pos) if !is_valid_identifier(s.as_str()) => {
Ok((*s, pos))
}
// Bad symbol
(Token::LexError(err), pos) => Err(err.into_err(pos)),
// Not a symbol
(.., pos) => Err(PERR::MissingSymbol(String::new()).into_err(pos)),
}?;
let symbol = state.get_interned_string(symbol);
segments.push(symbol.clone());
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_SYMBOL));
inputs.push(Expr::StringConstant(symbol, pos));
}
CUSTOM_SYNTAX_MARKER_EXPR => {
inputs.push(self.parse_expr(input, state, lib, settings)?);
let keyword = state.get_interned_string(CUSTOM_SYNTAX_MARKER_EXPR);
segments.push(keyword.clone());
tokens.push(keyword);
}
CUSTOM_SYNTAX_MARKER_BLOCK => {
match self.parse_block(input, state, lib, settings)? {
block @ Stmt::Block(..) => {
inputs.push(Expr::Stmt(Box::new(block.into())));
let keyword = state.get_interned_string(CUSTOM_SYNTAX_MARKER_BLOCK);
segments.push(keyword.clone());
tokens.push(keyword);
}
stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt),
}
}
CUSTOM_SYNTAX_MARKER_BOOL => match input.next().expect(NEVER_ENDS) {
(b @ (Token::True | Token::False), pos) => {
inputs.push(Expr::BoolConstant(b == Token::True, pos));
segments.push(state.get_interned_string(b.literal_syntax()));
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_BOOL));
}
(.., pos) => {
return Err(
PERR::MissingSymbol("Expecting 'true' or 'false'".into()).into_err(pos)
)
}
},
CUSTOM_SYNTAX_MARKER_INT => match input.next().expect(NEVER_ENDS) {
(Token::IntegerConstant(i), pos) => {
inputs.push(Expr::IntegerConstant(i, pos));
segments.push(i.to_string().into());
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_INT));
}
(.., pos) => {
return Err(
PERR::MissingSymbol("Expecting an integer number".into()).into_err(pos)
)
}
},
#[cfg(not(feature = "no_float"))]
CUSTOM_SYNTAX_MARKER_FLOAT => match input.next().expect(NEVER_ENDS) {
(Token::FloatConstant(f), pos) => {
inputs.push(Expr::FloatConstant(f, pos));
segments.push(f.to_string().into());
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_FLOAT));
}
(.., pos) => {
return Err(
PERR::MissingSymbol("Expecting a floating-point number".into())
.into_err(pos),
)
}
},
CUSTOM_SYNTAX_MARKER_STRING => match input.next().expect(NEVER_ENDS) {
(Token::StringConstant(s), pos) => {
let s = state.get_interned_string(*s);
inputs.push(Expr::StringConstant(s.clone(), pos));
segments.push(s);
tokens.push(state.get_interned_string(CUSTOM_SYNTAX_MARKER_STRING));
}
(.., pos) => {
return Err(PERR::MissingSymbol("Expecting a string".into()).into_err(pos))
}
},
s => match input.next().expect(NEVER_ENDS) {
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(Token::Identifier(t) | Token::Reserved(t) | Token::Custom(t), ..)
if *t == s =>
{
segments.push(required_token.clone());
tokens.push(required_token.clone());
}
(t, ..) if t.is_literal() && t.literal_syntax() == s => {
segments.push(required_token.clone());
tokens.push(required_token.clone());
}
(.., pos) => {
return Err(PERR::MissingToken(
s.into(),
format!("for '{}' expression", segments[0]),
)
.into_err(pos))
}
},
}
}
inputs.shrink_to_fit();
tokens.shrink_to_fit();
let self_terminated = matches!(
required_token.as_str(),
// It is self-terminating if the last symbol is a block
CUSTOM_SYNTAX_MARKER_BLOCK |
// If the last symbol is `;` or `}`, it is self-terminating
KEYWORD_SEMICOLON | KEYWORD_CLOSE_BRACE
);
Ok(Expr::Custom(
crate::ast::CustomExpr {
inputs,
tokens,
state: user_state,
scope_may_be_changed: syntax.scope_may_be_changed,
self_terminated,
}
.into(),
pos,
))
}
/// Parse an expression.
fn parse_expr(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Expr> {
let mut settings = settings;
settings.pos = input.peek().expect(NEVER_ENDS).1;
// Parse expression normally.
let precedence = Precedence::new(1);
let settings = settings.level_up()?;
let lhs = self.parse_unary(input, state, lib, settings)?;
self.parse_binary_op(input, state, lib, settings, precedence, lhs)
}
/// Parse an if statement.
fn parse_if(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// if ...
let mut settings = settings.level_up()?;
settings.pos = eat_token(input, Token::If);
// if guard { if_body }
ensure_not_statement_expr(input, "a boolean")?;
let expr = self
.parse_expr(input, state, lib, settings)?
.ensure_bool_expr()?;
ensure_not_assignment(input)?;
let body = self.parse_block(input, state, lib, settings)?.into();
// if guard { if_body } else ...
let branch = if match_token(input, Token::Else).0 {
if let (Token::If, ..) = input.peek().expect(NEVER_ENDS) {
// if guard { if_body } else if ...
self.parse_if(input, state, lib, settings)?
} else {
// if guard { if_body } else { else-body }
self.parse_block(input, state, lib, settings)?
}
} else {
Stmt::Noop(Position::NONE)
}
.into();
Ok(Stmt::If(
FlowControl { expr, body, branch }.into(),
settings.pos,
))
}
/// Parse a while loop.
fn parse_while_loop(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
let mut settings = settings.level_up()?;
// while|loops ...
let (expr, token_pos) = match input.next().expect(NEVER_ENDS) {
(Token::While, pos) => {
ensure_not_statement_expr(input, "a boolean")?;
let expr = self
.parse_expr(input, state, lib, settings)?
.ensure_bool_expr()?;
ensure_not_assignment(input)?;
(expr, pos)
}
(Token::Loop, pos) => (Expr::Unit(Position::NONE), pos),
token => unreachable!("Token::While or Token::Loop expected but gets {:?}", token),
};
settings.pos = token_pos;
settings.flags |= ParseSettingFlags::BREAKABLE;
let body = self.parse_block(input, state, lib, settings)?.into();
let branch = StmtBlock::NONE;
Ok(Stmt::While(
FlowControl { expr, body, branch }.into(),
settings.pos,
))
}
/// Parse a do loop.
fn parse_do(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// do ...
let mut settings = settings.level_up()?;
let orig_breakable = settings.flags.contains(ParseSettingFlags::BREAKABLE);
settings.flags |= ParseSettingFlags::BREAKABLE;
settings.pos = eat_token(input, Token::Do);
// do { body } [while|until] guard
let body = self.parse_block(input, state, lib, settings)?.into();
let negated = match input.next().expect(NEVER_ENDS) {
(Token::While, ..) => ASTFlags::empty(),
(Token::Until, ..) => ASTFlags::NEGATED,
(.., pos) => {
return Err(
PERR::MissingToken(Token::While.into(), "for the do statement".into())
.into_err(pos),
)
}
};
if !orig_breakable {
settings.flags.remove(ParseSettingFlags::BREAKABLE);
}
ensure_not_statement_expr(input, "a boolean")?;
let expr = self
.parse_expr(input, state, lib, settings)?
.ensure_bool_expr()?;
ensure_not_assignment(input)?;
let branch = StmtBlock::NONE;
Ok(Stmt::Do(
FlowControl { expr, body, branch }.into(),
negated,
settings.pos,
))
}
/// Parse a for loop.
fn parse_for(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// for ...
let mut settings = settings.level_up()?;
settings.pos = eat_token(input, Token::For);
// for name ...
let (name, name_pos, counter_name, counter_pos) = if match_token(input, Token::LeftParen).0
{
// ( name, counter )
let (name, name_pos) = parse_var_name(input)?;
let (has_comma, pos) = match_token(input, Token::Comma);
if !has_comma {
return Err(PERR::MissingToken(
Token::Comma.into(),
"after the iteration variable name".into(),
)
.into_err(pos));
}
let (counter_name, counter_pos) = parse_var_name(input)?;
if counter_name == name {
return Err(PERR::DuplicatedVariable(counter_name.into()).into_err(counter_pos));
}
let (has_close_paren, pos) = match_token(input, Token::RightParen);
if !has_close_paren {
return Err(PERR::MissingToken(
Token::RightParen.into(),
"to close the iteration variable".into(),
)
.into_err(pos));
}
(name, name_pos, counter_name, counter_pos)
} else {
// name
let (name, name_pos) = parse_var_name(input)?;
(name, name_pos, Identifier::new_const(), Position::NONE)
};
// for name in ...
match input.next().expect(NEVER_ENDS) {
(Token::In, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::In.into(),
"after the iteration variable".into(),
)
.into_err(pos))
}
}
// for name in expr { body }
ensure_not_statement_expr(input, "a boolean")?;
let expr = self
.parse_expr(input, state, lib, settings)?
.ensure_iterable()?;
let counter_var = Ident {
name: state.get_interned_string(counter_name),
pos: counter_pos,
};
let loop_var = Ident {
name: state.get_interned_string(name),
pos: name_pos,
};
let prev_stack_len = {
let stack = state.stack.get_or_insert_with(Default::default);
let prev_stack_len = stack.len();
if !counter_var.name.is_empty() {
stack.push(counter_var.name.clone(), ());
}
stack.push(&loop_var.name, ());
prev_stack_len
};
settings.flags |= ParseSettingFlags::BREAKABLE;
let body = self.parse_block(input, state, lib, settings)?.into();
state.stack.as_mut().unwrap().rewind(prev_stack_len);
let branch = StmtBlock::NONE;
Ok(Stmt::For(
Box::new((loop_var, counter_var, FlowControl { expr, body, branch })),
settings.pos,
))
}
/// Parse a variable definition statement.
fn parse_let(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
access: AccessMode,
is_export: bool,
) -> ParseResult<Stmt> {
// let/const... (specified in `var_type`)
let mut settings = settings;
settings.pos = input.next().expect(NEVER_ENDS).1;
// let name ...
let (name, pos) = parse_var_name(input)?;
{
let stack = state.stack.get_or_insert_with(Default::default);
if !self.allow_shadowing() && stack.iter().any(|(v, ..)| v == name) {
return Err(PERR::VariableExists(name.into()).into_err(pos));
}
if let Some(ref filter) = self.def_var_filter {
let will_shadow = stack.iter().any(|(v, ..)| v == name);
let global = state
.global
.get_or_insert_with(|| GlobalRuntimeState::new(self).into());
global.level = settings.level;
let is_const = access == AccessMode::ReadOnly;
let info = VarDefInfo {
name: &name,
is_const,
nesting_level: settings.level,
will_shadow,
};
let caches = &mut Caches::new();
let context = EvalContext::new(self, global, caches, stack, None);
match filter(false, info, context) {
Ok(true) => (),
Ok(false) => return Err(PERR::ForbiddenVariable(name.into()).into_err(pos)),
Err(err) => match *err {
EvalAltResult::ErrorParsing(e, pos) => return Err(e.into_err(pos)),
_ => return Err(PERR::ForbiddenVariable(name.into()).into_err(pos)),
},
}
}
}
let name = state.get_interned_string(name);
// let name = ...
let expr = if match_token(input, Token::Equals).0 {
// let name = expr
self.parse_expr(input, state, lib, settings.level_up()?)?
} else {
Expr::Unit(Position::NONE)
};
let export = if is_export {
ASTFlags::EXPORTED
} else {
ASTFlags::empty()
};
let (existing, hit_barrier) = state.find_var(&name);
let stack = state.stack.as_mut().unwrap();
let existing = if !hit_barrier && existing > 0 {
match stack.len() - existing {
// Variable has been aliased
#[cfg(not(feature = "no_module"))]
offset if !stack.get_entry_by_index(offset).2.is_empty() => None,
// Defined in parent block
offset if offset < state.block_stack_len => None,
offset => Some(offset),
}
} else {
None
};
let idx = if let Some(n) = existing {
stack.get_mut_by_index(n).set_access_mode(access);
Some(NonZeroUsize::new(stack.len() - n).unwrap())
} else {
stack.push_entry(name.as_str(), access, Dynamic::UNIT);
None
};
#[cfg(not(feature = "no_module"))]
if is_export {
stack.add_alias_by_index(stack.len() - 1, name.clone());
}
let var_def = (Ident { name, pos }, expr, idx).into();
Ok(match access {
// let name = expr
AccessMode::ReadWrite => Stmt::Var(var_def, export, settings.pos),
// const name = { expr:constant }
AccessMode::ReadOnly => Stmt::Var(var_def, ASTFlags::CONSTANT | export, settings.pos),
})
}
/// Parse an import statement.
#[cfg(not(feature = "no_module"))]
fn parse_import(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// import ...
let mut settings = settings.level_up()?;
settings.pos = eat_token(input, Token::Import);
// import expr ...
let expr = self.parse_expr(input, state, lib, settings)?;
let export = if match_token(input, Token::As).0 {
// import expr as name ...
let (name, pos) = parse_var_name(input)?;
Ident {
name: state.get_interned_string(name),
pos,
}
} else {
// import expr;
Ident {
name: state.get_interned_string(""),
pos: Position::NONE,
}
};
state
.imports
.get_or_insert_with(Default::default)
.push(export.name.clone());
Ok(Stmt::Import((expr, export).into(), settings.pos))
}
/// Parse an export statement.
#[cfg(not(feature = "no_module"))]
fn parse_export(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
let mut settings = settings;
settings.pos = eat_token(input, Token::Export);
match input.peek().expect(NEVER_ENDS) {
(Token::Let, pos) => {
let pos = *pos;
let settings = settings.level_up()?;
let mut stmt =
self.parse_let(input, state, lib, settings, AccessMode::ReadWrite, true)?;
stmt.set_position(pos);
return Ok(stmt);
}
(Token::Const, pos) => {
let pos = *pos;
let settings = settings.level_up()?;
let mut stmt =
self.parse_let(input, state, lib, settings, AccessMode::ReadOnly, true)?;
stmt.set_position(pos);
return Ok(stmt);
}
_ => (),
}
let (id, id_pos) = parse_var_name(input)?;
let (alias, alias_pos) = if match_token(input, Token::As).0 {
parse_var_name(input).map(|(name, pos)| (state.get_interned_string(name), pos))?
} else {
(state.get_interned_string(""), Position::NONE)
};
let (existing, hit_barrier) = state.find_var(&id);
if !hit_barrier && existing > 0 {
let stack = state.stack.as_mut().unwrap();
stack.add_alias_by_index(stack.len() - existing, alias.clone());
}
let export = (
Ident {
name: state.get_interned_string(id),
pos: id_pos,
},
Ident {
name: alias,
pos: alias_pos,
},
);
Ok(Stmt::Export(export.into(), settings.pos))
}
/// Parse a statement block.
fn parse_block(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// Must start with {
let mut settings = settings.level_up()?;
settings.pos = match input.next().expect(NEVER_ENDS) {
(Token::LeftBrace, pos) => pos,
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::LeftBrace.into(),
"to start a statement block".into(),
)
.into_err(pos))
}
};
let mut statements = StaticVec::new_const();
if settings.has_flag(ParseSettingFlags::DISALLOW_STATEMENTS_IN_BLOCKS) {
let stmt = self.parse_expr_stmt(input, state, lib, settings)?;
statements.push(stmt);
// Must end with }
return match input.next().expect(NEVER_ENDS) {
(Token::RightBrace, pos) => Ok((statements, settings.pos, pos).into()),
(Token::LexError(err), pos) => Err(err.into_err(pos)),
(.., pos) => Err(PERR::MissingToken(
Token::LeftBrace.into(),
"to start a statement block".into(),
)
.into_err(pos)),
};
}
let prev_entry_stack_len = state.block_stack_len;
state.block_stack_len = state.stack.as_ref().map_or(0, Scope::len);
#[cfg(not(feature = "no_module"))]
let orig_imports_len = state.imports.as_deref().map_or(0, StaticVec::len);
let end_pos = loop {
// Terminated?
match input.peek().expect(NEVER_ENDS) {
(Token::RightBrace, ..) => break eat_token(input, Token::RightBrace),
(Token::EOF, pos) => {
return Err(PERR::MissingToken(
Token::RightBrace.into(),
"to terminate this block".into(),
)
.into_err(*pos));
}
_ => (),
}
// Parse statements inside the block
settings.flags.remove(ParseSettingFlags::GLOBAL_LEVEL);
let stmt = self.parse_stmt(input, state, lib, settings)?;
if stmt.is_noop() {
continue;
}
// See if it needs a terminating semicolon
let need_semicolon = !stmt.is_self_terminated();
statements.push(stmt);
match input.peek().expect(NEVER_ENDS) {
// { ... stmt }
(Token::RightBrace, ..) => break eat_token(input, Token::RightBrace),
// { ... stmt;
(Token::SemiColon, ..) if need_semicolon => {
eat_token(input, Token::SemiColon);
}
// { ... { stmt } ;
(Token::SemiColon, ..) if !need_semicolon => {
eat_token(input, Token::SemiColon);
}
// { ... { stmt } ???
_ if !need_semicolon => (),
// { ... stmt <error>
(Token::LexError(err), err_pos) => return Err(err.clone().into_err(*err_pos)),
// { ... stmt ???
(.., pos) => {
// Semicolons are not optional between statements
return Err(PERR::MissingToken(
Token::SemiColon.into(),
"to terminate this statement".into(),
)
.into_err(*pos));
}
}
};
if let Some(ref mut s) = state.stack {
s.rewind(state.block_stack_len);
}
state.block_stack_len = prev_entry_stack_len;
#[cfg(not(feature = "no_module"))]
if let Some(ref mut imports) = state.imports {
imports.truncate(orig_imports_len);
}
Ok((statements, settings.pos, end_pos).into())
}
/// Parse an expression as a statement.
fn parse_expr_stmt(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
let mut settings = settings;
settings.pos = input.peek().expect(NEVER_ENDS).1;
let expr = self.parse_expr(input, state, lib, settings)?;
let (op, pos) = match input.peek().expect(NEVER_ENDS) {
// var = ...
(Token::Equals, ..) => (None, eat_token(input, Token::Equals)),
// var op= ...
(token, ..) if token.is_op_assignment() => input
.next()
.map(|(op, pos)| (Some(op), pos))
.expect(NEVER_ENDS),
// Not op-assignment
_ => return Ok(Stmt::Expr(expr.into())),
};
settings.pos = pos;
let rhs = self.parse_expr(input, state, lib, settings)?;
Self::make_assignment_stmt(op, state, expr, rhs, pos)
}
/// Parse a single statement.
fn parse_stmt(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
use AccessMode::{ReadOnly, ReadWrite};
let mut settings = settings;
#[cfg(not(feature = "no_function"))]
#[cfg(feature = "metadata")]
let comments = {
let mut comments = StaticVec::<Identifier>::new();
let mut comments_pos = Position::NONE;
let mut buf = Identifier::new();
// Handle doc-comments.
while let (Token::Comment(ref comment), pos) = input.peek().expect(NEVER_ENDS) {
if comments_pos.is_none() {
comments_pos = *pos;
}
if !crate::tokenizer::is_doc_comment(comment) {
unreachable!("doc-comment expected but gets {:?}", comment);
}
if !settings.has_flag(ParseSettingFlags::GLOBAL_LEVEL) {
return Err(PERR::WrongDocComment.into_err(comments_pos));
}
match input.next().expect(NEVER_ENDS) {
(Token::Comment(comment), pos) => {
if comment.contains('\n') {
// Assume block comment
if !buf.is_empty() {
comments.push(buf.clone());
buf.clear();
}
let c =
unindent_block_comment(*comment, pos.position().unwrap_or(1) - 1);
comments.push(c.into());
} else {
if !buf.is_empty() {
buf.push('\n');
}
buf.push_str(&comment);
}
match input.peek().expect(NEVER_ENDS) {
(Token::Fn | Token::Private, ..) => break,
(Token::Comment(..), ..) => (),
_ => return Err(PERR::WrongDocComment.into_err(comments_pos)),
}
}
(token, ..) => unreachable!("Token::Comment expected but gets {:?}", token),
}
}
if !buf.is_empty() {
comments.push(buf);
}
comments
};
let (token, token_pos) = match input.peek().expect(NEVER_ENDS) {
(Token::EOF, pos) => return Ok(Stmt::Noop(*pos)),
(x, pos) => (x, *pos),
};
settings.pos = token_pos;
match token {
// ; - empty statement
Token::SemiColon => {
eat_token(input, Token::SemiColon);
Ok(Stmt::Noop(token_pos))
}
// { - statements block
Token::LeftBrace => Ok(self.parse_block(input, state, lib, settings.level_up()?)?),
// fn ...
#[cfg(not(feature = "no_function"))]
Token::Fn if !settings.has_flag(ParseSettingFlags::GLOBAL_LEVEL) => {
Err(PERR::WrongFnDefinition.into_err(token_pos))
}
#[cfg(not(feature = "no_function"))]
Token::Fn | Token::Private => {
let access = if matches!(token, Token::Private) {
eat_token(input, Token::Private);
crate::FnAccess::Private
} else {
crate::FnAccess::Public
};
match input.next().expect(NEVER_ENDS) {
(Token::Fn, pos) => {
// Build new parse state
let new_state = &mut ParseState::new(
state.external_constants,
state.interned_strings,
state.tokenizer_control.clone(),
);
#[cfg(not(feature = "no_module"))]
{
// Do not allow storing an index to a globally-imported module
// just in case the function is separated from this `AST`.
//
// Keep them in `global_imports` instead so that strict variables
// mode will not complain.
new_state.global_imports.clone_from(&state.global_imports);
new_state
.global_imports
.get_or_insert_with(Default::default)
.extend(state.imports.as_deref().into_iter().flatten().cloned());
}
// Brand new options
let options = self.options | (settings.options & LangOptions::STRICT_VAR);
// Brand new flags, turn on function scope
let flags = ParseSettingFlags::FN_SCOPE
| (settings.flags
& ParseSettingFlags::DISALLOW_UNQUOTED_MAP_PROPERTIES);
let new_settings = ParseSettings {
flags,
level: 0,
options,
pos,
#[cfg(not(feature = "unchecked"))]
max_expr_depth: self.max_function_expr_depth(),
};
let f = self.parse_fn(
input,
new_state,
lib,
new_settings,
access,
#[cfg(feature = "metadata")]
comments,
)?;
let hash = calc_fn_hash(None, &f.name, f.params.len());
#[cfg(not(feature = "no_object"))]
let hash = if let Some(ref this_type) = f.this_type {
crate::calc_typed_method_hash(hash, this_type)
} else {
hash
};
if !lib.is_empty() && lib.contains_key(&hash) {
return Err(PERR::FnDuplicatedDefinition(
f.name.to_string(),
f.params.len(),
)
.into_err(pos));
}
lib.insert(hash, f.into());
Ok(Stmt::Noop(pos))
}
(.., pos) => Err(PERR::MissingToken(
Token::Fn.into(),
format!("following '{}'", Token::Private),
)
.into_err(pos)),
}
}
Token::If => self.parse_if(input, state, lib, settings.level_up()?),
Token::Switch => self.parse_switch(input, state, lib, settings.level_up()?),
Token::While | Token::Loop if self.allow_looping() => {
self.parse_while_loop(input, state, lib, settings.level_up()?)
}
Token::Do if self.allow_looping() => {
self.parse_do(input, state, lib, settings.level_up()?)
}
Token::For if self.allow_looping() => {
self.parse_for(input, state, lib, settings.level_up()?)
}
Token::Continue
if self.allow_looping() && settings.has_flag(ParseSettingFlags::BREAKABLE) =>
{
let pos = eat_token(input, Token::Continue);
Ok(Stmt::BreakLoop(None, ASTFlags::empty(), pos))
}
Token::Break
if self.allow_looping() && settings.has_flag(ParseSettingFlags::BREAKABLE) =>
{
let pos = eat_token(input, Token::Break);
let expr = match input.peek().expect(NEVER_ENDS) {
// `break` at <EOF>
(Token::EOF, ..) => None,
// `break` at end of block
(Token::RightBrace, ..) => None,
// `break;`
(Token::SemiColon, ..) => None,
// `break` with expression
_ => Some(
self.parse_expr(input, state, lib, settings.level_up()?)?
.into(),
),
};
Ok(Stmt::BreakLoop(expr, ASTFlags::BREAK, pos))
}
Token::Continue | Token::Break if self.allow_looping() => {
Err(PERR::LoopBreak.into_err(token_pos))
}
Token::Return | Token::Throw => {
let (return_type, token_pos) = input
.next()
.map(|(token, pos)| {
let flags = match token {
Token::Return => ASTFlags::empty(),
Token::Throw => ASTFlags::BREAK,
token => unreachable!(
"Token::Return or Token::Throw expected but gets {:?}",
token
),
};
(flags, pos)
})
.expect(NEVER_ENDS);
match input.peek().expect(NEVER_ENDS) {
// `return`/`throw` at <EOF>
(Token::EOF, ..) => Ok(Stmt::Return(None, return_type, token_pos)),
// `return`/`throw` at end of block
(Token::RightBrace, ..)
if !settings.has_flag(ParseSettingFlags::GLOBAL_LEVEL) =>
{
Ok(Stmt::Return(None, return_type, token_pos))
}
// `return;` or `throw;`
(Token::SemiColon, ..) => Ok(Stmt::Return(None, return_type, token_pos)),
// `return` or `throw` with expression
_ => {
let expr = self.parse_expr(input, state, lib, settings.level_up()?)?;
Ok(Stmt::Return(Some(expr.into()), return_type, token_pos))
}
}
}
Token::Try => self.parse_try_catch(input, state, lib, settings.level_up()?),
Token::Let => self.parse_let(input, state, lib, settings.level_up()?, ReadWrite, false),
Token::Const => {
self.parse_let(input, state, lib, settings.level_up()?, ReadOnly, false)
}
#[cfg(not(feature = "no_module"))]
Token::Import => self.parse_import(input, state, lib, settings.level_up()?),
#[cfg(not(feature = "no_module"))]
Token::Export if !settings.has_flag(ParseSettingFlags::GLOBAL_LEVEL) => {
Err(PERR::WrongExport.into_err(token_pos))
}
#[cfg(not(feature = "no_module"))]
Token::Export => self.parse_export(input, state, lib, settings.level_up()?),
_ => self.parse_expr_stmt(input, state, lib, settings.level_up()?),
}
}
/// Parse a try/catch statement.
fn parse_try_catch(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
) -> ParseResult<Stmt> {
// try ...
let mut settings = settings.level_up()?;
settings.pos = eat_token(input, Token::Try);
// try { try_block }
let body = self.parse_block(input, state, lib, settings)?.into();
// try { try_block } catch
let (matched, catch_pos) = match_token(input, Token::Catch);
if !matched {
return Err(
PERR::MissingToken(Token::Catch.into(), "for the 'try' statement".into())
.into_err(catch_pos),
);
}
// try { try_block } catch (
let catch_var = if match_token(input, Token::LeftParen).0 {
let (name, pos) = parse_var_name(input)?;
let (matched, err_pos) = match_token(input, Token::RightParen);
if !matched {
return Err(PERR::MissingToken(
Token::RightParen.into(),
"to enclose the catch variable".into(),
)
.into_err(err_pos));
}
let name = state.get_interned_string(name);
state
.stack
.get_or_insert_with(Default::default)
.push(name.clone(), ());
Ident { name, pos }
} else {
Ident {
name: state.get_interned_string(""),
pos: Position::NONE,
}
};
// try { try_block } catch ( var ) { catch_block }
let branch = self.parse_block(input, state, lib, settings)?.into();
let expr = if catch_var.is_empty() {
Expr::Unit(catch_var.pos)
} else {
// Remove the error variable from the stack
state.stack.as_mut().unwrap().pop();
Expr::Variable(
(None, Namespace::default(), 0, catch_var.name).into(),
None,
catch_var.pos,
)
};
Ok(Stmt::TryCatch(
FlowControl { expr, body, branch }.into(),
settings.pos,
))
}
/// Parse a function definition.
#[cfg(not(feature = "no_function"))]
fn parse_fn(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
access: crate::FnAccess,
#[cfg(feature = "metadata")] comments: impl IntoIterator<Item = Identifier>,
) -> ParseResult<ScriptFnDef> {
let settings = settings.level_up()?;
let (token, pos) = input.next().expect(NEVER_ENDS);
// Parse type for `this` pointer
#[cfg(not(feature = "no_object"))]
let ((token, pos), this_type) = {
let (next_token, next_pos) = input.peek().expect(NEVER_ENDS);
match token {
Token::StringConstant(s) if next_token == &Token::Period => {
eat_token(input, Token::Period);
let s = match s.as_str() {
"int" => state.get_interned_string(std::any::type_name::<crate::INT>()),
#[cfg(not(feature = "no_float"))]
"float" => state.get_interned_string(std::any::type_name::<crate::FLOAT>()),
_ => state.get_interned_string(*s),
};
(input.next().expect(NEVER_ENDS), Some(s))
}
Token::StringConstant(..) => {
return Err(PERR::MissingToken(
Token::Period.into(),
"after the type name for 'this'".into(),
)
.into_err(*next_pos))
}
Token::Identifier(s) if next_token == &Token::Period => {
eat_token(input, Token::Period);
let s = match s.as_str() {
"int" => state.get_interned_string(std::any::type_name::<crate::INT>()),
#[cfg(not(feature = "no_float"))]
"float" => state.get_interned_string(std::any::type_name::<crate::FLOAT>()),
_ => state.get_interned_string(*s),
};
(input.next().expect(NEVER_ENDS), Some(s))
}
_ => ((token, pos), None),
}
};
let name = match token.into_function_name_for_override() {
Ok(r) => r,
Err(Token::Reserved(s)) => return Err(PERR::Reserved(s.to_string()).into_err(pos)),
Err(_) => return Err(PERR::FnMissingName.into_err(pos)),
};
let no_params = match input.peek().expect(NEVER_ENDS) {
(Token::LeftParen, ..) => {
eat_token(input, Token::LeftParen);
match_token(input, Token::RightParen).0
}
(Token::Unit, ..) => {
eat_token(input, Token::Unit);
true
}
(.., pos) => return Err(PERR::FnMissingParams(name.into()).into_err(*pos)),
};
let mut params = StaticVec::<(ImmutableString, _)>::new_const();
if !no_params {
let sep_err = format!("to separate the parameters of function '{name}'");
loop {
match input.next().expect(NEVER_ENDS) {
(Token::RightParen, ..) => break,
(Token::Identifier(s), pos) => {
if params.iter().any(|(p, _)| p.as_str() == *s) {
return Err(
PERR::FnDuplicatedParam(name.into(), s.to_string()).into_err(pos)
);
}
let s = state.get_interned_string(*s);
state
.stack
.get_or_insert_with(Default::default)
.push(s.clone(), ());
params.push((s, pos));
}
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::RightParen.into(),
format!("to close the parameters list of function '{name}'"),
)
.into_err(pos))
}
}
match input.next().expect(NEVER_ENDS) {
(Token::RightParen, ..) => break,
(Token::Comma, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(Token::Comma.into(), sep_err).into_err(pos))
}
}
}
}
// Parse function body
let body = match input.peek().expect(NEVER_ENDS) {
(Token::LeftBrace, ..) => self.parse_block(input, state, lib, settings)?,
(.., pos) => return Err(PERR::FnMissingBody(name.into()).into_err(*pos)),
}
.into();
let mut params: crate::FnArgsVec<_> = params.into_iter().map(|(p, ..)| p).collect();
params.shrink_to_fit();
Ok(ScriptFnDef {
name: state.get_interned_string(name),
access,
#[cfg(not(feature = "no_object"))]
this_type,
params,
body,
#[cfg(feature = "metadata")]
comments: comments.into_iter().collect(),
})
}
/// Creates a curried expression from a list of external variables
#[cfg(not(feature = "no_function"))]
#[cfg(not(feature = "no_closure"))]
fn make_curry_from_externals(
state: &mut ParseState,
parent: &mut ParseState,
lib: &FnLib,
fn_expr: Expr,
externals: crate::FnArgsVec<Ident>,
pos: Position,
) -> Expr {
// If there are no captured variables, no need to curry
if externals.is_empty() {
return fn_expr;
}
let num_externals = externals.len();
let mut args = FnArgsVec::with_capacity(externals.len() + 1);
args.push(fn_expr);
args.extend(externals.iter().cloned().map(|Ident { name, pos }| {
let (index, is_func) = parent.access_var(&name, lib, pos);
let idx = match index {
#[allow(clippy::cast_possible_truncation)]
Some(n) if !is_func && n.get() <= u8::MAX as usize => NonZeroU8::new(n.get() as u8),
_ => None,
};
Expr::Variable((index, Namespace::default(), 0, name).into(), idx, pos)
}));
let expr = FnCallExpr {
namespace: Namespace::NONE,
name: state.get_interned_string(crate::engine::KEYWORD_FN_PTR_CURRY),
hashes: FnCallHashes::from_native_only(calc_fn_hash(
None,
crate::engine::KEYWORD_FN_PTR_CURRY,
num_externals + 1,
)),
args,
op_token: None,
capture_parent_scope: false,
}
.into_fn_call_expr(pos);
// Convert the entire expression into a statement block, then insert the relevant
// [`Share`][Stmt::Share] statements.
let mut statements = StaticVec::with_capacity(2);
statements.push(Stmt::Share(
externals
.into_iter()
.map(|var| {
let (index, _) = parent.access_var(&var.name, lib, var.pos);
(var, index)
})
.collect::<crate::FnArgsVec<_>>()
.into(),
));
statements.push(Stmt::Expr(expr.into()));
Expr::Stmt(StmtBlock::new(statements, pos, Position::NONE).into())
}
/// Parse an anonymous function definition.
#[cfg(not(feature = "no_function"))]
fn parse_anon_fn(
&self,
input: &mut TokenStream,
state: &mut ParseState,
lib: &mut FnLib,
settings: ParseSettings,
_parent: &mut ParseState,
) -> ParseResult<(Expr, Shared<ScriptFnDef>)> {
let settings = settings.level_up()?;
let mut params_list = StaticVec::<ImmutableString>::new_const();
if input.next().expect(NEVER_ENDS).0 != Token::Or && !match_token(input, Token::Pipe).0 {
loop {
match input.next().expect(NEVER_ENDS) {
(Token::Pipe, ..) => break,
(Token::Identifier(s), pos) => {
if params_list.iter().any(|p| p.as_str() == *s) {
return Err(
PERR::FnDuplicatedParam(String::new(), s.to_string()).into_err(pos)
);
}
let s = state.get_interned_string(*s);
state
.stack
.get_or_insert_with(Default::default)
.push(s.clone(), ());
params_list.push(s);
}
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::Pipe.into(),
"to close the parameters list of anonymous function or closure".into(),
)
.into_err(pos))
}
}
match input.next().expect(NEVER_ENDS) {
(Token::Pipe, ..) => break,
(Token::Comma, ..) => (),
(Token::LexError(err), pos) => return Err(err.into_err(pos)),
(.., pos) => {
return Err(PERR::MissingToken(
Token::Comma.into(),
"to separate the parameters of anonymous function".into(),
)
.into_err(pos))
}
}
}
}
// Parse function body
let body = self.parse_stmt(input, state, lib, settings)?;
// External variables may need to be processed in a consistent order,
// so extract them into a list.
#[cfg(not(feature = "no_closure"))]
let (mut params, externals) = if let Some(ref external_vars) = state.external_vars {
let externals: crate::FnArgsVec<_> = external_vars.iter().cloned().collect();
let mut params = crate::FnArgsVec::with_capacity(params_list.len() + externals.len());
params.extend(externals.iter().map(|Ident { name, .. }| name.clone()));
(params, externals)
} else {
(
crate::FnArgsVec::with_capacity(params_list.len()),
crate::FnArgsVec::new_const(),
)
};
#[cfg(feature = "no_closure")]
let mut params = crate::FnArgsVec::with_capacity(params_list.len());
params.append(&mut params_list);
// Create unique function name by hashing the script body plus the parameters.
let hasher = &mut get_hasher();
params.iter().for_each(|p| p.hash(hasher));
body.hash(hasher);
let hash = hasher.finish();
let fn_name = state.get_interned_string(make_anonymous_fn(hash));
// Define the function
let script = Shared::new(ScriptFnDef {
name: fn_name.clone(),
access: crate::FnAccess::Public,
#[cfg(not(feature = "no_object"))]
this_type: None,
params,
body: body.into(),
#[cfg(not(feature = "no_function"))]
#[cfg(feature = "metadata")]
comments: Box::default(),
});
let mut fn_ptr = crate::FnPtr::new_unchecked(fn_name, StaticVec::new_const());
fn_ptr.set_fn_def(Some(script.clone()));
let expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), settings.pos);
#[cfg(not(feature = "no_closure"))]
let expr =
Self::make_curry_from_externals(state, _parent, lib, expr, externals, settings.pos);
Ok((expr, script))
}
/// Parse a global level expression.
pub(crate) fn parse_global_expr(
&self,
mut input: TokenStream,
state: &mut ParseState,
process_settings: impl FnOnce(&mut ParseSettings),
_optimization_level: OptimizationLevel,
) -> ParseResult<AST> {
let mut functions = StraightHashMap::default();
let options = self.options & !LangOptions::STMT_EXPR & !LangOptions::LOOP_EXPR;
let mut settings = ParseSettings {
level: 0,
flags: ParseSettingFlags::GLOBAL_LEVEL
| ParseSettingFlags::DISALLOW_STATEMENTS_IN_BLOCKS,
options,
pos: Position::START,
#[cfg(not(feature = "unchecked"))]
max_expr_depth: self.max_expr_depth(),
};
process_settings(&mut settings);
let expr = self.parse_expr(&mut input, state, &mut functions, settings)?;
#[cfg(feature = "no_function")]
debug_assert!(functions.is_empty());
match input.peek().expect(NEVER_ENDS) {
(Token::EOF, ..) => (),
// Return error if the expression doesn't end
(token, pos) => return Err(LexError::UnexpectedInput(token.to_string()).into_err(*pos)),
}
let mut statements = StmtBlockContainer::new_const();
statements.push(Stmt::Expr(expr.into()));
#[cfg(not(feature = "no_optimize"))]
return Ok(self.optimize_into_ast(
state.external_constants,
statements,
#[cfg(not(feature = "no_function"))]
functions.into_iter().map(|(.., v)| v).collect(),
_optimization_level,
));
#[cfg(feature = "no_optimize")]
return Ok(AST::new(
statements,
#[cfg(not(feature = "no_function"))]
crate::Module::from(functions.into_iter().map(|(.., v)| v)),
));
}
/// Parse the global level statements.
fn parse_global_level(
&self,
mut input: TokenStream,
state: &mut ParseState,
process_settings: impl FnOnce(&mut ParseSettings),
) -> ParseResult<(StmtBlockContainer, StaticVec<Shared<ScriptFnDef>>)> {
let mut statements = StmtBlockContainer::new_const();
let mut functions = StraightHashMap::default();
let mut settings = ParseSettings {
level: 0,
flags: ParseSettingFlags::GLOBAL_LEVEL,
options: self.options,
pos: Position::START,
#[cfg(not(feature = "unchecked"))]
max_expr_depth: self.max_expr_depth(),
};
process_settings(&mut settings);
while input.peek().expect(NEVER_ENDS).0 != Token::EOF {
let stmt = self.parse_stmt(&mut input, state, &mut functions, settings)?;
if stmt.is_noop() {
continue;
}
let need_semicolon = !stmt.is_self_terminated();
statements.push(stmt);
match input.peek().expect(NEVER_ENDS) {
// EOF
(Token::EOF, ..) => break,
// stmt ;
(Token::SemiColon, ..) if need_semicolon => {
eat_token(&mut input, Token::SemiColon);
}
// stmt ;
(Token::SemiColon, ..) if !need_semicolon => (),
// { stmt } ???
_ if !need_semicolon => (),
// stmt <error>
(Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)),
// stmt ???
(.., pos) => {
// Semicolons are not optional between statements
return Err(PERR::MissingToken(
Token::SemiColon.into(),
"to terminate this statement".into(),
)
.into_err(*pos));
}
}
}
Ok((statements, functions.into_iter().map(|(.., v)| v).collect()))
}
/// Run the parser on an input stream, returning an AST.
#[inline]
pub(crate) fn parse(
&self,
input: TokenStream,
state: &mut ParseState,
_optimization_level: OptimizationLevel,
) -> ParseResult<AST> {
let (statements, _lib) = self.parse_global_level(input, state, |_| {})?;
#[cfg(not(feature = "no_optimize"))]
return Ok(self.optimize_into_ast(
state.external_constants,
statements,
#[cfg(not(feature = "no_function"))]
_lib,
_optimization_level,
));
#[cfg(feature = "no_optimize")]
#[cfg(not(feature = "no_function"))]
{
let mut m = crate::Module::new();
_lib.into_iter().for_each(|fn_def| {
m.set_script_fn(fn_def);
});
return Ok(AST::new(statements, m));
}
#[cfg(feature = "no_optimize")]
#[cfg(feature = "no_function")]
return Ok(AST::new(
statements,
#[cfg(not(feature = "no_function"))]
crate::Module::new(),
));
}
}