//! Module implementing the [`AST`] optimizer. #![cfg(not(feature = "no_optimize"))] use crate::ast::{ASTFlags, Expr, OpAssignment, Stmt, StmtBlock, StmtBlockContainer, SwitchCases}; use crate::engine::{KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF}; use crate::eval::{Caches, GlobalRuntimeState}; use crate::func::builtin::get_builtin_binary_op_fn; use crate::func::hashing::get_hasher; use crate::tokenizer::{Span, Token}; use crate::types::dynamic::AccessMode; use crate::{ calc_fn_hash, calc_fn_params_hash, combine_hashes, Dynamic, Engine, FnPtr, Identifier, Position, Scope, StaticVec, AST, INT, INT_BITS, }; #[cfg(feature = "no_std")] use std::prelude::v1::*; use std::{ any::TypeId, convert::TryFrom, hash::{Hash, Hasher}, mem, }; /// Level of optimization performed. #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] #[non_exhaustive] pub enum OptimizationLevel { /// No optimization performed. None, /// Only perform simple optimizations without evaluating functions. Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects as it essentially assumes that all functions are pure. Full, } impl Default for OptimizationLevel { #[inline(always)] fn default() -> Self { Self::Simple } } /// Mutable state throughout an optimization pass. #[derive(Debug, Clone)] struct OptimizerState<'a> { /// Has the [`AST`] been changed during this pass? changed: bool, /// Collection of constants to use for eager function evaluations. variables: StaticVec<(Identifier, AccessMode, Option)>, /// Activate constants propagation? propagate_constants: bool, /// An [`Engine`] instance for eager function evaluation. engine: &'a Engine, /// The global runtime state. global: GlobalRuntimeState<'a>, /// Function resolution caches. caches: Caches, /// [Module][crate::Module] containing script-defined functions. #[cfg(not(feature = "no_function"))] lib: &'a [&'a crate::Module], /// Optimization level. optimization_level: OptimizationLevel, } impl<'a> OptimizerState<'a> { /// Create a new State. #[inline(always)] pub fn new( engine: &'a Engine, #[cfg(not(feature = "no_function"))] lib: &'a [&'a crate::Module], optimization_level: OptimizationLevel, ) -> Self { Self { changed: false, variables: StaticVec::new_const(), propagate_constants: true, engine, global: GlobalRuntimeState::new(engine), caches: Caches::new(), #[cfg(not(feature = "no_function"))] lib, optimization_level, } } /// Set the [`AST`] state to be dirty (i.e. changed). #[inline(always)] pub fn set_dirty(&mut self) { self.changed = true; } /// Set the [`AST`] state to be not dirty (i.e. unchanged). #[inline(always)] pub fn clear_dirty(&mut self) { self.changed = false; } /// Is the [`AST`] dirty (i.e. changed)? #[inline(always)] pub const fn is_dirty(&self) -> bool { self.changed } /// Prune the list of constants back to a specified size. #[inline(always)] pub fn restore_var(&mut self, len: usize) { self.variables.truncate(len) } /// Add a new variable to the list. #[inline(always)] pub fn push_var( &mut self, name: impl Into, access: AccessMode, value: Option, ) { self.variables.push((name.into(), access, value)) } /// Look up a constant from the list. #[inline] pub fn find_constant(&self, name: &str) -> Option<&Dynamic> { if !self.propagate_constants { return None; } for (n, access, value) in self.variables.iter().rev() { if n == name { return match access { AccessMode::ReadWrite => None, AccessMode::ReadOnly => value.as_ref(), }; } } None } /// Call a registered function #[inline] pub fn call_fn_with_constant_arguments( &mut self, fn_name: &str, arg_values: &mut [Dynamic], ) -> Option { #[cfg(not(feature = "no_function"))] let lib = self.lib; #[cfg(feature = "no_function")] let lib = &[]; self.engine .call_native_fn( &mut self.global, &mut self.caches, lib, fn_name, calc_fn_hash(&fn_name, arg_values.len()), &mut arg_values.iter_mut().collect::>(), false, false, Position::NONE, 0, ) .ok() .map(|(v, ..)| v) } } // Has a system function a Rust-native override? fn has_native_fn_override( engine: &Engine, hash_script: u64, arg_types: impl AsRef<[TypeId]>, ) -> bool { let hash_params = calc_fn_params_hash(arg_types.as_ref().iter().cloned()); let hash = combine_hashes(hash_script, hash_params); // First check the global namespace and packages, but skip modules that are standard because // they should never conflict with system functions. let result = engine .global_modules .iter() .filter(|m| !m.standard) .any(|m| m.contains_fn(hash)); #[cfg(not(feature = "no_module"))] // Then check sub-modules let result = result || engine .global_sub_modules .values() .any(|m| m.contains_qualified_fn(hash)); result } /// Optimize a block of [statements][Stmt]. fn optimize_stmt_block( mut statements: StmtBlockContainer, state: &mut OptimizerState, preserve_result: bool, is_internal: bool, reduce_return: bool, ) -> StmtBlockContainer { if statements.is_empty() { return statements; } let mut is_dirty = state.is_dirty(); let is_pure = if is_internal { Stmt::is_internally_pure } else { Stmt::is_pure }; // Flatten blocks loop { if let Some(n) = statements.iter().enumerate().find_map(|(i, s)| match s { Stmt::Block(block, ..) if !block.iter().any(Stmt::is_block_dependent) => Some(i), _ => None, }) { let (first, second) = statements.split_at_mut(n); let stmt = mem::take(&mut second[0]); let mut stmts = match stmt { Stmt::Block(block, ..) => block, stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt), }; statements = first .iter_mut() .map(mem::take) .chain(stmts.iter_mut().map(mem::take)) .chain(second.iter_mut().skip(1).map(mem::take)) .collect(); } else { break; } is_dirty = true; } // Optimize loop { state.clear_dirty(); let orig_constants_len = state.variables.len(); // Original number of constants in the state, for restore later let orig_propagate_constants = state.propagate_constants; // Remove everything following control flow breaking statements let mut dead_code = false; statements.retain(|stmt| { if dead_code { state.set_dirty(); false } else if stmt.is_control_flow_break() { dead_code = true; true } else { true } }); // Optimize each statement in the block for stmt in statements.iter_mut() { match stmt { Stmt::Var(x, options, ..) => { if options.contains(ASTFlags::CONSTANT) { // Add constant literals into the state optimize_expr(&mut x.1, state, false); if x.1.is_constant() { state.push_var( x.0.as_str(), AccessMode::ReadOnly, x.1.get_literal_value(), ); } } else { // Add variables into the state optimize_expr(&mut x.1, state, false); state.push_var(x.0.as_str(), AccessMode::ReadWrite, None); } } // Optimize the statement _ => optimize_stmt(stmt, state, preserve_result), } } // Remove all pure statements except the last one let mut index = 0; let mut first_non_constant = statements .iter() .rev() .enumerate() .find_map(|(i, stmt)| match stmt { stmt if !is_pure(stmt) => Some(i), Stmt::Var(x, ..) if x.1.is_constant() => Some(i), Stmt::Expr(e) if !e.is_constant() => Some(i), #[cfg(not(feature = "no_module"))] Stmt::Import(x, ..) if !x.0.is_constant() => Some(i), _ => None, }) .map_or(0, |n| statements.len() - n - 1); while index < statements.len() { if preserve_result && index >= statements.len() - 1 { break; } else { match statements[index] { ref stmt if is_pure(stmt) && index >= first_non_constant => { state.set_dirty(); statements.remove(index); } ref stmt if stmt.is_pure() => { state.set_dirty(); if index < first_non_constant { first_non_constant -= 1; } statements.remove(index); } _ => index += 1, } } } // Remove all pure statements that do not return values at the end of a block. // We cannot remove anything for non-pure statements due to potential side-effects. if preserve_result { loop { match statements[..] { // { return; } -> {} [Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); statements.clear(); } [ref stmt] if !stmt.returns_value() && is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., ref last_stmt, Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) && !last_stmt.returns_value() => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return val; } -> { ...; val } [.., Stmt::Return(ref mut expr, options, pos)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); *statements.last_mut().unwrap() = expr .as_mut() .map_or_else(|| Stmt::Noop(pos), |e| Stmt::Expr(mem::take(e))); } // { ...; stmt; noop } -> done [.., ref second_last_stmt, Stmt::Noop(..)] if second_last_stmt.returns_value() => { break } // { ...; stmt_that_returns; pure_non_value_stmt } -> { ...; stmt_that_returns; noop } // { ...; stmt; pure_non_value_stmt } -> { ...; stmt } [.., ref second_last_stmt, ref last_stmt] if !last_stmt.returns_value() && is_pure(last_stmt) => { state.set_dirty(); if second_last_stmt.returns_value() { *statements.last_mut().unwrap() = Stmt::Noop(last_stmt.position()); } else { statements.pop().unwrap(); } } _ => break, } } } else { loop { match statements[..] { [ref stmt] if is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return pure_val; } -> { ... } [.., Stmt::Return(Some(ref expr), options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) && expr.is_pure() => { state.set_dirty(); statements.pop().unwrap(); } [.., ref last_stmt] if is_pure(last_stmt) => { state.set_dirty(); statements.pop().unwrap(); } _ => break, } } } // Pop the stack and remove all the local constants state.restore_var(orig_constants_len); state.propagate_constants = orig_propagate_constants; if !state.is_dirty() { break; } is_dirty = true; } if is_dirty { state.set_dirty(); } statements.shrink_to_fit(); statements } /// Optimize a [statement][Stmt]. fn optimize_stmt(stmt: &mut Stmt, state: &mut OptimizerState, preserve_result: bool) { match stmt { // var = var op expr => var op= expr Stmt::Assignment(x, ..) if !x.0.is_op_assignment() && x.1.lhs.is_variable_access(true) && matches!(&x.1.rhs, Expr::FnCall(x2, ..) if Token::lookup_from_syntax(&x2.name).map(|t| t.has_op_assignment()).unwrap_or(false) && x2.args.len() == 2 && x2.args[0].get_variable_name(true) == x.1.lhs.get_variable_name(true) ) => { match x.1.rhs { Expr::FnCall(ref mut x2, ..) => { state.set_dirty(); x.0 = OpAssignment::new_op_assignment_from_base(&x2.name, x2.pos); x.1.rhs = mem::take(&mut x2.args[1]); } ref expr => unreachable!("Expr::FnCall expected but gets {:?}", expr), } } // expr op= expr Stmt::Assignment(x, ..) => { if !x.1.lhs.is_variable_access(false) { optimize_expr(&mut x.1.lhs, state, false); } optimize_expr(&mut x.1.rhs, state, false); } // if expr {} Stmt::If(x, ..) if x.1.is_empty() && x.2.is_empty() => { let condition = &mut x.0; state.set_dirty(); let pos = condition.start_position(); let mut expr = mem::take(condition); optimize_expr(&mut expr, state, false); *stmt = if preserve_result { // -> { expr, Noop } ( [Stmt::Expr(expr.into()), Stmt::Noop(pos)], pos, Position::NONE, ) .into() } else { // -> expr Stmt::Expr(expr.into()) }; } // if false { if_block } -> Noop Stmt::If(x, ..) if matches!(x.0, Expr::BoolConstant(false, ..)) && x.2.is_empty() => { if let Expr::BoolConstant(false, pos) = x.0 { state.set_dirty(); *stmt = Stmt::Noop(pos); } else { unreachable!("`Expr::BoolConstant`"); } } // if false { if_block } else { else_block } -> else_block Stmt::If(x, ..) if matches!(x.0, Expr::BoolConstant(false, ..)) => { state.set_dirty(); *stmt = match optimize_stmt_block(mem::take(&mut *x.2), state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.2.position()), statements => (statements, x.2.span()).into(), } } // if true { if_block } else { else_block } -> if_block Stmt::If(x, ..) if matches!(x.0, Expr::BoolConstant(true, ..)) => { state.set_dirty(); *stmt = match optimize_stmt_block(mem::take(&mut *x.1), state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.1.position()), statements => (statements, x.1.span()).into(), } } // if expr { if_block } else { else_block } Stmt::If(x, ..) => { let (condition, body, other) = x.as_mut(); optimize_expr(condition, state, false); **body = optimize_stmt_block(mem::take(&mut **body), state, preserve_result, true, false); **other = optimize_stmt_block(mem::take(&mut **other), state, preserve_result, true, false); } // switch const { ... } Stmt::Switch(x, pos) if x.0.is_constant() => { let ( match_expr, SwitchCases { cases, ranges, def_case, }, ) = x.as_mut(); let value = match_expr.get_literal_value().unwrap(); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); // First check hashes if let Some(block) = cases.get_mut(&hash) { match mem::take(&mut block.condition) { Expr::BoolConstant(true, ..) => { // Promote the matched case let statements = optimize_stmt_block( mem::take(&mut block.statements), state, true, true, false, ); *stmt = (statements, block.statements.span()).into(); } mut condition => { // switch const { case if condition => stmt, _ => def } => if condition { stmt } else { def } optimize_expr(&mut condition, state, false); let def_stmt = optimize_stmt_block(mem::take(def_case), state, true, true, false); *stmt = Stmt::If( ( condition, mem::take(&mut block.statements), StmtBlock::new_with_span( def_stmt, def_case.span_or_else(*pos, Position::NONE), ), ) .into(), match_expr.start_position(), ); } } state.set_dirty(); return; } // Then check ranges if value.is::() && !ranges.is_empty() { let value = value.as_int().expect("`INT`"); // Only one range or all ranges without conditions if ranges.len() == 1 || ranges .iter() .all(|(.., c)| matches!(c.condition, Expr::BoolConstant(true, ..))) { for (.., block) in ranges .iter_mut() .filter(|&&mut (start, end, inclusive, ..)| { (!inclusive && (start..end).contains(&value)) || (inclusive && (start..=end).contains(&value)) }) { match mem::take(&mut block.condition) { Expr::BoolConstant(true, ..) => { // Promote the matched case let statements = mem::take(&mut *block.statements); let statements = optimize_stmt_block(statements, state, true, true, false); *stmt = (statements, block.statements.span()).into(); } mut condition => { // switch const { range if condition => stmt, _ => def } => if condition { stmt } else { def } optimize_expr(&mut condition, state, false); let def_stmt = optimize_stmt_block( mem::take(def_case), state, true, true, false, ); *stmt = Stmt::If( ( condition, mem::take(&mut block.statements), StmtBlock::new_with_span( def_stmt, def_case.span_or_else(*pos, Position::NONE), ), ) .into(), match_expr.start_position(), ); } } state.set_dirty(); return; } } else { // Multiple ranges - clear the table and just keep the right ranges if !cases.is_empty() { state.set_dirty(); cases.clear(); } let old_ranges_len = ranges.len(); ranges.retain(|&mut (start, end, inclusive, ..)| { (!inclusive && (start..end).contains(&value)) || (inclusive && (start..=end).contains(&value)) }); if ranges.len() != old_ranges_len { state.set_dirty(); } for (.., block) in ranges.iter_mut() { let statements = mem::take(&mut *block.statements); *block.statements = optimize_stmt_block(statements, state, preserve_result, true, false); optimize_expr(&mut block.condition, state, false); match block.condition { Expr::Unit(pos) => { block.condition = Expr::BoolConstant(true, pos); state.set_dirty() } _ => (), } } return; } } // Promote the default case state.set_dirty(); let def_stmt = optimize_stmt_block(mem::take(def_case), state, true, true, false); *stmt = (def_stmt, def_case.span_or_else(*pos, Position::NONE)).into(); } // switch Stmt::Switch(x, ..) => { let ( match_expr, SwitchCases { cases, ranges, def_case, .. }, ) = x.as_mut(); optimize_expr(match_expr, state, false); // Optimize cases for block in cases.values_mut() { let statements = mem::take(&mut *block.statements); *block.statements = optimize_stmt_block(statements, state, preserve_result, true, false); optimize_expr(&mut block.condition, state, false); match block.condition { Expr::Unit(pos) => { block.condition = Expr::BoolConstant(true, pos); state.set_dirty(); } _ => (), } } // Remove false cases cases.retain(|_, block| match block.condition { Expr::BoolConstant(false, ..) => { state.set_dirty(); false } _ => true, }); // Optimize ranges for (.., block) in ranges.iter_mut() { let statements = mem::take(&mut *block.statements); *block.statements = optimize_stmt_block(statements, state, preserve_result, true, false); optimize_expr(&mut block.condition, state, false); match block.condition { Expr::Unit(pos) => { block.condition = Expr::BoolConstant(true, pos); state.set_dirty(); } _ => (), } } // Remove false ranges ranges.retain(|(.., block)| match block.condition { Expr::BoolConstant(false, ..) => { state.set_dirty(); false } _ => true, }); let def_block = mem::take(&mut ***def_case); ***def_case = optimize_stmt_block(def_block, state, preserve_result, true, false); } // while false { block } -> Noop Stmt::While(x, ..) if matches!(x.0, Expr::BoolConstant(false, ..)) => match x.0 { Expr::BoolConstant(false, pos) => { state.set_dirty(); *stmt = Stmt::Noop(pos) } _ => unreachable!("`Expr::BoolConstant"), }, // while expr { block } Stmt::While(x, ..) => { let (condition, body) = x.as_mut(); optimize_expr(condition, state, false); if let Expr::BoolConstant(true, pos) = condition { *condition = Expr::Unit(*pos); } **body = optimize_stmt_block(mem::take(&mut **body), state, false, true, false); if body.len() == 1 { match body[0] { // while expr { break; } -> { expr; } Stmt::BreakLoop(options, pos) if options.contains(ASTFlags::BREAK) => { // Only a single break statement - turn into running the guard expression once state.set_dirty(); if !condition.is_unit() { let mut statements = vec![Stmt::Expr(mem::take(condition).into())]; if preserve_result { statements.push(Stmt::Noop(pos)) } *stmt = (statements, Span::new(pos, Position::NONE)).into(); } else { *stmt = Stmt::Noop(pos); }; } _ => (), } } } // do { block } until true -> { block } Stmt::Do(x, options, ..) if matches!(x.0, Expr::BoolConstant(true, ..)) && options.contains(ASTFlags::NEGATED) => { state.set_dirty(); *stmt = ( optimize_stmt_block(mem::take(&mut *x.1), state, false, true, false), x.1.span(), ) .into(); } // do { block } while false -> { block } Stmt::Do(x, options, ..) if matches!(x.0, Expr::BoolConstant(false, ..)) && !options.contains(ASTFlags::NEGATED) => { state.set_dirty(); *stmt = ( optimize_stmt_block(mem::take(&mut *x.1), state, false, true, false), x.1.span(), ) .into(); } // do { block } while|until expr Stmt::Do(x, ..) => { optimize_expr(&mut x.0, state, false); *x.1 = optimize_stmt_block(mem::take(&mut *x.1), state, false, true, false); } // for id in expr { block } Stmt::For(x, ..) => { optimize_expr(&mut x.2, state, false); *x.3 = optimize_stmt_block(mem::take(&mut *x.3), state, false, true, false); } // let id = expr; Stmt::Var(x, options, ..) if !options.contains(ASTFlags::CONSTANT) => { optimize_expr(&mut x.1, state, false) } // import expr as var; #[cfg(not(feature = "no_module"))] Stmt::Import(x, ..) => optimize_expr(&mut x.0, state, false), // { block } Stmt::Block(block) => { let span = block.span(); let statements = block.take_statements().into_vec().into(); let mut block = optimize_stmt_block(statements, state, preserve_result, true, false); match block.as_mut_slice() { [] => { state.set_dirty(); *stmt = Stmt::Noop(span.start()); } // Only one statement which is not block-dependent - promote [s] if !s.is_block_dependent() => { state.set_dirty(); *stmt = mem::take(s); } _ => *stmt = (block, span).into(), } } // try { pure try_block } catch ( var ) { catch_block } -> try_block Stmt::TryCatch(x, ..) if x.try_block.iter().all(Stmt::is_pure) => { // If try block is pure, there will never be any exceptions state.set_dirty(); *stmt = ( optimize_stmt_block(mem::take(&mut *x.try_block), state, false, true, false), x.try_block.span(), ) .into(); } // try { try_block } catch ( var ) { catch_block } Stmt::TryCatch(x, ..) => { *x.try_block = optimize_stmt_block(mem::take(&mut *x.try_block), state, false, true, false); *x.catch_block = optimize_stmt_block(mem::take(&mut *x.catch_block), state, false, true, false); } Stmt::Expr(expr) => { optimize_expr(expr, state, false); match expr.as_mut() { // func(...) Expr::FnCall(x, pos) => { state.set_dirty(); *stmt = Stmt::FnCall(mem::take(x), *pos); } // {...}; Expr::Stmt(x) => { if x.is_empty() { state.set_dirty(); *stmt = Stmt::Noop(x.position()); } else { state.set_dirty(); *stmt = mem::take(&mut **x).into(); } } // expr; _ => (), } } // return expr; Stmt::Return(Some(ref mut expr), ..) => optimize_expr(expr, state, false), // All other statements - skip _ => (), } } /// Optimize an [expression][Expr]. fn optimize_expr(expr: &mut Expr, state: &mut OptimizerState, _chaining: bool) { // These keywords are handled specially const DONT_EVAL_KEYWORDS: &[&str] = &[ KEYWORD_PRINT, // side effects KEYWORD_DEBUG, // side effects KEYWORD_EVAL, // arbitrary scripts ]; match expr { // {} Expr::Stmt(x) if x.is_empty() => { state.set_dirty(); *expr = Expr::Unit(x.position()) } // { stmt; ... } - do not count promotion as dirty because it gets turned back into an array Expr::Stmt(x) => { ***x = optimize_stmt_block(mem::take(&mut **x), state, true, true, false); // { Stmt(Expr) } - promote match x.as_mut().as_mut() { [ Stmt::Expr(e) ] => { state.set_dirty(); *expr = mem::take(e); } _ => () } } // lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x,_, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // map.string (Expr::Map(m, pos), Expr::Property(p, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => { let prop = p.2.as_str(); // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == prop) .map(|(.., mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // var.rhs (Expr::Variable(..), rhs) => optimize_expr(rhs, state, true), // lhs.rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } } // ....lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x,_, ..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // lhs[rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // array[int] (Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let mut result = mem::take(&mut a[*i as usize]); result.set_position(*pos); *expr = result; } // array[-int] (Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.checked_abs().map(|n| n as usize <= a.len()).unwrap_or(false) && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let index = a.len() - i.abs() as usize; let mut result = mem::take(&mut a[index]); result.set_position(*pos); *expr = result; } // map[string] (Expr::Map(m, pos), Expr::StringConstant(s, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => { // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == s.as_str()) .map(|(.., mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // int[int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && (*i as usize) < INT_BITS => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (*i as usize))) != 0, *pos); } // int[-int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.checked_abs().map(|i| i as usize <= INT_BITS).unwrap_or(false) => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (INT_BITS - i.abs() as usize))) != 0, *pos); } // string[int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && (*i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().nth(*i as usize).unwrap(), *pos); } // string[-int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.checked_abs().map(|n| n as usize <= s.chars().count()).unwrap_or(false) => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().rev().nth(i.abs() as usize - 1).unwrap(), *pos); } // var[rhs] (Expr::Variable(..), rhs) => optimize_expr(rhs, state, true), // lhs[rhs] (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } }, // ...[lhs][rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, ..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // `` Expr::InterpolatedString(x, pos) if x.is_empty() => { state.set_dirty(); *expr = Expr::StringConstant(state.engine.const_empty_string(), *pos); } // `...` Expr::InterpolatedString(x, ..) if x.len() == 1 && matches!(x[0], Expr::StringConstant(..)) => { state.set_dirty(); *expr = mem::take(&mut x[0]); } // `... ${ ... } ...` Expr::InterpolatedString(x, ..) => { x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)); let mut n = 0; // Merge consecutive strings while n < x.len() - 1 { match (mem::take(&mut x[n]), mem::take(&mut x[n+1])) { (Expr::StringConstant(mut s1, pos), Expr::StringConstant(s2, ..)) => { s1 += s2; x[n] = Expr::StringConstant(s1, pos); x.remove(n+1); state.set_dirty(); } (expr1, Expr::Unit(..)) => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::Unit(..), expr2) => { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, Expr::StringConstant(s, ..)) if s.is_empty() => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::StringConstant(s, ..), expr2) if s.is_empty()=> { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, expr2) => { x[n] = expr1; x[n+1] = expr2; n += 1; } } } x.shrink_to_fit(); } // [ constant .. ] #[cfg(not(feature = "no_index"))] Expr::Array(..) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position()); } // [ items .. ] #[cfg(not(feature = "no_index"))] Expr::Array(x, ..) => x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)), // #{ key:constant, .. } #[cfg(not(feature = "no_object"))] Expr::Map(..) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position()); } // #{ key:value, .. } #[cfg(not(feature = "no_object"))] Expr::Map(x, ..) => x.0.iter_mut().for_each(|(.., expr)| optimize_expr(expr, state, false)), // lhs && rhs Expr::And(x, ..) => match (&mut x.lhs, &mut x.rhs) { // true && rhs -> rhs (Expr::BoolConstant(true, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // false && rhs -> false (Expr::BoolConstant(false, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(false, *pos); } // lhs && true -> lhs (lhs, Expr::BoolConstant(true, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs && rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // lhs || rhs Expr::Or(ref mut x, ..) => match (&mut x.lhs, &mut x.rhs) { // false || rhs -> rhs (Expr::BoolConstant(false, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // true || rhs -> true (Expr::BoolConstant(true, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(true, *pos); } // lhs || false (lhs, Expr::BoolConstant(false, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs || rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // eval! Expr::FnCall(x, ..) if x.name == KEYWORD_EVAL => { state.propagate_constants = false; } // Fn Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.len() == 1 && x.name == KEYWORD_FN_PTR && x.args[0].is_constant() => { let fn_name = match x.args[0] { Expr::StringConstant(ref s, ..) => s.clone().into(), _ => Dynamic::UNIT }; if let Ok(fn_ptr) = fn_name.into_immutable_string().map_err(|err| err.into()).and_then(FnPtr::try_from) { state.set_dirty(); *expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), *pos); } else { optimize_expr(&mut x.args[0], state, false); } } // Do not call some special keywords Expr::FnCall(x, ..) if DONT_EVAL_KEYWORDS.contains(&x.name.as_str()) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // Call built-in operators Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants //&& !is_valid_identifier(x.chars()) // cannot be scripted => { let arg_values = &mut x.args.iter().map(|e| e.get_literal_value().unwrap()).collect::>(); let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect(); match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => { state.set_dirty(); let typ = state.engine.map_type_name(arg_values[0].type_name()).into(); *expr = Expr::from_dynamic(typ, *pos); return; } #[cfg(not(feature = "no_closure"))] crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => { state.set_dirty(); *expr = Expr::from_dynamic(Dynamic::FALSE, *pos); return; } // Overloaded operators can override built-in. _ if x.args.len() == 2 && !has_native_fn_override(state.engine, x.hashes.native, arg_types.as_ref()) => { if let Some(result) = get_builtin_binary_op_fn(&x.name, &arg_values[0], &arg_values[1]) .and_then(|f| { #[cfg(not(feature = "no_function"))] let lib = state.lib; #[cfg(feature = "no_function")] let lib = &[]; let context = (state.engine, &x.name, lib).into(); let (first, second) = arg_values.split_first_mut().unwrap(); (f)(context, &mut [ first, &mut second[0] ]).ok() }) { state.set_dirty(); *expr = Expr::from_dynamic(result, *pos); return; } } _ => () } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); // Move constant arguments for arg in x.args.iter_mut() { match arg { Expr::DynamicConstant(..) | Expr::Unit(..) | Expr::StringConstant(..) | Expr::CharConstant(..) | Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (), #[cfg(not(feature = "no_float"))] Expr:: FloatConstant(..) => (), _ => if let Some(value) = arg.get_literal_value() { state.set_dirty(); *arg = Expr::DynamicConstant(value.into(), arg.start_position()); }, } } } // Eagerly call functions Expr::FnCall(x, pos) if !x.is_qualified() // non-qualified && state.optimization_level == OptimizationLevel::Full // full optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants => { // First search for script-defined functions (can override built-in) #[cfg(not(feature = "no_function"))] let has_script_fn = state.lib.iter().any(|&m| m.get_script_fn(&x.name, x.args.len()).is_some()); #[cfg(feature = "no_function")] let has_script_fn = false; if !has_script_fn { let arg_values = &mut x.args.iter().map(|e| e.get_literal_value().unwrap()).collect::>(); let result = match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => Some(state.engine.map_type_name(arg_values[0].type_name()).into()), #[cfg(not(feature = "no_closure"))] crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => Some(Dynamic::FALSE), _ => state.call_fn_with_constant_arguments(&x.name, arg_values) }; if let Some(result) = result { state.set_dirty(); *expr = Expr::from_dynamic(result, *pos); return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // id(args ..) or xxx.id(args ..) -> optimize function call arguments Expr::FnCall(x, ..) | Expr::MethodCall(x, ..) => for arg in x.args.iter_mut() { optimize_expr(arg, state, false); // Move constant arguments match arg { Expr::DynamicConstant(..) | Expr::Unit(..) | Expr::StringConstant(..) | Expr::CharConstant(..) | Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (), #[cfg(not(feature = "no_float"))] Expr:: FloatConstant(..) => (), _ => if let Some(value) = arg.get_literal_value() { state.set_dirty(); *arg = Expr::DynamicConstant(value.into(), arg.start_position()); }, } }, // constant-name #[cfg(not(feature = "no_module"))] Expr::Variable(x, ..) if !x.1.is_empty() => (), Expr::Variable(x, .., pos) if state.find_constant(&x.3).is_some() => { // Replace constant with value *expr = Expr::from_dynamic(state.find_constant(&x.3).unwrap().clone(), *pos); state.set_dirty(); } // Custom syntax Expr::Custom(x, ..) => { if x.scope_may_be_changed { state.propagate_constants = false; } x.inputs.iter_mut().for_each(|expr| optimize_expr(expr, state, false)); } // All other expressions - skip _ => (), } } /// Optimize a block of [statements][Stmt] at top level. /// /// Constants and variables from the scope are added. fn optimize_top_level( statements: StmtBlockContainer, engine: &Engine, scope: &Scope, #[cfg(not(feature = "no_function"))] lib: &[&crate::Module], optimization_level: OptimizationLevel, ) -> StmtBlockContainer { let mut statements = statements; // If optimization level is None then skip optimizing if optimization_level == OptimizationLevel::None { statements.shrink_to_fit(); return statements; } // Set up the state let mut state = OptimizerState::new( engine, #[cfg(not(feature = "no_function"))] lib, optimization_level, ); // Add constants from global modules for (name, value) in engine .global_modules .iter() .rev() .flat_map(|m| m.iter_var()) { state.push_var(name, AccessMode::ReadOnly, Some(value.clone())); } // Add constants and variables from the scope for (name, constant, value) in scope.iter() { if !constant { state.push_var(name, AccessMode::ReadWrite, None); } else { state.push_var(name, AccessMode::ReadOnly, Some(value)); } } optimize_stmt_block(statements, &mut state, true, false, true) } /// Optimize an [`AST`]. pub fn optimize_into_ast( engine: &Engine, scope: &Scope, statements: StmtBlockContainer, #[cfg(not(feature = "no_function"))] functions: StaticVec< crate::Shared, >, optimization_level: OptimizationLevel, ) -> AST { let mut statements = statements; #[cfg(not(feature = "no_function"))] let lib = { let mut module = crate::Module::new(); if optimization_level != OptimizationLevel::None { // We only need the script library's signatures for optimization purposes let mut lib2 = crate::Module::new(); for fn_def in &functions { lib2.set_script_fn(crate::ast::ScriptFnDef { name: fn_def.name.clone(), access: fn_def.access, body: crate::ast::StmtBlock::NONE, params: fn_def.params.clone(), #[cfg(not(feature = "no_module"))] environ: None, #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: Box::default(), }); } let lib2 = &[&lib2]; for fn_def in functions { let mut fn_def = crate::func::native::shared_take_or_clone(fn_def); // Optimize the function body let body = mem::take(&mut *fn_def.body); *fn_def.body = optimize_top_level(body, engine, scope, lib2, optimization_level); module.set_script_fn(fn_def); } } else { for fn_def in functions { module.set_script_fn(fn_def); } } module }; statements.shrink_to_fit(); AST::new( match optimization_level { OptimizationLevel::None => statements, OptimizationLevel::Simple | OptimizationLevel::Full => optimize_top_level( statements, engine, &scope, #[cfg(not(feature = "no_function"))] &[&lib], optimization_level, ), }, #[cfg(not(feature = "no_function"))] lib, ) }