//! Main module defining the script evaluation `Engine`. use crate::any::{map_std_type_name, Dynamic, Union, Variant}; use crate::calc_fn_hash; use crate::error::ParseErrorType; use crate::fn_native::{CallableFunction, Callback, FnCallArgs, FnPtr}; use crate::module::{resolvers, Module, ModuleRef, ModuleResolver}; use crate::optimize::OptimizationLevel; use crate::packages::{Package, PackagesCollection, StandardPackage}; use crate::parser::{Expr, FnAccess, ImmutableString, ReturnType, ScriptFnDef, Stmt, AST, INT}; use crate::r#unsafe::unsafe_cast_var_name_to_lifetime; use crate::result::EvalAltResult; use crate::scope::{EntryType as ScopeEntryType, Scope}; use crate::token::Position; use crate::utils::StaticVec; #[cfg(not(feature = "no_float"))] use crate::parser::FLOAT; use crate::stdlib::{ any::{type_name, TypeId}, borrow::Cow, boxed::Box, collections::{HashMap, HashSet}, convert::TryFrom, format, iter::{empty, once}, mem, string::{String, ToString}, vec::Vec, }; /// Variable-sized array of `Dynamic` values. /// /// Not available under the `no_index` feature. #[cfg(not(feature = "no_index"))] pub type Array = Vec; /// Hash map of `Dynamic` values with `ImmutableString` keys. /// /// Not available under the `no_object` feature. #[cfg(not(feature = "no_object"))] pub type Map = HashMap; /// A stack of imported modules. pub type Imports<'a> = Vec<(Cow<'a, str>, Module)>; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_CALL_STACK_DEPTH: usize = 16; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_EXPR_DEPTH: usize = 32; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_FUNCTION_EXPR_DEPTH: usize = 16; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_CALL_STACK_DEPTH: usize = 128; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_EXPR_DEPTH: usize = 128; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_FUNCTION_EXPR_DEPTH: usize = 32; #[cfg(feature = "unchecked")] pub const MAX_CALL_STACK_DEPTH: usize = usize::MAX; #[cfg(feature = "unchecked")] pub const MAX_EXPR_DEPTH: usize = 0; #[cfg(feature = "unchecked")] pub const MAX_FUNCTION_EXPR_DEPTH: usize = 0; pub const KEYWORD_PRINT: &str = "print"; pub const KEYWORD_DEBUG: &str = "debug"; pub const KEYWORD_TYPE_OF: &str = "type_of"; pub const KEYWORD_EVAL: &str = "eval"; pub const KEYWORD_FN_PTR: &str = "Fn"; pub const KEYWORD_FN_PTR_CALL: &str = "call"; pub const KEYWORD_THIS: &str = "this"; pub const FN_TO_STRING: &str = "to_string"; pub const FN_GET: &str = "get$"; pub const FN_SET: &str = "set$"; pub const FN_IDX_GET: &str = "$index$get$"; pub const FN_IDX_SET: &str = "$index$set$"; /// A type specifying the method of chaining. #[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] enum ChainType { None, Index, Dot, } /// A type that encapsulates a mutation target for an expression with side effects. #[derive(Debug)] enum Target<'a> { /// The target is a mutable reference to a `Dynamic` value somewhere. Ref(&'a mut Dynamic), /// The target is a temporary `Dynamic` value (i.e. the mutation can cause no side effects). Value(Dynamic), /// The target is a character inside a String. /// This is necessary because directly pointing to a char inside a String is impossible. StringChar(&'a mut Dynamic, usize, Dynamic), } impl Target<'_> { /// Is the `Target` a reference pointing to other data? pub fn is_ref(&self) -> bool { match self { Self::Ref(_) => true, Self::Value(_) | Self::StringChar(_, _, _) => false, } } /// Is the `Target` an owned value? pub fn is_value(&self) -> bool { match self { Self::Ref(_) => false, Self::Value(_) => true, Self::StringChar(_, _, _) => false, } } /// Is the `Target` a specific type? pub fn is(&self) -> bool { match self { Target::Ref(r) => r.is::(), Target::Value(r) => r.is::(), Target::StringChar(_, _, _) => TypeId::of::() == TypeId::of::(), } } /// Get the value of the `Target` as a `Dynamic`, cloning a referenced value if necessary. pub fn clone_into_dynamic(self) -> Dynamic { match self { Self::Ref(r) => r.clone(), // Referenced value is cloned Self::Value(v) => v, // Owned value is simply taken Self::StringChar(_, _, ch) => ch, // Character is taken } } /// Get a mutable reference from the `Target`. pub fn as_mut(&mut self) -> &mut Dynamic { match self { Self::Ref(r) => *r, Self::Value(ref mut r) => r, Self::StringChar(_, _, ref mut r) => r, } } /// Update the value of the `Target`. /// Position in `EvalAltResult` is None and must be set afterwards. pub fn set_value(&mut self, new_val: Dynamic) -> Result<(), Box> { match self { Self::Ref(r) => **r = new_val, Self::Value(_) => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( Position::none(), ))) } Self::StringChar(Dynamic(Union::Str(ref mut s)), index, _) => { // Replace the character at the specified index position let new_ch = new_val .as_char() .map_err(|_| EvalAltResult::ErrorCharMismatch(Position::none()))?; let mut chars: StaticVec = s.chars().collect(); let ch = chars[*index]; // See if changed - if so, update the String if ch != new_ch { chars[*index] = new_ch; *s = chars.iter().collect::().into(); } } _ => unreachable!(), } Ok(()) } } impl<'a> From<&'a mut Dynamic> for Target<'a> { fn from(value: &'a mut Dynamic) -> Self { Self::Ref(value) } } impl> From for Target<'_> { fn from(value: T) -> Self { Self::Value(value.into()) } } /// A type that holds all the current states of the Engine. /// /// # Safety /// /// This type uses some unsafe code, mainly for avoiding cloning of local variable names via /// direct lifetime casting. #[derive(Debug, Clone, Eq, PartialEq, Hash, Default)] pub struct State { /// Normally, access to variables are parsed with a relative offset into the scope to avoid a lookup. /// In some situation, e.g. after running an `eval` statement, subsequent offsets become mis-aligned. /// When that happens, this flag is turned on to force a scope lookup by name. pub always_search: bool, /// Level of the current scope. The global (root) level is zero, a new block (or function call) /// is one level higher, and so on. pub scope_level: usize, /// Number of operations performed. pub operations: u64, /// Number of modules loaded. pub modules: usize, } impl State { /// Create a new `State`. pub fn new() -> Self { Default::default() } } /// Get a script-defined function definition from a module. #[cfg(not(feature = "no_function"))] pub fn get_script_function_by_signature<'a>( module: &'a Module, name: &str, params: usize, public_only: bool, ) -> Option<&'a ScriptFnDef> { // Qualifiers (none) + function name + number of arguments. let hash_script = calc_fn_hash(empty(), name, params, empty()); let func = module.get_fn(hash_script)?; if !func.is_script() { return None; } let fn_def = func.get_fn_def(); match fn_def.access { FnAccess::Private if public_only => None, FnAccess::Private | FnAccess::Public => Some(&fn_def), } } /// Rhai main scripting engine. /// /// ``` /// # fn main() -> Result<(), Box> { /// use rhai::Engine; /// /// let engine = Engine::new(); /// /// let result = engine.eval::("40 + 2")?; /// /// println!("Answer: {}", result); // prints 42 /// # Ok(()) /// # } /// ``` /// /// Currently, `Engine` is neither `Send` nor `Sync`. Use the `sync` feature to make it `Send + Sync`. pub struct Engine { /// A unique ID identifying this scripting `Engine`. pub id: Option, /// A module containing all functions directly loaded into the Engine. pub(crate) global_module: Module, /// A collection of all library packages loaded into the Engine. pub(crate) packages: PackagesCollection, /// A module resolution service. pub(crate) module_resolver: Option>, /// A hashmap mapping type names to pretty-print names. pub(crate) type_names: Option>, /// A hashset containing symbols to disable. pub(crate) disabled_symbols: Option>, /// A hashset containing custom keywords and precedence to recognize. pub(crate) custom_keywords: Option>, /// Callback closure for implementing the `print` command. pub(crate) print: Callback, /// Callback closure for implementing the `debug` command. pub(crate) debug: Callback, /// Callback closure for progress reporting. pub(crate) progress: Option>, /// Optimize the AST after compilation. pub(crate) optimization_level: OptimizationLevel, /// Maximum levels of call-stack to prevent infinite recursion. /// /// Defaults to 16 for debug builds and 128 for non-debug builds. pub(crate) max_call_stack_depth: usize, /// Maximum depth of statements/expressions at global level. pub(crate) max_expr_depth: usize, /// Maximum depth of statements/expressions in functions. pub(crate) max_function_expr_depth: usize, /// Maximum number of operations allowed to run. pub(crate) max_operations: u64, /// Maximum number of modules allowed to load. pub(crate) max_modules: usize, /// Maximum length of a string. pub(crate) max_string_size: usize, /// Maximum length of an array. pub(crate) max_array_size: usize, /// Maximum number of properties in a map. pub(crate) max_map_size: usize, } impl Default for Engine { fn default() -> Self { // Create the new scripting Engine let mut engine = Self { id: None, packages: Default::default(), global_module: Default::default(), #[cfg(not(feature = "no_module"))] #[cfg(not(feature = "no_std"))] #[cfg(not(target_arch = "wasm32"))] module_resolver: Some(Box::new(resolvers::FileModuleResolver::new())), #[cfg(any(feature = "no_module", feature = "no_std", target_arch = "wasm32",))] module_resolver: None, type_names: None, disabled_symbols: None, custom_keywords: None, // default print/debug implementations print: Box::new(default_print), debug: Box::new(default_print), // progress callback progress: None, // optimization level #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] optimization_level: OptimizationLevel::Simple, max_call_stack_depth: MAX_CALL_STACK_DEPTH, max_expr_depth: MAX_EXPR_DEPTH, max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH, max_operations: 0, max_modules: usize::MAX, max_string_size: 0, max_array_size: 0, max_map_size: 0, }; engine.load_package(StandardPackage::new().get()); engine } } /// Make getter function pub fn make_getter(id: &str) -> String { format!("{}{}", FN_GET, id) } /// Extract the property name from a getter function name. fn extract_prop_from_getter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] if fn_name.starts_with(FN_GET) { Some(&fn_name[FN_GET.len()..]) } else { None } #[cfg(feature = "no_object")] None } /// Make setter function pub fn make_setter(id: &str) -> String { format!("{}{}", FN_SET, id) } /// Extract the property name from a setter function name. fn extract_prop_from_setter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] if fn_name.starts_with(FN_SET) { Some(&fn_name[FN_SET.len()..]) } else { None } #[cfg(feature = "no_object")] None } /// Print/debug to stdout fn default_print(s: &str) { #[cfg(not(feature = "no_std"))] #[cfg(not(target_arch = "wasm32"))] println!("{}", s); } /// Search for a module within an imports stack. /// Position in `EvalAltResult` is None and must be set afterwards. fn search_imports<'s>( mods: &'s Imports, state: &mut State, modules: &Box, ) -> Result<&'s Module, Box> { let (root, root_pos) = modules.get(0); // Qualified - check if the root module is directly indexed let index = if state.always_search { None } else { modules.index() }; Ok(if let Some(index) = index { let offset = mods.len() - index.get(); &mods.get(offset).unwrap().1 } else { mods.iter() .rev() .find(|(n, _)| n == root) .map(|(_, m)| m) .ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound( root.to_string(), *root_pos, )) })? }) } /// Search for a module within an imports stack. /// Position in `EvalAltResult` is None and must be set afterwards. fn search_imports_mut<'s>( mods: &'s mut Imports, state: &mut State, modules: &Box, ) -> Result<&'s mut Module, Box> { let (root, root_pos) = modules.get(0); // Qualified - check if the root module is directly indexed let index = if state.always_search { None } else { modules.index() }; Ok(if let Some(index) = index { let offset = mods.len() - index.get(); &mut mods.get_mut(offset).unwrap().1 } else { mods.iter_mut() .rev() .find(|(n, _)| n == root) .map(|(_, m)| m) .ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound( root.to_string(), *root_pos, )) })? }) } /// Search for a variable within the scope and imports fn search_namespace<'s, 'a>( scope: &'s mut Scope, mods: &'s mut Imports, state: &mut State, this_ptr: &'s mut Option<&mut Dynamic>, expr: &'a Expr, ) -> Result<(&'s mut Dynamic, &'a str, ScopeEntryType, Position), Box> { match expr { Expr::Variable(v) => match v.as_ref() { // Qualified variable ((name, pos), Some(modules), hash_var, _) => { let module = search_imports_mut(mods, state, modules)?; let target = module .get_qualified_var_mut(*hash_var) .map_err(|err| match *err { EvalAltResult::ErrorVariableNotFound(_, _) => { Box::new(EvalAltResult::ErrorVariableNotFound( format!("{}{}", modules, name), *pos, )) } _ => err.new_position(*pos), })?; // Module variables are constant Ok((target, name, ScopeEntryType::Constant, *pos)) } // Normal variable access _ => search_scope_only(scope, state, this_ptr, expr), }, _ => unreachable!(), } } /// Search for a variable within the scope fn search_scope_only<'s, 'a>( scope: &'s mut Scope, state: &mut State, this_ptr: &'s mut Option<&mut Dynamic>, expr: &'a Expr, ) -> Result<(&'s mut Dynamic, &'a str, ScopeEntryType, Position), Box> { let ((name, pos), _, _, index) = match expr { Expr::Variable(v) => v.as_ref(), _ => unreachable!(), }; // Check if the variable is `this` if name == KEYWORD_THIS { if let Some(val) = this_ptr { return Ok(((*val).into(), KEYWORD_THIS, ScopeEntryType::Normal, *pos)); } else { return Err(Box::new(EvalAltResult::ErrorUnboundedThis(*pos))); } } // Check if it is directly indexed let index = if state.always_search { None } else { *index }; let index = if let Some(index) = index { scope.len() - index.get() } else { // Find the variable in the scope scope .get_index(name) .ok_or_else(|| Box::new(EvalAltResult::ErrorVariableNotFound(name.into(), *pos)))? .0 }; let (val, typ) = scope.get_mut(index); Ok((val, name, typ, *pos)) } impl Engine { /// Create a new `Engine` pub fn new() -> Self { Default::default() } /// Create a new `Engine` with minimal built-in functions. /// Use the `load_package` method to load additional packages of functions. pub fn new_raw() -> Self { Self { id: None, packages: Default::default(), global_module: Default::default(), module_resolver: None, type_names: None, disabled_symbols: None, custom_keywords: None, print: Box::new(|_| {}), debug: Box::new(|_| {}), progress: None, #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] optimization_level: OptimizationLevel::Simple, max_call_stack_depth: MAX_CALL_STACK_DEPTH, max_expr_depth: MAX_EXPR_DEPTH, max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH, max_operations: 0, max_modules: usize::MAX, max_string_size: 0, max_array_size: 0, max_map_size: 0, } } /// Universal method for calling functions either registered with the `Engine` or written in Rhai. /// Position in `EvalAltResult` is None and must be set afterwards. /// /// ## WARNING /// /// Function call arguments be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_fn_raw( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, fn_name: &str, (hash_fn, hash_script): (u64, u64), args: &mut FnCallArgs, is_ref: bool, is_method: bool, def_val: Option<&Dynamic>, level: usize, ) -> Result<(Dynamic, bool), Box> { self.inc_operations(state)?; let native_only = hash_script == 0; // Check for stack overflow #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "unchecked"))] if level > self.max_call_stack_depth { return Err(Box::new( EvalAltResult::ErrorStackOverflow(Position::none()), )); } let mut this_copy: Dynamic = Default::default(); let mut old_this_ptr: Option<&mut Dynamic> = None; /// This function replaces the first argument of a method call with a clone copy. /// This is to prevent a pure function unintentionally consuming the first argument. fn normalize_first_arg<'a>( normalize: bool, this_copy: &mut Dynamic, old_this_ptr: &mut Option<&'a mut Dynamic>, args: &mut FnCallArgs<'a>, ) { // Only do it for method calls with arguments. if !normalize || args.is_empty() { return; } // Clone the original value. *this_copy = args[0].clone(); // Replace the first reference with a reference to the clone, force-casting the lifetime. // Keep the original reference. Must remember to restore it later with `restore_first_arg_of_method_call`. // // # Safety // // Blindly casting a a reference to another lifetime saves on allocations and string cloning, // but must be used with the utmost care. // // We can do this here because, at the end of this scope, we'd restore the original reference // with `restore_first_arg_of_method_call`. Therefore this shorter lifetime does not get "out". let this_pointer = mem::replace(args.get_mut(0).unwrap(), unsafe { mem::transmute(this_copy) }); *old_this_ptr = Some(this_pointer); } /// This function restores the first argument that was replaced by `normalize_first_arg_of_method_call`. fn restore_first_arg<'a>(old_this_ptr: Option<&'a mut Dynamic>, args: &mut FnCallArgs<'a>) { if let Some(this_pointer) = old_this_ptr { mem::replace(args.get_mut(0).unwrap(), this_pointer); } } // Search for the function // First search in script-defined functions (can override built-in) // Then search registered native functions (can override packages) // Then search packages // NOTE: We skip script functions for global_module and packages, and native functions for lib let func = if !native_only { lib.get_fn(hash_script) //.or_else(|| lib.get_fn(hash_fn)) } else { None } //.or_else(|| self.global_module.get_fn(hash_script)) .or_else(|| self.global_module.get_fn(hash_fn)) //.or_else(|| self.packages.get_fn(hash_script)) .or_else(|| self.packages.get_fn(hash_fn)); if let Some(func) = func { #[cfg(not(feature = "no_function"))] let need_normalize = is_ref && (func.is_pure() || (func.is_script() && !is_method)); #[cfg(feature = "no_function")] let need_normalize = is_ref && func.is_pure(); // Calling pure function but the first argument is a reference? normalize_first_arg(need_normalize, &mut this_copy, &mut old_this_ptr, args); #[cfg(not(feature = "no_function"))] if func.is_script() { // Run scripted function let fn_def = func.get_fn_def(); // Method call of script function - map first argument to `this` return if is_method { let (first, rest) = args.split_at_mut(1); Ok(( self.call_script_fn( scope, mods, state, lib, &mut Some(first[0]), fn_name, fn_def, rest, level, )?, false, )) } else { let result = self.call_script_fn( scope, mods, state, lib, &mut None, fn_name, fn_def, args, level, )?; // Restore the original reference restore_first_arg(old_this_ptr, args); Ok((result, false)) }; } // Run external function let result = func.get_native_fn()(self, lib, args)?; // Restore the original reference restore_first_arg(old_this_ptr, args); // See if the function match print/debug (which requires special processing) return Ok(match fn_name { KEYWORD_PRINT => ( (self.print)(result.as_str().map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), )) })?) .into(), false, ), KEYWORD_DEBUG => ( (self.debug)(result.as_str().map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), )) })?) .into(), false, ), _ => (result, func.is_method()), }); } // See if it is built in. if args.len() == 2 { match run_builtin_binary_op(fn_name, args[0], args[1])? { Some(v) => return Ok((v, false)), None => (), } } // Return default value (if any) if let Some(val) = def_val { return Ok((val.clone(), false)); } // Getter function not found? if let Some(prop) = extract_prop_from_getter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or write-only", prop), Position::none(), ))); } // Setter function not found? if let Some(prop) = extract_prop_from_setter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or read-only", prop), Position::none(), ))); } // index getter function not found? if fn_name == FN_IDX_GET && args.len() == 2 { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} [{}]", self.map_type_name(args[0].type_name()), self.map_type_name(args[1].type_name()), ), Position::none(), ))); } // index setter function not found? if fn_name == FN_IDX_SET { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} [{}]=", self.map_type_name(args[0].type_name()), self.map_type_name(args[1].type_name()), ), Position::none(), ))); } // Raise error Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} ({})", fn_name, args.iter() .map(|name| if name.is::() { "&str | ImmutableString" } else { self.map_type_name((*name).type_name()) }) .collect::>() .join(", ") ), Position::none(), ))) } /// Call a script-defined function. /// Position in `EvalAltResult` is None and must be set afterwards. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_script_fn( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, fn_name: &str, fn_def: &ScriptFnDef, args: &mut FnCallArgs, level: usize, ) -> Result> { let orig_scope_level = state.scope_level; state.scope_level += 1; let prev_scope_len = scope.len(); let prev_mods_len = mods.len(); // Put arguments into scope as variables // Actually consume the arguments instead of cloning them scope.extend( fn_def .params .iter() .zip(args.iter_mut().map(|v| mem::take(*v))) .map(|(name, value)| { let var_name = unsafe_cast_var_name_to_lifetime(name.as_str(), state); (var_name, ScopeEntryType::Normal, value) }), ); // Evaluate the function at one higher level of call depth let result = self .eval_stmt(scope, mods, state, lib, this_ptr, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, Position::none(), ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, Position::none(), ))), }); // Remove all local variables scope.rewind(prev_scope_len); mods.truncate(prev_mods_len); state.scope_level = orig_scope_level; result } // Has a system function an override? fn has_override(&self, lib: &Module, (hash_fn, hash_script): (u64, u64)) -> bool { // NOTE: We skip script functions for global_module and packages, and native functions for lib // First check script-defined functions lib.contains_fn(hash_script) //|| lib.contains_fn(hash_fn) // Then check registered functions //|| self.global_module.contains_fn(hash_script) || self.global_module.contains_fn(hash_fn) // Then check packages //|| self.packages.contains_fn(hash_script) || self.packages.contains_fn(hash_fn) } /// Perform an actual function call, taking care of special functions /// Position in `EvalAltResult` is None and must be set afterwards. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! fn exec_fn_call( &self, state: &mut State, lib: &Module, fn_name: &str, native_only: bool, hash_script: u64, args: &mut FnCallArgs, is_ref: bool, is_method: bool, def_val: Option<&Dynamic>, level: usize, ) -> Result<(Dynamic, bool), Box> { // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. let arg_types = args.iter().map(|a| a.type_id()); let hash_fn = calc_fn_hash(empty(), fn_name, args.len(), arg_types); let hashes = (hash_fn, if native_only { 0 } else { hash_script }); match fn_name { // type_of KEYWORD_TYPE_OF if args.len() == 1 && !self.has_override(lib, hashes) => Ok(( self.map_type_name(args[0].type_name()).to_string().into(), false, )), // Fn KEYWORD_FN_PTR if args.len() == 1 && !self.has_override(lib, hashes) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'Fn' should not be called in method style. Try Fn(...);".into(), Position::none(), ))) } // eval - reaching this point it must be a method-style call KEYWORD_EVAL if args.len() == 1 && !self.has_override(lib, hashes) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'eval' should not be called in method style. Try eval(...);".into(), Position::none(), ))) } // Normal function call _ => { let mut scope = Scope::new(); let mut mods = Imports::new(); self.call_fn_raw( &mut scope, &mut mods, state, lib, fn_name, hashes, args, is_ref, is_method, def_val, level, ) } } } /// Evaluate a text string as a script - used primarily for 'eval'. /// Position in `EvalAltResult` is None and must be set afterwards. fn eval_script_expr( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, script: &Dynamic, ) -> Result> { let script = script.as_str().map_err(|typ| { EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), ) })?; // Compile the script text // No optimizations because we only run it once let mut ast = self.compile_with_scope_and_optimization_level( &Scope::new(), &[script], OptimizationLevel::None, )?; // If new functions are defined within the eval string, it is an error if ast.lib().num_fn() != 0 { return Err(ParseErrorType::WrongFnDefinition.into()); } let statements = mem::take(ast.statements_mut()); let ast = AST::new(statements, lib.clone()); // Evaluate the AST let (result, operations) = self.eval_ast_with_scope_raw(scope, mods, &ast)?; state.operations += operations; self.inc_operations(state)?; return Ok(result); } /// Chain-evaluate a dot/index chain. /// Position in `EvalAltResult` is None and must be set afterwards. fn eval_dot_index_chain_helper( &self, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, target: &mut Target, rhs: &Expr, idx_values: &mut StaticVec, chain_type: ChainType, level: usize, mut new_val: Option, ) -> Result<(Dynamic, bool), Box> { if chain_type == ChainType::None { panic!(); } let is_ref = target.is_ref(); let is_value = target.is_value(); let next_chain = match rhs { Expr::Index(_) => ChainType::Index, Expr::Dot(_) => ChainType::Dot, _ => ChainType::None, }; // Pop the last index value let mut idx_val = idx_values.pop(); match chain_type { #[cfg(not(feature = "no_index"))] ChainType::Index => { let pos = rhs.position(); match rhs { // xxx[idx].expr... | xxx[idx][expr]... Expr::Dot(x) | Expr::Index(x) => { let (idx, expr, pos) = x.as_ref(); let idx_pos = idx.position(); let obj_ptr = &mut self .get_indexed_mut(state, lib, target, idx_val, idx_pos, false, level)?; self.eval_dot_index_chain_helper( state, lib, this_ptr, obj_ptr, expr, idx_values, next_chain, level, new_val, ) .map_err(|err| err.new_position(*pos)) } // xxx[rhs] = new_val _ if new_val.is_some() => { let mut idx_val2 = idx_val.clone(); match self.get_indexed_mut(state, lib, target, idx_val, pos, true, level) { // Indexed value is an owned value - the only possibility is an indexer // Try to call an index setter Ok(obj_ptr) if obj_ptr.is_value() => { let args = &mut [target.as_mut(), &mut idx_val2, &mut new_val.unwrap()]; self.exec_fn_call( state, lib, FN_IDX_SET, true, 0, args, is_ref, true, None, level, ) .or_else(|err| match *err { // If there is no index setter, no need to set it back because the indexer is read-only EvalAltResult::ErrorFunctionNotFound(s, _) if s == FN_IDX_SET => { Ok(Default::default()) } _ => Err(err), })?; } // Indexed value is a reference - update directly Ok(ref mut obj_ptr) => { obj_ptr .set_value(new_val.unwrap()) .map_err(|err| err.new_position(rhs.position()))?; } Err(err) => match *err { // No index getter - try to call an index setter EvalAltResult::ErrorIndexingType(_, _) => { let args = &mut [ target.as_mut(), &mut idx_val2, &mut new_val.unwrap(), ]; self.exec_fn_call( state, lib, FN_IDX_SET, true, 0, args, is_ref, true, None, level, )?; } // Error err => return Err(Box::new(err)), }, } Ok(Default::default()) } // xxx[rhs] _ => self .get_indexed_mut(state, lib, target, idx_val, pos, false, level) .map(|v| (v.clone_into_dynamic(), false)), } } #[cfg(not(feature = "no_object"))] ChainType::Dot => { match rhs { // xxx.fn_name(arg_expr_list) Expr::FnCall(x) if x.1.is_none() => { let ((name, native, pos), _, hash, _, def_val) = x.as_ref(); let def_val = def_val.as_ref(); // Get a reference to the mutation target Dynamic let (result, updated) = { let obj = target.as_mut(); let idx = idx_val.downcast_mut::>().unwrap(); let mut fn_name = name.as_ref(); // Check if it is a FnPtr call if fn_name == KEYWORD_FN_PTR_CALL && obj.is::() { // Redirect function name fn_name = obj.as_str().unwrap(); // Recalculate hash let hash = calc_fn_hash(empty(), fn_name, idx.len(), empty()); // Arguments are passed as-is let mut arg_values = idx.iter_mut().collect::>(); let args = arg_values.as_mut(); // Map it to name(args) in function-call style self.exec_fn_call( state, lib, fn_name, *native, hash, args, false, false, def_val, level, ) } else { let redirected: Option; let mut hash = *hash; // Check if it is a map method call in OOP style if let Some(map) = obj.downcast_ref::() { if let Some(val) = map.get(fn_name) { if let Some(f) = val.downcast_ref::() { // Remap the function name redirected = Some(f.get_fn_name().clone()); fn_name = redirected.as_ref().unwrap(); // Recalculate the hash based on the new function name hash = calc_fn_hash(empty(), fn_name, idx.len(), empty()); } } }; // Attached object pointer in front of the arguments let mut arg_values = once(obj).chain(idx.iter_mut()).collect::>(); let args = arg_values.as_mut(); self.exec_fn_call( state, lib, fn_name, *native, hash, args, is_ref, true, def_val, level, ) } .map_err(|err| err.new_position(*pos))? }; // Feed the changed temp value back if updated && !is_ref && !is_value { let new_val = target.as_mut().clone(); target.set_value(new_val)?; } Ok((result, updated)) } // xxx.module::fn_name(...) - syntax error Expr::FnCall(_) => unreachable!(), // {xxx:map}.id = ??? Expr::Property(x) if target.is::() && new_val.is_some() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let mut val = self.get_indexed_mut(state, lib, target, index, *pos, true, level)?; val.set_value(new_val.unwrap()) .map_err(|err| err.new_position(rhs.position()))?; Ok((Default::default(), true)) } // {xxx:map}.id Expr::Property(x) if target.is::() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let val = self.get_indexed_mut(state, lib, target, index, *pos, false, level)?; Ok((val.clone_into_dynamic(), false)) } // xxx.id = ??? Expr::Property(x) if new_val.is_some() => { let ((_, _, setter), pos) = x.as_ref(); let mut args = [target.as_mut(), new_val.as_mut().unwrap()]; self.exec_fn_call( state, lib, setter, true, 0, &mut args, is_ref, true, None, level, ) .map(|(v, _)| (v, true)) .map_err(|err| err.new_position(*pos)) } // xxx.id Expr::Property(x) => { let ((_, getter, _), pos) = x.as_ref(); let mut args = [target.as_mut()]; self.exec_fn_call( state, lib, getter, true, 0, &mut args, is_ref, true, None, level, ) .map(|(v, _)| (v, false)) .map_err(|err| err.new_position(*pos)) } // {xxx:map}.prop[expr] | {xxx:map}.prop.expr Expr::Index(x) | Expr::Dot(x) if target.is::() => { let (prop, expr, pos) = x.as_ref(); let mut val = if let Expr::Property(p) = prop { let ((prop, _, _), _) = p.as_ref(); let index = prop.clone().into(); self.get_indexed_mut(state, lib, target, index, *pos, false, level)? } else { unreachable!(); }; self.eval_dot_index_chain_helper( state, lib, this_ptr, &mut val, expr, idx_values, next_chain, level, new_val, ) .map_err(|err| err.new_position(*pos)) } // xxx.prop[expr] | xxx.prop.expr Expr::Index(x) | Expr::Dot(x) => { let (prop, expr, pos) = x.as_ref(); let args = &mut [target.as_mut(), &mut Default::default()]; let (mut val, updated) = if let Expr::Property(p) = prop { let ((_, getter, _), _) = p.as_ref(); let args = &mut args[..1]; self.exec_fn_call( state, lib, getter, true, 0, args, is_ref, true, None, level, ) .map_err(|err| err.new_position(*pos))? } else { unreachable!(); }; let val = &mut val; let target = &mut val.into(); let (result, may_be_changed) = self .eval_dot_index_chain_helper( state, lib, this_ptr, target, expr, idx_values, next_chain, level, new_val, ) .map_err(|err| err.new_position(*pos))?; // Feed the value back via a setter just in case it has been updated if updated || may_be_changed { if let Expr::Property(p) = prop { let ((_, _, setter), _) = p.as_ref(); // Re-use args because the first &mut parameter will not be consumed args[1] = val; self.exec_fn_call( state, lib, setter, true, 0, args, is_ref, true, None, level, ) .or_else(|err| match *err { // If there is no setter, no need to feed it back because the property is read-only EvalAltResult::ErrorDotExpr(_, _) => Ok(Default::default()), _ => Err(err.new_position(*pos)), })?; } } Ok((result, may_be_changed)) } // Syntax error _ => Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))), } } _ => unreachable!(), } } /// Evaluate a dot/index chain. fn eval_dot_index_chain( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, expr: &Expr, level: usize, new_val: Option, ) -> Result> { let ((dot_lhs, dot_rhs, op_pos), chain_type) = match expr { Expr::Index(x) => (x.as_ref(), ChainType::Index), Expr::Dot(x) => (x.as_ref(), ChainType::Dot), _ => unreachable!(), }; let idx_values = &mut StaticVec::new(); self.eval_indexed_chain( scope, mods, state, lib, this_ptr, dot_rhs, idx_values, 0, level, )?; match dot_lhs { // id.??? or id[???] Expr::Variable(x) => { let (var_name, var_pos) = &x.0; self.inc_operations(state) .map_err(|err| err.new_position(*var_pos))?; let (target, _, typ, pos) = search_namespace(scope, mods, state, this_ptr, dot_lhs)?; // Constants cannot be modified match typ { ScopeEntryType::Constant if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( var_name.to_string(), pos, ))); } ScopeEntryType::Constant | ScopeEntryType::Normal => (), } let obj_ptr = &mut target.into(); self.eval_dot_index_chain_helper( state, lib, &mut None, obj_ptr, dot_rhs, idx_values, chain_type, level, new_val, ) .map(|(v, _)| v) .map_err(|err| err.new_position(*op_pos)) } // {expr}.??? = ??? or {expr}[???] = ??? expr if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))); } // {expr}.??? or {expr}[???] expr => { let val = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; let obj_ptr = &mut val.into(); self.eval_dot_index_chain_helper( state, lib, this_ptr, obj_ptr, dot_rhs, idx_values, chain_type, level, new_val, ) .map(|(v, _)| v) .map_err(|err| err.new_position(*op_pos)) } } } /// Evaluate a chain of indexes and store the results in a list. /// The first few results are stored in the array `list` which is of fixed length. /// Any spill-overs are stored in `more`, which is dynamic. /// The fixed length array is used to avoid an allocation in the overwhelming cases of just a few levels of indexing. /// The total number of values is returned. fn eval_indexed_chain( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, expr: &Expr, idx_values: &mut StaticVec, size: usize, level: usize, ) -> Result<(), Box> { self.inc_operations(state) .map_err(|err| err.new_position(expr.position()))?; match expr { Expr::FnCall(x) if x.1.is_none() => { let arg_values = x.3.iter() .map(|arg_expr| { self.eval_expr(scope, mods, state, lib, this_ptr, arg_expr, level) }) .collect::, _>>()?; idx_values.push(Dynamic::from(arg_values)); } Expr::FnCall(_) => unreachable!(), Expr::Property(_) => idx_values.push(()), // Store a placeholder - no need to copy the property name Expr::Index(x) | Expr::Dot(x) => { let (lhs, rhs, _) = x.as_ref(); // Evaluate in left-to-right order let lhs_val = match lhs { Expr::Property(_) => Default::default(), // Store a placeholder in case of a property _ => self.eval_expr(scope, mods, state, lib, this_ptr, lhs, level)?, }; // Push in reverse order self.eval_indexed_chain( scope, mods, state, lib, this_ptr, rhs, idx_values, size, level, )?; idx_values.push(lhs_val); } _ => idx_values.push(self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?), } Ok(()) } /// Get the value at the indexed position of a base type /// Position in `EvalAltResult` may be None and should be set afterwards. fn get_indexed_mut<'a>( &self, state: &mut State, lib: &Module, target: &'a mut Target, mut idx: Dynamic, idx_pos: Position, create: bool, level: usize, ) -> Result, Box> { self.inc_operations(state)?; let is_ref = target.is_ref(); let val = target.as_mut(); match val { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(arr)) => { // val_array[idx] let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; let arr_len = arr.len(); if index >= 0 { arr.get_mut(index as usize) .map(Target::from) .ok_or_else(|| { Box::new(EvalAltResult::ErrorArrayBounds(arr_len, index, idx_pos)) }) } else { Err(Box::new(EvalAltResult::ErrorArrayBounds( arr_len, index, idx_pos, ))) } } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(map)) => { // val_map[idx] Ok(if create { let index = idx .take_immutable_string() .map_err(|_| EvalAltResult::ErrorStringIndexExpr(idx_pos))?; map.entry(index).or_insert(Default::default()).into() } else { let index = idx .downcast_ref::() .ok_or_else(|| EvalAltResult::ErrorStringIndexExpr(idx_pos))?; map.get_mut(index.as_str()) .map(Target::from) .unwrap_or_else(|| Target::from(())) }) } #[cfg(not(feature = "no_index"))] Dynamic(Union::Str(s)) => { // val_string[idx] let chars_len = s.chars().count(); let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; if index >= 0 { let offset = index as usize; let ch = s.chars().nth(offset).ok_or_else(|| { Box::new(EvalAltResult::ErrorStringBounds(chars_len, index, idx_pos)) })?; Ok(Target::StringChar(val, offset, ch.into())) } else { Err(Box::new(EvalAltResult::ErrorStringBounds( chars_len, index, idx_pos, ))) } } #[cfg(not(feature = "no_index"))] _ => { let type_name = self.map_type_name(val.type_name()); let args = &mut [val, &mut idx]; self.exec_fn_call( state, lib, FN_IDX_GET, true, 0, args, is_ref, true, None, level, ) .map(|(v, _)| v.into()) .map_err(|_| { Box::new(EvalAltResult::ErrorIndexingType( type_name.into(), Position::none(), )) }) } #[cfg(feature = "no_index")] _ => Err(Box::new(EvalAltResult::ErrorIndexingType( self.map_type_name(val.type_name()).into(), Position::none(), ))), } } // Evaluate an 'in' expression fn eval_in_expr( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, lhs: &Expr, rhs: &Expr, level: usize, ) -> Result> { self.inc_operations(state) .map_err(|err| err.new_position(rhs.position()))?; let lhs_value = self.eval_expr(scope, mods, state, lib, this_ptr, lhs, level)?; let rhs_value = self.eval_expr(scope, mods, state, lib, this_ptr, rhs, level)?; match rhs_value { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(mut rhs_value)) => { let op = "=="; let def_value = false.into(); let mut scope = Scope::new(); // Call the `==` operator to compare each value for value in rhs_value.iter_mut() { let args = &mut [&mut lhs_value.clone(), value]; let def_value = Some(&def_value); let hashes = ( // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. calc_fn_hash(empty(), op, args.len(), args.iter().map(|a| a.type_id())), 0, ); let (r, _) = self .call_fn_raw( &mut scope, mods, state, lib, op, hashes, args, false, false, def_value, level, ) .map_err(|err| err.new_position(rhs.position()))?; if r.as_bool().unwrap_or(false) { return Ok(true.into()); } } Ok(false.into()) } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains_key(s.as_str()).into()), Dynamic(Union::Char(c)) => { Ok(rhs_value.contains_key(c.to_string().as_str()).into()) } _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, Dynamic(Union::Str(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains(s.as_str()).into()), Dynamic(Union::Char(c)) => Ok(rhs_value.contains(c).into()), _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, _ => Err(Box::new(EvalAltResult::ErrorInExpr(rhs.position()))), } } /// Evaluate an expression fn eval_expr( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, expr: &Expr, level: usize, ) -> Result> { self.inc_operations(state) .map_err(|err| err.new_position(expr.position()))?; let result = match expr { Expr::Expr(x) => self.eval_expr(scope, mods, state, lib, this_ptr, x.as_ref(), level), Expr::IntegerConstant(x) => Ok(x.0.into()), #[cfg(not(feature = "no_float"))] Expr::FloatConstant(x) => Ok(x.0.into()), Expr::StringConstant(x) => Ok(x.0.to_string().into()), Expr::CharConstant(x) => Ok(x.0.into()), Expr::Variable(x) if (x.0).0 == KEYWORD_THIS => { if let Some(ref val) = this_ptr { Ok((*val).clone()) } else { Err(Box::new(EvalAltResult::ErrorUnboundedThis((x.0).1))) } } Expr::Variable(_) => { let (val, _, _, _) = search_namespace(scope, mods, state, this_ptr, expr)?; Ok(val.clone()) } Expr::Property(_) => unreachable!(), // Statement block Expr::Stmt(x) => self.eval_stmt(scope, mods, state, lib, this_ptr, &x.0, level), // var op= rhs Expr::Assignment(x) if matches!(x.0, Expr::Variable(_)) => { let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref(); let mut rhs_val = self.eval_expr(scope, mods, state, lib, this_ptr, rhs_expr, level)?; let (lhs_ptr, name, typ, pos) = search_namespace(scope, mods, state, this_ptr, lhs_expr)?; self.inc_operations(state) .map_err(|err| err.new_position(pos))?; match typ { // Assignment to constant variable ScopeEntryType::Constant => Err(Box::new( EvalAltResult::ErrorAssignmentToConstant(name.to_string(), pos), )), // Normal assignment ScopeEntryType::Normal if op.is_empty() => { *lhs_ptr = rhs_val; Ok(Default::default()) } // Op-assignment - in order of precedence: ScopeEntryType::Normal => { // 1) Native registered overriding function // 2) Built-in implementation // 3) Map to `var = var op rhs` // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. let arg_types = once(lhs_ptr.type_id()).chain(once(rhs_val.type_id())); let hash_fn = calc_fn_hash(empty(), op, 2, arg_types); if let Some(CallableFunction::Method(func)) = self .global_module .get_fn(hash_fn) .or_else(|| self.packages.get_fn(hash_fn)) { // Overriding exact implementation func(self, lib, &mut [lhs_ptr, &mut rhs_val])?; } else if run_builtin_op_assignment(op, lhs_ptr, &rhs_val)?.is_none() { // Not built in, map to `var = var op rhs` let op = &op[..op.len() - 1]; // extract operator without = let hash = calc_fn_hash(empty(), op, 2, empty()); let args = &mut [&mut lhs_ptr.clone(), &mut rhs_val]; // Set variable value *lhs_ptr = self .exec_fn_call( state, lib, op, true, hash, args, false, false, None, level, ) .map(|(v, _)| v) .map_err(|err| err.new_position(*op_pos))?; } Ok(Default::default()) } } } // lhs op= rhs Expr::Assignment(x) => { let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref(); let mut rhs_val = self.eval_expr(scope, mods, state, lib, this_ptr, rhs_expr, level)?; let new_val = Some(if op.is_empty() { // Normal assignment rhs_val } else { // Op-assignment - always map to `lhs = lhs op rhs` let op = &op[..op.len() - 1]; // extract operator without = let hash = calc_fn_hash(empty(), op, 2, empty()); let args = &mut [ &mut self.eval_expr(scope, mods, state, lib, this_ptr, lhs_expr, level)?, &mut rhs_val, ]; self.exec_fn_call(state, lib, op, true, hash, args, false, false, None, level) .map(|(v, _)| v) .map_err(|err| err.new_position(*op_pos))? }); match lhs_expr { // name op= rhs Expr::Variable(_) => unreachable!(), // idx_lhs[idx_expr] op= rhs #[cfg(not(feature = "no_index"))] Expr::Index(_) => { self.eval_dot_index_chain( scope, mods, state, lib, this_ptr, lhs_expr, level, new_val, )?; Ok(Default::default()) } // dot_lhs.dot_rhs op= rhs #[cfg(not(feature = "no_object"))] Expr::Dot(_) => { self.eval_dot_index_chain( scope, mods, state, lib, this_ptr, lhs_expr, level, new_val, )?; Ok(Default::default()) } // Error assignment to constant expr if expr.is_constant() => { Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( expr.get_constant_str(), expr.position(), ))) } // Syntax error expr => Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))), } } // lhs[idx_expr] #[cfg(not(feature = "no_index"))] Expr::Index(_) => { self.eval_dot_index_chain(scope, mods, state, lib, this_ptr, expr, level, None) } // lhs.dot_rhs #[cfg(not(feature = "no_object"))] Expr::Dot(_) => { self.eval_dot_index_chain(scope, mods, state, lib, this_ptr, expr, level, None) } #[cfg(not(feature = "no_index"))] Expr::Array(x) => Ok(Dynamic(Union::Array(Box::new( x.0.iter() .map(|item| self.eval_expr(scope, mods, state, lib, this_ptr, item, level)) .collect::, _>>()?, )))), #[cfg(not(feature = "no_object"))] Expr::Map(x) => Ok(Dynamic(Union::Map(Box::new( x.0.iter() .map(|((key, _), expr)| { self.eval_expr(scope, mods, state, lib, this_ptr, expr, level) .map(|val| (key.clone(), val)) }) .collect::, _>>()?, )))), // Normal function call Expr::FnCall(x) if x.1.is_none() => { let ((name, native, pos), _, hash, args_expr, def_val) = x.as_ref(); let def_val = def_val.as_ref(); // Handle Fn() if name == KEYWORD_FN_PTR && args_expr.len() == 1 { let hash_fn = calc_fn_hash(empty(), name, 1, once(TypeId::of::())); if !self.has_override(lib, (hash_fn, *hash)) { // Fn - only in function call style let expr = args_expr.get(0); let arg_value = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; return arg_value .take_immutable_string() .map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), expr.position(), )) }) .and_then(|s| FnPtr::try_from(s)) .map(Into::::into) .map_err(|err| err.new_position(*pos)); } } // Handle eval() if name == KEYWORD_EVAL && args_expr.len() == 1 { let hash_fn = calc_fn_hash(empty(), name, 1, once(TypeId::of::())); if !self.has_override(lib, (hash_fn, *hash)) { // eval - only in function call style let prev_len = scope.len(); let expr = args_expr.get(0); let script = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; let result = self .eval_script_expr(scope, mods, state, lib, &script) .map_err(|err| err.new_position(expr.position())); if scope.len() != prev_len { // IMPORTANT! If the eval defines new variables in the current scope, // all variable offsets from this point on will be mis-aligned. state.always_search = true; } return result; } } // Normal function call - except for Fn and eval (handled above) let mut arg_values: StaticVec; let mut args: StaticVec<_>; let mut is_ref = false; if args_expr.is_empty() { // No arguments args = Default::default(); } else { // See if the first argument is a variable, if so, convert to method-call style // in order to leverage potential &mut first argument and avoid cloning the value match args_expr.get(0) { // func(x, ...) -> x.func(...) lhs @ Expr::Variable(_) => { arg_values = args_expr .iter() .skip(1) .map(|expr| { self.eval_expr(scope, mods, state, lib, this_ptr, expr, level) }) .collect::>()?; let (target, _, _, pos) = search_namespace(scope, mods, state, this_ptr, lhs)?; self.inc_operations(state) .map_err(|err| err.new_position(pos))?; args = once(target).chain(arg_values.iter_mut()).collect(); is_ref = true; } // func(..., ...) _ => { arg_values = args_expr .iter() .map(|expr| { self.eval_expr(scope, mods, state, lib, this_ptr, expr, level) }) .collect::>()?; args = arg_values.iter_mut().collect(); } } } let args = args.as_mut(); self.exec_fn_call( state, lib, name, *native, *hash, args, is_ref, false, def_val, level, ) .map(|(v, _)| v) .map_err(|err| err.new_position(*pos)) } // Module-qualified function call Expr::FnCall(x) if x.1.is_some() => { let ((name, _, pos), modules, hash_script, args_expr, def_val) = x.as_ref(); let modules = modules.as_ref().unwrap(); let mut arg_values: StaticVec; let mut args: StaticVec<_>; if args_expr.is_empty() { // No arguments args = Default::default(); } else { // See if the first argument is a variable (not module-qualified). // If so, convert to method-call style in order to leverage potential // &mut first argument and avoid cloning the value match args_expr.get(0) { // func(x, ...) -> x.func(...) Expr::Variable(x) if x.1.is_none() => { arg_values = args_expr .iter() .skip(1) .map(|expr| { self.eval_expr(scope, mods, state, lib, this_ptr, expr, level) }) .collect::>()?; let (target, _, _, pos) = search_scope_only(scope, state, this_ptr, args_expr.get(0))?; self.inc_operations(state) .map_err(|err| err.new_position(pos))?; args = once(target).chain(arg_values.iter_mut()).collect(); } // func(..., ...) or func(mod::x, ...) _ => { arg_values = args_expr .iter() .map(|expr| { self.eval_expr(scope, mods, state, lib, this_ptr, expr, level) }) .collect::>()?; args = arg_values.iter_mut().collect(); } } } let module = search_imports(mods, state, modules)?; // First search in script-defined functions (can override built-in) let func = match module.get_qualified_fn(*hash_script) { Err(err) if matches!(*err, EvalAltResult::ErrorFunctionNotFound(_, _)) => { // Then search in Rust functions self.inc_operations(state) .map_err(|err| err.new_position(*pos))?; // Qualified Rust functions are indexed in two steps: // 1) Calculate a hash in a similar manner to script-defined functions, // i.e. qualifiers + function name + number of arguments. // 2) Calculate a second hash with no qualifiers, empty function name, // zero number of arguments, and the actual list of argument `TypeId`'.s let hash_fn_args = calc_fn_hash(empty(), "", 0, args.iter().map(|a| a.type_id())); // 3) The final hash is the XOR of the two hashes. let hash_qualified_fn = *hash_script ^ hash_fn_args; module.get_qualified_fn(hash_qualified_fn) } r => r, }; match func { #[cfg(not(feature = "no_function"))] Ok(f) if f.is_script() => { let args = args.as_mut(); let fn_def = f.get_fn_def(); let mut scope = Scope::new(); let mut mods = Imports::new(); self.call_script_fn( &mut scope, &mut mods, state, lib, &mut None, name, fn_def, args, level, ) .map_err(|err| err.new_position(*pos)) } Ok(f) => f.get_native_fn()(self, lib, args.as_mut()) .map_err(|err| err.new_position(*pos)), Err(err) => match *err { EvalAltResult::ErrorFunctionNotFound(_, _) if def_val.is_some() => { Ok(def_val.clone().unwrap()) } EvalAltResult::ErrorFunctionNotFound(_, _) => { Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!("{}{}", modules, name), *pos, ))) } _ => Err(err.new_position(*pos)), }, } } Expr::In(x) => self.eval_in_expr(scope, mods, state, lib, this_ptr, &x.0, &x.1, level), Expr::And(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, mods, state, lib, this_ptr, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), lhs.position()) })? && // Short-circuit using && self .eval_expr(scope, mods, state, lib, this_ptr, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), rhs.position()) })?) .into()) } Expr::Or(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, mods, state, lib, this_ptr, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), lhs.position()) })? || // Short-circuit using || self .eval_expr(scope, mods, state, lib, this_ptr, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), rhs.position()) })?) .into()) } Expr::True(_) => Ok(true.into()), Expr::False(_) => Ok(false.into()), Expr::Unit(_) => Ok(().into()), _ => unreachable!(), }; self.check_data_size(result) .map_err(|err| err.new_position(expr.position())) } /// Evaluate a statement pub(crate) fn eval_stmt( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, stmt: &Stmt, level: usize, ) -> Result> { self.inc_operations(state) .map_err(|err| err.new_position(stmt.position()))?; let result = match stmt { // No-op Stmt::Noop(_) => Ok(Default::default()), // Expression as statement Stmt::Expr(expr) => self.eval_expr(scope, mods, state, lib, this_ptr, expr, level), // Block scope Stmt::Block(x) => { let prev_scope_len = scope.len(); let prev_mods_len = mods.len(); state.scope_level += 1; let result = x.0.iter().try_fold(Default::default(), |_, stmt| { self.eval_stmt(scope, mods, state, lib, this_ptr, stmt, level) }); scope.rewind(prev_scope_len); mods.truncate(prev_mods_len); state.scope_level -= 1; // The impact of an eval statement goes away at the end of a block // because any new variables introduced will go out of scope state.always_search = false; result } // If-else statement Stmt::IfThenElse(x) => { let (expr, if_block, else_block) = x.as_ref(); self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)? .as_bool() .map_err(|_| Box::new(EvalAltResult::ErrorLogicGuard(expr.position()))) .and_then(|guard_val| { if guard_val { self.eval_stmt(scope, mods, state, lib, this_ptr, if_block, level) } else if let Some(stmt) = else_block { self.eval_stmt(scope, mods, state, lib, this_ptr, stmt, level) } else { Ok(Default::default()) } }) } // While loop Stmt::While(x) => loop { let (expr, body) = x.as_ref(); match self .eval_expr(scope, mods, state, lib, this_ptr, expr, level)? .as_bool() { Ok(true) => { match self.eval_stmt(scope, mods, state, lib, this_ptr, body, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => { return Ok(Default::default()) } _ => return Err(err), }, } } Ok(false) => return Ok(Default::default()), Err(_) => { return Err(Box::new(EvalAltResult::ErrorLogicGuard(expr.position()))) } } }, // Loop statement Stmt::Loop(body) => loop { match self.eval_stmt(scope, mods, state, lib, this_ptr, body, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()), _ => return Err(err), }, } }, // For loop Stmt::For(x) => { let (name, expr, stmt) = x.as_ref(); let iter_type = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; let tid = iter_type.type_id(); if let Some(func) = self .global_module .get_iter(tid) .or_else(|| self.packages.get_iter(tid)) { // Add the loop variable let var_name = unsafe_cast_var_name_to_lifetime(name, &state); scope.push(var_name, ()); let index = scope.len() - 1; state.scope_level += 1; for loop_var in func(iter_type) { *scope.get_mut(index).0 = loop_var; self.inc_operations(state) .map_err(|err| err.new_position(stmt.position()))?; match self.eval_stmt(scope, mods, state, lib, this_ptr, stmt, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => break, _ => return Err(err), }, } } scope.rewind(scope.len() - 1); state.scope_level -= 1; Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorFor(x.1.position()))) } } // Continue statement Stmt::Continue(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(false, *pos))), // Break statement Stmt::Break(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(true, *pos))), // Return value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return( self.eval_expr( scope, mods, state, lib, this_ptr, x.1.as_ref().unwrap(), level, )?, (x.0).1, ))) } // Empty return Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return(Default::default(), (x.0).1))) } // Throw value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Exception => { let val = self.eval_expr( scope, mods, state, lib, this_ptr, x.1.as_ref().unwrap(), level, )?; Err(Box::new(EvalAltResult::ErrorRuntime( val.take_string().unwrap_or_else(|_| "".into()), (x.0).1, ))) } // Empty throw Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Exception => { Err(Box::new(EvalAltResult::ErrorRuntime("".into(), (x.0).1))) } Stmt::ReturnWithVal(_) => unreachable!(), // Let statement Stmt::Let(x) if x.1.is_some() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr( scope, mods, state, lib, this_ptr, expr.as_ref().unwrap(), level, )?; let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Normal, val, false); Ok(Default::default()) } Stmt::Let(x) => { let ((var_name, _), _) = x.as_ref(); let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push(var_name, ()); Ok(Default::default()) } // Const statement Stmt::Const(x) if x.1.is_constant() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr(scope, mods, state, lib, this_ptr, &expr, level)?; let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Constant, val, true); Ok(Default::default()) } // Const expression not constant Stmt::Const(_) => unreachable!(), // Import statement Stmt::Import(x) => { let (expr, (name, pos)) = x.as_ref(); // Guard against too many modules if state.modules >= self.max_modules { return Err(Box::new(EvalAltResult::ErrorTooManyModules(*pos))); } if let Some(path) = self .eval_expr(scope, mods, state, lib, this_ptr, &expr, level)? .try_cast::() { #[cfg(not(feature = "no_module"))] if let Some(resolver) = &self.module_resolver { let mut module = resolver.resolve(self, &path, expr.position())?; module.index_all_sub_modules(); mods.push((name.clone().into(), module)); state.modules += 1; Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorModuleNotFound( path.to_string(), expr.position(), ))) } #[cfg(feature = "no_module")] Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorImportExpr(expr.position()))) } } // Export statement Stmt::Export(list) => { for ((id, id_pos), rename) in list.iter() { // Mark scope variables as public if let Some(index) = scope.get_index(id).map(|(i, _)| i) { let alias = rename .as_ref() .map(|(n, _)| n.clone()) .unwrap_or_else(|| id.clone()); scope.set_entry_alias(index, alias); } else { return Err(Box::new(EvalAltResult::ErrorVariableNotFound( id.into(), *id_pos, ))); } } Ok(Default::default()) } }; self.check_data_size(result) .map_err(|err| err.new_position(stmt.position())) } /// Check a result to ensure that the data size is within allowable limit. /// Position in `EvalAltResult` may be None and should be set afterwards. fn check_data_size( &self, result: Result>, ) -> Result> { #[cfg(feature = "unchecked")] return result; // If no data size limits, just return if self.max_string_size + self.max_array_size + self.max_map_size == 0 { return result; } // Recursively calculate the size of a value (especially `Array` and `Map`) fn calc_size(value: &Dynamic) -> (usize, usize, usize) { match value { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(arr)) => { let mut arrays = 0; let mut maps = 0; arr.iter().for_each(|value| match value { Dynamic(Union::Array(_)) => { let (a, m, _) = calc_size(value); arrays += a; maps += m; } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(_)) => { let (a, m, _) = calc_size(value); arrays += a; maps += m; } _ => arrays += 1, }); (arrays, maps, 0) } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(map)) => { let mut arrays = 0; let mut maps = 0; map.values().for_each(|value| match value { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(_)) => { let (a, m, _) = calc_size(value); arrays += a; maps += m; } Dynamic(Union::Map(_)) => { let (a, m, _) = calc_size(value); arrays += a; maps += m; } _ => maps += 1, }); (arrays, maps, 0) } Dynamic(Union::Str(s)) => (0, 0, s.len()), _ => (0, 0, 0), } } match result { // Simply return all errors Err(_) => return result, // String with limit Ok(Dynamic(Union::Str(_))) if self.max_string_size > 0 => (), // Array with limit #[cfg(not(feature = "no_index"))] Ok(Dynamic(Union::Array(_))) if self.max_array_size > 0 => (), // Map with limit #[cfg(not(feature = "no_object"))] Ok(Dynamic(Union::Map(_))) if self.max_map_size > 0 => (), // Everything else is simply returned Ok(_) => return result, }; let (arr, map, s) = calc_size(result.as_ref().unwrap()); if s > self.max_string_size { Err(Box::new(EvalAltResult::ErrorDataTooLarge( "Length of string".to_string(), self.max_string_size, s, Position::none(), ))) } else if arr > self.max_array_size { Err(Box::new(EvalAltResult::ErrorDataTooLarge( "Size of array".to_string(), self.max_array_size, arr, Position::none(), ))) } else if map > self.max_map_size { Err(Box::new(EvalAltResult::ErrorDataTooLarge( "Number of properties in object map".to_string(), self.max_map_size, map, Position::none(), ))) } else { result } } /// Check if the number of operations stay within limit. /// Position in `EvalAltResult` is None and must be set afterwards. fn inc_operations(&self, state: &mut State) -> Result<(), Box> { state.operations += 1; #[cfg(not(feature = "unchecked"))] // Guard against too many operations if self.max_operations > 0 && state.operations > self.max_operations { return Err(Box::new(EvalAltResult::ErrorTooManyOperations( Position::none(), ))); } // Report progress - only in steps if let Some(progress) = &self.progress { if !progress(&state.operations) { // Terminate script if progress returns false return Err(Box::new(EvalAltResult::ErrorTerminated(Position::none()))); } } Ok(()) } /// Map a type_name into a pretty-print name pub(crate) fn map_type_name<'a>(&'a self, name: &'a str) -> &'a str { self.type_names .as_ref() .and_then(|t| t.get(name).map(String::as_str)) .unwrap_or(map_std_type_name(name)) } } /// Build in common binary operator implementations to avoid the cost of calling a registered function. fn run_builtin_binary_op( op: &str, x: &Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); #[cfg(not(feature = "unchecked"))] match op { "+" => return add(x, y).map(Into::into).map(Some), "-" => return sub(x, y).map(Into::into).map(Some), "*" => return mul(x, y).map(Into::into).map(Some), "/" => return div(x, y).map(Into::into).map(Some), "%" => return modulo(x, y).map(Into::into).map(Some), "~" => return pow_i_i(x, y).map(Into::into).map(Some), ">>" => return shr(x, y).map(Into::into).map(Some), "<<" => return shl(x, y).map(Into::into).map(Some), _ => (), } #[cfg(feature = "unchecked")] match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_i_i_u(x, y).map(Into::into).map(Some), ">>" => return shr_u(x, y).map(Into::into).map(Some), "<<" => return shl_u(x, y).map(Into::into).map(Some), _ => (), } match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), "&" => return Ok(Some((x & y).into())), "|" => return Ok(Some((x | y).into())), "^" => return Ok(Some((x ^ y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "&" => return Ok(Some((x && y).into())), "|" => return Ok(Some((x || y).into())), "^" => return Ok(Some((x ^ y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_ref::().unwrap(); let y = y.downcast_ref::().unwrap(); match op { "+" => return Ok(Some((x + y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::<()>() { match op { "==" => return Ok(Some(true.into())), "!=" | ">" | ">=" | "<" | "<=" => return Ok(Some(false.into())), _ => (), } } #[cfg(not(feature = "no_float"))] if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_f_f(x, y).map(Into::into).map(Some), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } Ok(None) } /// Build in common operator assignment implementations to avoid the cost of calling a registered function. fn run_builtin_op_assignment( op: &str, x: &mut Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); #[cfg(not(feature = "unchecked"))] match op { "+=" => return Ok(Some(*x = add(*x, y)?)), "-=" => return Ok(Some(*x = sub(*x, y)?)), "*=" => return Ok(Some(*x = mul(*x, y)?)), "/=" => return Ok(Some(*x = div(*x, y)?)), "%=" => return Ok(Some(*x = modulo(*x, y)?)), "~=" => return Ok(Some(*x = pow_i_i(*x, y)?)), ">>=" => return Ok(Some(*x = shr(*x, y)?)), "<<=" => return Ok(Some(*x = shl(*x, y)?)), _ => (), } #[cfg(feature = "unchecked")] match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_i_i_u(*x, y)?)), ">>=" => return Ok(Some(*x = shr_u(*x, y)?)), "<<=" => return Ok(Some(*x = shl_u(*x, y)?)), _ => (), } match op { "&=" => return Ok(Some(*x &= y)), "|=" => return Ok(Some(*x |= y)), "^=" => return Ok(Some(*x ^= y)), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "&=" => return Ok(Some(*x = *x && y)), "|=" => return Ok(Some(*x = *x || y)), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = y.downcast_ref::().unwrap(); match op { "+=" => return Ok(Some(*x += y)), _ => (), } } #[cfg(not(feature = "no_float"))] if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_f_f(*x, y)?)), _ => (), } } Ok(None) }