//! Main module defining the script evaluation `Engine`. use crate::any::{Dynamic, Union}; use crate::calc_fn_hash; use crate::error::ParseErrorType; use crate::fn_native::{CallableFunction, FnCallArgs, Shared}; use crate::module::Module; use crate::optimize::OptimizationLevel; use crate::packages::{CorePackage, Package, PackageLibrary, PackagesCollection, StandardPackage}; use crate::parser::{Expr, FnAccess, FnDef, ImmutableString, ReturnType, Stmt, AST, INT}; use crate::r#unsafe::{unsafe_cast_var_name_to_lifetime, unsafe_mut_cast_to_lifetime}; use crate::result::EvalAltResult; use crate::scope::{EntryType as ScopeEntryType, Scope}; use crate::token::Position; use crate::utils::StaticVec; #[cfg(not(feature = "no_float"))] use crate::parser::FLOAT; #[cfg(not(feature = "no_module"))] use crate::module::{resolvers, ModuleResolver}; use crate::stdlib::{ any::TypeId, boxed::Box, collections::HashMap, format, iter::{empty, once}, mem, ops::{Deref, DerefMut}, string::{String, ToString}, vec::Vec, }; /// Variable-sized array of `Dynamic` values. /// /// Not available under the `no_index` feature. #[cfg(not(feature = "no_index"))] pub type Array = Vec; /// Hash map of `Dynamic` values with `String` keys. /// /// Not available under the `no_object` feature. #[cfg(not(feature = "no_object"))] pub type Map = HashMap; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_CALL_STACK_DEPTH: usize = 16; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_EXPR_DEPTH: usize = 32; #[cfg(not(feature = "unchecked"))] #[cfg(debug_assertions)] pub const MAX_FUNCTION_EXPR_DEPTH: usize = 16; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_CALL_STACK_DEPTH: usize = 128; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_EXPR_DEPTH: usize = 128; #[cfg(not(feature = "unchecked"))] #[cfg(not(debug_assertions))] pub const MAX_FUNCTION_EXPR_DEPTH: usize = 32; #[cfg(feature = "unchecked")] pub const MAX_CALL_STACK_DEPTH: usize = usize::MAX; #[cfg(feature = "unchecked")] pub const MAX_EXPR_DEPTH: usize = usize::MAX; #[cfg(feature = "unchecked")] pub const MAX_FUNCTION_EXPR_DEPTH: usize = usize::MAX; pub const KEYWORD_PRINT: &str = "print"; pub const KEYWORD_DEBUG: &str = "debug"; pub const KEYWORD_TYPE_OF: &str = "type_of"; pub const KEYWORD_EVAL: &str = "eval"; pub const FUNC_TO_STRING: &str = "to_string"; pub const FUNC_GETTER: &str = "get$"; pub const FUNC_SETTER: &str = "set$"; pub const FUNC_INDEXER: &str = "$index$"; /// A type that encapsulates a mutation target for an expression with side effects. enum Target<'a> { /// The target is a mutable reference to a `Dynamic` value somewhere. Ref(&'a mut Dynamic), /// The target is a temporary `Dynamic` value (i.e. the mutation can cause no side effects). Value(Dynamic), /// The target is a character inside a String. /// This is necessary because directly pointing to a char inside a String is impossible. StringChar(&'a mut Dynamic, usize, Dynamic), } impl Target<'_> { /// Is the `Target` a reference pointing to other data? pub fn is_ref(&self) -> bool { match self { Target::Ref(_) => true, Target::Value(_) | Target::StringChar(_, _, _) => false, } } /// Get the value of the `Target` as a `Dynamic`, cloning a referenced value if necessary. pub fn clone_into_dynamic(self) -> Dynamic { match self { Target::Ref(r) => r.clone(), // Referenced value is cloned Target::Value(v) => v, // Owned value is simply taken Target::StringChar(_, _, ch) => ch, // Character is taken } } /// Get a mutable reference from the `Target`. pub fn as_mut(&mut self) -> &mut Dynamic { match self { Target::Ref(r) => *r, Target::Value(ref mut r) => r, Target::StringChar(_, _, ref mut r) => r, } } /// Update the value of the `Target`. pub fn set_value(&mut self, new_val: Dynamic, pos: Position) -> Result<(), Box> { match self { Target::Ref(r) => **r = new_val, Target::Value(_) => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS(pos))) } Target::StringChar(Dynamic(Union::Str(ref mut s)), index, _) => { // Replace the character at the specified index position let new_ch = new_val .as_char() .map_err(|_| EvalAltResult::ErrorCharMismatch(pos))?; let mut chars: StaticVec = s.chars().collect(); let ch = chars[*index]; // See if changed - if so, update the String if ch != new_ch { chars[*index] = new_ch; *s = chars.iter().collect::().into(); } } _ => unreachable!(), } Ok(()) } } impl<'a> From<&'a mut Dynamic> for Target<'a> { fn from(value: &'a mut Dynamic) -> Self { Self::Ref(value) } } impl> From for Target<'_> { fn from(value: T) -> Self { Self::Value(value.into()) } } /// A type that holds all the current states of the Engine. /// /// # Safety /// /// This type uses some unsafe code, mainly for avoiding cloning of local variable names via /// direct lifetime casting. #[derive(Debug, Clone, Default)] pub struct State { /// Normally, access to variables are parsed with a relative offset into the scope to avoid a lookup. /// In some situation, e.g. after running an `eval` statement, subsequent offsets become mis-aligned. /// When that happens, this flag is turned on to force a scope lookup by name. pub always_search: bool, /// Level of the current scope. The global (root) level is zero, a new block (or function call) /// is one level higher, and so on. pub scope_level: usize, /// Number of operations performed. pub operations: u64, /// Number of modules loaded. pub modules: u64, } impl State { /// Create a new `State`. pub fn new() -> Self { Default::default() } } /// A type that holds a library (`HashMap`) of script-defined functions. /// /// Since script-defined functions have `Dynamic` parameters, functions with the same name /// and number of parameters are considered equivalent. /// /// The key of the `HashMap` is a `u64` hash calculated by the function `calc_fn_hash`. #[derive(Debug, Clone, Default)] pub struct FunctionsLib(HashMap>); impl FunctionsLib { /// Create a new `FunctionsLib` from a collection of `FnDef`. pub fn from_iter(vec: impl IntoIterator) -> Self { FunctionsLib( vec.into_iter() .map(|fn_def| { // Qualifiers (none) + function name + number of arguments. let hash = calc_fn_hash(empty(), &fn_def.name, fn_def.params.len(), empty()); (hash, fn_def.into()) }) .collect(), ) } /// Does a certain function exist in the `FunctionsLib`? /// /// The `u64` hash is calculated by the function `crate::calc_fn_hash`. pub fn has_function(&self, hash_fn_def: u64) -> bool { self.contains_key(&hash_fn_def) } /// Get a function definition from the `FunctionsLib`. /// /// The `u64` hash is calculated by the function `crate::calc_fn_hash`. pub fn get_function(&self, hash_fn_def: u64) -> Option<&FnDef> { self.get(&hash_fn_def).map(|fn_def| fn_def.as_ref()) } /// Get a function definition from the `FunctionsLib`. pub fn get_function_by_signature( &self, name: &str, params: usize, public_only: bool, ) -> Option<&FnDef> { // Qualifiers (none) + function name + number of arguments. let hash_fn_def = calc_fn_hash(empty(), name, params, empty()); let fn_def = self.get_function(hash_fn_def); match fn_def.as_ref().map(|f| f.access) { None => None, Some(FnAccess::Private) if public_only => None, Some(FnAccess::Private) | Some(FnAccess::Public) => fn_def, } } /// Merge another `FunctionsLib` into this `FunctionsLib`. pub fn merge(&self, other: &Self) -> Self { if self.is_empty() { other.clone() } else if other.is_empty() { self.clone() } else { let mut functions = self.clone(); functions.extend(other.iter().map(|(hash, fn_def)| (*hash, fn_def.clone()))); functions } } } impl From)>> for FunctionsLib { fn from(values: Vec<(u64, Shared)>) -> Self { FunctionsLib(values.into_iter().collect()) } } impl Deref for FunctionsLib { type Target = HashMap>; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for FunctionsLib { fn deref_mut(&mut self) -> &mut HashMap> { &mut self.0 } } /// Rhai main scripting engine. /// /// ``` /// # fn main() -> Result<(), Box> { /// use rhai::Engine; /// /// let engine = Engine::new(); /// /// let result = engine.eval::("40 + 2")?; /// /// println!("Answer: {}", result); // prints 42 /// # Ok(()) /// # } /// ``` /// /// Currently, `Engine` is neither `Send` nor `Sync`. Turn on the `sync` feature to make it `Send + Sync`. pub struct Engine { /// A module containing all functions directly loaded into the Engine. pub(crate) global_module: Module, /// A collection of all library packages loaded into the Engine. pub(crate) packages: PackagesCollection, /// A module resolution service. #[cfg(not(feature = "no_module"))] pub(crate) module_resolver: Option>, /// A hashmap mapping type names to pretty-print names. pub(crate) type_names: HashMap, /// Closure for implementing the `print` command. #[cfg(not(feature = "sync"))] pub(crate) print: Box, /// Closure for implementing the `print` command. #[cfg(feature = "sync")] pub(crate) print: Box, /// Closure for implementing the `debug` command. #[cfg(not(feature = "sync"))] pub(crate) debug: Box, /// Closure for implementing the `debug` command. #[cfg(feature = "sync")] pub(crate) debug: Box, /// Closure for progress reporting. #[cfg(not(feature = "sync"))] pub(crate) progress: Option bool + 'static>>, /// Closure for progress reporting. #[cfg(feature = "sync")] pub(crate) progress: Option bool + Send + Sync + 'static>>, /// Optimize the AST after compilation. pub(crate) optimization_level: OptimizationLevel, /// Maximum levels of call-stack to prevent infinite recursion. /// /// Defaults to 16 for debug builds and 128 for non-debug builds. pub(crate) max_call_stack_depth: usize, /// Maximum depth of statements/expressions at global level. pub(crate) max_expr_depth: usize, /// Maximum depth of statements/expressions in functions. pub(crate) max_function_expr_depth: usize, /// Maximum number of operations allowed to run. pub(crate) max_operations: u64, /// Maximum number of modules allowed to load. pub(crate) max_modules: u64, } impl Default for Engine { fn default() -> Self { // Create the new scripting Engine let mut engine = Self { packages: Default::default(), global_module: Default::default(), #[cfg(not(feature = "no_module"))] #[cfg(not(feature = "no_std"))] module_resolver: Some(Box::new(resolvers::FileModuleResolver::new())), #[cfg(not(feature = "no_module"))] #[cfg(feature = "no_std")] module_resolver: None, type_names: HashMap::new(), // default print/debug implementations print: Box::new(default_print), debug: Box::new(default_print), // progress callback progress: None, // optimization level #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] optimization_level: OptimizationLevel::Simple, max_call_stack_depth: MAX_CALL_STACK_DEPTH, max_expr_depth: MAX_EXPR_DEPTH, max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH, max_operations: u64::MAX, max_modules: u64::MAX, }; engine.load_package(StandardPackage::new().get()); engine } } /// Make getter function pub fn make_getter(id: &str) -> String { format!("{}{}", FUNC_GETTER, id) } /// Extract the property name from a getter function name. fn extract_prop_from_getter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] { if fn_name.starts_with(FUNC_GETTER) { Some(&fn_name[FUNC_GETTER.len()..]) } else { None } } #[cfg(feature = "no_object")] { None } } /// Make setter function pub fn make_setter(id: &str) -> String { format!("{}{}", FUNC_SETTER, id) } /// Extract the property name from a setter function name. fn extract_prop_from_setter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] { if fn_name.starts_with(FUNC_SETTER) { Some(&fn_name[FUNC_SETTER.len()..]) } else { None } } #[cfg(feature = "no_object")] { None } } /// Print/debug to stdout fn default_print(s: &str) { #[cfg(not(feature = "no_std"))] println!("{}", s); } /// Search for a variable within the scope fn search_scope<'a>( scope: &'a mut Scope, state: &mut State, expr: &'a Expr, ) -> Result<(&'a mut Dynamic, &'a str, ScopeEntryType, Position), Box> { let ((name, pos), modules, hash_var, index) = match expr { Expr::Variable(x) => x.as_ref(), _ => unreachable!(), }; let index = if state.always_search { None } else { *index }; #[cfg(not(feature = "no_module"))] { if let Some(modules) = modules.as_ref() { let module = if let Some(index) = modules.index() { scope .get_mut(scope.len() - index.get()) .0 .downcast_mut::() .unwrap() } else { let (id, root_pos) = modules.get(0); scope.find_module(id).ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos)) })? }; return Ok(( module.get_qualified_var_mut(name, *hash_var, *pos)?, name, // Module variables are constant ScopeEntryType::Constant, *pos, )); } } let index = if let Some(index) = index { scope.len() - index.get() } else { scope .get_index(name) .ok_or_else(|| Box::new(EvalAltResult::ErrorVariableNotFound(name.into(), *pos)))? .0 }; let (val, typ) = scope.get_mut(index); Ok((val, name, typ, *pos)) } impl Engine { /// Create a new `Engine` pub fn new() -> Self { Default::default() } /// Create a new `Engine` with minimal built-in functions. /// Use the `load_package` method to load additional packages of functions. pub fn new_raw() -> Self { Self { packages: Default::default(), global_module: Default::default(), #[cfg(not(feature = "no_module"))] module_resolver: None, type_names: HashMap::new(), print: Box::new(|_| {}), debug: Box::new(|_| {}), progress: None, #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] optimization_level: OptimizationLevel::Simple, max_call_stack_depth: MAX_CALL_STACK_DEPTH, max_expr_depth: MAX_EXPR_DEPTH, max_function_expr_depth: MAX_FUNCTION_EXPR_DEPTH, max_operations: u64::MAX, max_modules: u64::MAX, } } /// Load a new package into the `Engine`. /// /// When searching for functions, packages loaded later are preferred. /// In other words, loaded packages are searched in reverse order. pub fn load_package(&mut self, package: PackageLibrary) { // Push the package to the top - packages are searched in reverse order self.packages.push(package); } /// Load a new package into the `Engine`. /// /// When searching for functions, packages loaded later are preferred. /// In other words, loaded packages are searched in reverse order. pub fn load_packages(&mut self, package: PackageLibrary) { // Push the package to the top - packages are searched in reverse order self.packages.push(package); } /// Control whether and how the `Engine` will optimize an AST after compilation. /// /// Not available under the `no_optimize` feature. #[cfg(not(feature = "no_optimize"))] pub fn set_optimization_level(&mut self, optimization_level: OptimizationLevel) { self.optimization_level = optimization_level } /// Set the maximum levels of function calls allowed for a script in order to avoid /// infinite recursion and stack overflows. #[cfg(not(feature = "unchecked"))] pub fn set_max_call_levels(&mut self, levels: usize) { self.max_call_stack_depth = levels } /// Set the maximum number of operations allowed for a script to run to avoid /// consuming too much resources (0 for unlimited). #[cfg(not(feature = "unchecked"))] pub fn set_max_operations(&mut self, operations: u64) { self.max_operations = if operations == 0 { u64::MAX } else { operations }; } /// Set the maximum number of imported modules allowed for a script (0 for unlimited). #[cfg(not(feature = "unchecked"))] pub fn set_max_modules(&mut self, modules: u64) { self.max_modules = if modules == 0 { u64::MAX } else { modules }; } /// Set the depth limits for expressions/statements. #[cfg(not(feature = "unchecked"))] pub fn set_max_expr_depths(&mut self, max_expr_depth: usize, max_function_expr_depth: usize) { self.max_expr_depth = max_expr_depth; self.max_function_expr_depth = max_function_expr_depth; } /// Set the module resolution service used by the `Engine`. /// /// Not available under the `no_module` feature. #[cfg(not(feature = "no_module"))] pub fn set_module_resolver(&mut self, resolver: Option) { self.module_resolver = resolver.map(|f| Box::new(f) as Box); } /// Universal method for calling functions either registered with the `Engine` or written in Rhai. /// /// ## WARNING /// /// Function call arguments be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_fn_raw( &self, scope: Option<&mut Scope>, state: &mut State, lib: &FunctionsLib, fn_name: &str, hashes: (u64, u64), args: &mut FnCallArgs, is_ref: bool, def_val: Option<&Dynamic>, pos: Position, level: usize, ) -> Result<(Dynamic, bool), Box> { self.inc_operations(state, pos)?; let native_only = hashes.1 == 0; // Check for stack overflow #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "unchecked"))] { if level > self.max_call_stack_depth { return Err(Box::new(EvalAltResult::ErrorStackOverflow(pos))); } } let mut this_copy: Dynamic = Default::default(); let mut old_this_ptr: Option<&mut Dynamic> = None; /// This function replaces the first argument of a method call with a clone copy. /// This is to prevent a pure function unintentionally consuming the first argument. fn normalize_first_arg<'a>( normalize: bool, this_copy: &mut Dynamic, old_this_ptr: &mut Option<&'a mut Dynamic>, args: &mut FnCallArgs<'a>, ) { // Only do it for method calls with arguments. if !normalize || args.is_empty() { return; } // Clone the original value. *this_copy = args[0].clone(); // Replace the first reference with a reference to the clone, force-casting the lifetime. // Keep the original reference. Must remember to restore it later with `restore_first_arg_of_method_call`. let this_pointer = mem::replace( args.get_mut(0).unwrap(), unsafe_mut_cast_to_lifetime(this_copy), ); *old_this_ptr = Some(this_pointer); } /// This function restores the first argument that was replaced by `normalize_first_arg_of_method_call`. fn restore_first_arg<'a>(old_this_ptr: Option<&'a mut Dynamic>, args: &mut FnCallArgs<'a>) { if let Some(this_pointer) = old_this_ptr { mem::replace(args.get_mut(0).unwrap(), this_pointer); } } // First search in script-defined functions (can override built-in) if !native_only { if let Some(fn_def) = lib.get(&hashes.1) { normalize_first_arg(is_ref, &mut this_copy, &mut old_this_ptr, args); // Run scripted function let result = self.call_script_fn(scope, state, lib, fn_name, fn_def, args, pos, level)?; // Restore the original reference restore_first_arg(old_this_ptr, args); return Ok((result, false)); } } // Search built-in's and external functions if let Some(func) = self .global_module .get_fn(hashes.0) .or_else(|| self.packages.get_fn(hashes.0)) { // Calling pure function in method-call? normalize_first_arg( func.is_pure() && is_ref, &mut this_copy, &mut old_this_ptr, args, ); // Run external function let result = func.get_native_fn()(args); // Restore the original reference restore_first_arg(old_this_ptr, args); let result = result.map_err(|err| err.new_position(pos))?; // See if the function match print/debug (which requires special processing) return Ok(match fn_name { KEYWORD_PRINT => ( (self.print)(result.as_str().map_err(|type_name| { Box::new(EvalAltResult::ErrorMismatchOutputType( type_name.into(), pos, )) })?) .into(), false, ), KEYWORD_DEBUG => ( (self.debug)(result.as_str().map_err(|type_name| { Box::new(EvalAltResult::ErrorMismatchOutputType( type_name.into(), pos, )) })?) .into(), false, ), _ => (result, func.is_method()), }); } // See if it is built in. if args.len() == 2 { match run_builtin_binary_op(fn_name, args[0], args[1])? { Some(v) => return Ok((v, false)), None => (), } } // Return default value (if any) if let Some(val) = def_val { return Ok((val.clone(), false)); } // Getter function not found? if let Some(prop) = extract_prop_from_getter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or write-only", prop), pos, ))); } // Setter function not found? if let Some(prop) = extract_prop_from_setter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or read-only", prop), pos, ))); } let types_list: Vec<_> = args .iter() .map(|name| self.map_type_name(name.type_name())) .collect(); // Getter function not found? if fn_name == FUNC_INDEXER { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!("[]({})", types_list.join(", ")), pos, ))); } // Raise error Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!("{} ({})", fn_name, types_list.join(", ")), pos, ))) } /// Call a script-defined function. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_script_fn( &self, scope: Option<&mut Scope>, state: &mut State, lib: &FunctionsLib, fn_name: &str, fn_def: &FnDef, args: &mut FnCallArgs, pos: Position, level: usize, ) -> Result> { let orig_scope_level = state.scope_level; state.scope_level += 1; match scope { // Extern scope passed in which is not empty Some(scope) if !scope.is_empty() => { let scope_len = scope.len(); // Put arguments into scope as variables // Actually consume the arguments instead of cloning them scope.extend( fn_def .params .iter() .zip(args.iter_mut().map(|v| mem::take(*v))) .map(|(name, value)| { let var_name = unsafe_cast_var_name_to_lifetime(name.as_str(), state); (var_name, ScopeEntryType::Normal, value) }), ); // Evaluate the function at one higher level of call depth let result = self .eval_stmt(scope, state, lib, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, pos, ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, pos, ))), }); // Remove all local variables scope.rewind(scope_len); state.scope_level = orig_scope_level; return result; } // No new scope - create internal scope _ => { let mut scope = Scope::new(); // Put arguments into scope as variables // Actually consume the arguments instead of cloning them scope.extend( fn_def .params .iter() .zip(args.iter_mut().map(|v| mem::take(*v))) .map(|(name, value)| (name, ScopeEntryType::Normal, value)), ); // Evaluate the function at one higher level of call depth let result = self .eval_stmt(&mut scope, state, lib, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, pos, ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, pos, ))), }); state.scope_level = orig_scope_level; return result; } } } // Has a system function an override? fn has_override(&self, lib: &FunctionsLib, hashes: (u64, u64)) -> bool { // First check registered functions self.global_module.contains_fn(hashes.0) // Then check packages || self.packages.contains_fn(hashes.0) // Then check script-defined functions || lib.contains_key(&hashes.1) } // Perform an actual function call, taking care of special functions /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! fn exec_fn_call( &self, state: &mut State, lib: &FunctionsLib, fn_name: &str, native_only: bool, hash_fn_def: u64, args: &mut FnCallArgs, is_ref: bool, def_val: Option<&Dynamic>, pos: Position, level: usize, ) -> Result<(Dynamic, bool), Box> { // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. let hash_fn = calc_fn_hash( empty(), fn_name, args.len(), args.iter().map(|a| a.type_id()), ); let hashes = (hash_fn, if native_only { 0 } else { hash_fn_def }); match fn_name { // type_of KEYWORD_TYPE_OF if args.len() == 1 && !self.has_override(lib, hashes) => Ok(( self.map_type_name(args[0].type_name()).to_string().into(), false, )), // eval - reaching this point it must be a method-style call KEYWORD_EVAL if args.len() == 1 && !self.has_override(lib, hashes) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'eval' should not be called in method style. Try eval(...);".into(), pos, ))) } // Normal function call _ => self.call_fn_raw( None, state, lib, fn_name, hashes, args, is_ref, def_val, pos, level, ), } } /// Evaluate a text string as a script - used primarily for 'eval'. fn eval_script_expr( &self, scope: &mut Scope, state: &mut State, lib: &FunctionsLib, script: &Dynamic, pos: Position, ) -> Result> { let script = script .as_str() .map_err(|type_name| EvalAltResult::ErrorMismatchOutputType(type_name.into(), pos))?; // Compile the script text // No optimizations because we only run it once let mut ast = self.compile_with_scope_and_optimization_level( &Scope::new(), &[script], OptimizationLevel::None, )?; // If new functions are defined within the eval string, it is an error if !ast.lib().is_empty() { return Err(Box::new(EvalAltResult::ErrorParsing( ParseErrorType::WrongFnDefinition.into_err(pos), ))); } let statements = mem::take(ast.statements_mut()); let ast = AST::new(statements, lib.clone()); // Evaluate the AST let (result, operations) = self .eval_ast_with_scope_raw(scope, &ast) .map_err(|err| err.new_position(pos))?; state.operations += operations; self.inc_operations(state, pos)?; return Ok(result); } /// Chain-evaluate a dot/index chain. fn eval_dot_index_chain_helper( &self, state: &mut State, lib: &FunctionsLib, target: &mut Target, rhs: &Expr, idx_values: &mut StaticVec, is_index: bool, op_pos: Position, level: usize, mut new_val: Option, ) -> Result<(Dynamic, bool), Box> { let is_ref = target.is_ref(); // Get a reference to the mutation target Dynamic let obj = target.as_mut(); // Pop the last index value let mut idx_val = idx_values.pop(); if is_index { match rhs { // xxx[idx].dot_rhs... | xxx[idx][dot_rhs]... Expr::Dot(x) | Expr::Index(x) => { let is_idx = matches!(rhs, Expr::Index(_)); let pos = x.0.position(); let this_ptr = &mut self .get_indexed_mut(state, lib, obj, is_ref, idx_val, pos, op_pos, false)?; self.eval_dot_index_chain_helper( state, lib, this_ptr, &x.1, idx_values, is_idx, x.2, level, new_val, ) } // xxx[rhs] = new_val _ if new_val.is_some() => { let pos = rhs.position(); let this_ptr = &mut self .get_indexed_mut(state, lib, obj, is_ref, idx_val, pos, op_pos, true)?; this_ptr.set_value(new_val.unwrap(), rhs.position())?; Ok((Default::default(), true)) } // xxx[rhs] _ => self .get_indexed_mut( state, lib, obj, is_ref, idx_val, rhs.position(), op_pos, false, ) .map(|v| (v.clone_into_dynamic(), false)), } } else { match rhs { // xxx.fn_name(arg_expr_list) Expr::FnCall(x) if x.1.is_none() => { let ((name, native, pos), _, hash, _, def_val) = x.as_ref(); let def_val = def_val.as_ref(); let mut arg_values: StaticVec<_> = once(obj) .chain( idx_val .downcast_mut::>() .unwrap() .iter_mut(), ) .collect(); let args = arg_values.as_mut(); self.exec_fn_call( state, lib, name, *native, *hash, args, is_ref, def_val, *pos, 0, ) } // xxx.module::fn_name(...) - syntax error Expr::FnCall(_) => unreachable!(), // {xxx:map}.id = ??? #[cfg(not(feature = "no_object"))] Expr::Property(x) if obj.is::() && new_val.is_some() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let mut val = self.get_indexed_mut(state, lib, obj, is_ref, index, *pos, op_pos, true)?; val.set_value(new_val.unwrap(), rhs.position())?; Ok((Default::default(), true)) } // {xxx:map}.id #[cfg(not(feature = "no_object"))] Expr::Property(x) if obj.is::() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let val = self.get_indexed_mut(state, lib, obj, is_ref, index, *pos, op_pos, false)?; Ok((val.clone_into_dynamic(), false)) } // xxx.id = ??? Expr::Property(x) if new_val.is_some() => { let ((_, _, setter), pos) = x.as_ref(); let mut args = [obj, new_val.as_mut().unwrap()]; self.exec_fn_call( state, lib, setter, true, 0, &mut args, is_ref, None, *pos, 0, ) .map(|(v, _)| (v, true)) } // xxx.id Expr::Property(x) => { let ((_, getter, _), pos) = x.as_ref(); let mut args = [obj]; self.exec_fn_call( state, lib, getter, true, 0, &mut args, is_ref, None, *pos, 0, ) .map(|(v, _)| (v, false)) } #[cfg(not(feature = "no_object"))] // {xxx:map}.idx_lhs[idx_expr] | {xxx:map}.dot_lhs.rhs Expr::Index(x) | Expr::Dot(x) if obj.is::() => { let is_idx = matches!(rhs, Expr::Index(_)); let mut val = if let Expr::Property(p) = &x.0 { let ((prop, _, _), _) = p.as_ref(); let index = prop.clone().into(); self.get_indexed_mut(state, lib, obj, is_ref, index, x.2, op_pos, false)? } else { // Syntax error return Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))); }; self.eval_dot_index_chain_helper( state, lib, &mut val, &x.1, idx_values, is_idx, x.2, level, new_val, ) } // xxx.idx_lhs[idx_expr] | xxx.dot_lhs.rhs Expr::Index(x) | Expr::Dot(x) => { let is_idx = matches!(rhs, Expr::Index(_)); let args = &mut [obj, &mut Default::default()]; let (mut val, updated) = if let Expr::Property(p) = &x.0 { let ((_, getter, _), _) = p.as_ref(); let args = &mut args[..1]; self.exec_fn_call(state, lib, getter, true, 0, args, is_ref, None, x.2, 0)? } else { // Syntax error return Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))); }; let val = &mut val; let target = &mut val.into(); let (result, may_be_changed) = self.eval_dot_index_chain_helper( state, lib, target, &x.1, idx_values, is_idx, x.2, level, new_val, )?; // Feed the value back via a setter just in case it has been updated if updated || may_be_changed { if let Expr::Property(p) = &x.0 { let ((_, _, setter), _) = p.as_ref(); // Re-use args because the first &mut parameter will not be consumed args[1] = val; self.exec_fn_call( state, lib, setter, true, 0, args, is_ref, None, x.2, 0, ) .or_else(|err| match *err { // If there is no setter, no need to feed it back because the property is read-only EvalAltResult::ErrorDotExpr(_, _) => Ok(Default::default()), err => Err(Box::new(err)), })?; } } Ok((result, may_be_changed)) } // Syntax error _ => Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))), } } } /// Evaluate a dot/index chain. fn eval_dot_index_chain( &self, scope: &mut Scope, state: &mut State, lib: &FunctionsLib, dot_lhs: &Expr, dot_rhs: &Expr, is_index: bool, op_pos: Position, level: usize, new_val: Option, ) -> Result> { let idx_values = &mut StaticVec::new(); self.eval_indexed_chain(scope, state, lib, dot_rhs, idx_values, 0, level)?; match dot_lhs { // id.??? or id[???] Expr::Variable(_) => { let (target, name, typ, pos) = search_scope(scope, state, dot_lhs)?; self.inc_operations(state, pos)?; // Constants cannot be modified match typ { ScopeEntryType::Module => unreachable!(), ScopeEntryType::Constant if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( name.to_string(), pos, ))); } ScopeEntryType::Constant | ScopeEntryType::Normal => (), } let this_ptr = &mut target.into(); self.eval_dot_index_chain_helper( state, lib, this_ptr, dot_rhs, idx_values, is_index, op_pos, level, new_val, ) .map(|(v, _)| v) } // {expr}.??? = ??? or {expr}[???] = ??? expr if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))); } // {expr}.??? or {expr}[???] expr => { let val = self.eval_expr(scope, state, lib, expr, level)?; let this_ptr = &mut val.into(); self.eval_dot_index_chain_helper( state, lib, this_ptr, dot_rhs, idx_values, is_index, op_pos, level, new_val, ) .map(|(v, _)| v) } } } /// Evaluate a chain of indexes and store the results in a list. /// The first few results are stored in the array `list` which is of fixed length. /// Any spill-overs are stored in `more`, which is dynamic. /// The fixed length array is used to avoid an allocation in the overwhelming cases of just a few levels of indexing. /// The total number of values is returned. fn eval_indexed_chain( &self, scope: &mut Scope, state: &mut State, lib: &FunctionsLib, expr: &Expr, idx_values: &mut StaticVec, size: usize, level: usize, ) -> Result<(), Box> { self.inc_operations(state, expr.position())?; match expr { Expr::FnCall(x) if x.1.is_none() => { let arg_values = x.3.iter() .map(|arg_expr| self.eval_expr(scope, state, lib, arg_expr, level)) .collect::, _>>()?; idx_values.push(Dynamic::from(arg_values)); } Expr::FnCall(_) => unreachable!(), Expr::Property(_) => idx_values.push(()), // Store a placeholder - no need to copy the property name Expr::Index(x) | Expr::Dot(x) => { // Evaluate in left-to-right order let lhs_val = match x.0 { Expr::Property(_) => Default::default(), // Store a placeholder in case of a property _ => self.eval_expr(scope, state, lib, &x.0, level)?, }; // Push in reverse order self.eval_indexed_chain(scope, state, lib, &x.1, idx_values, size, level)?; idx_values.push(lhs_val); } _ => idx_values.push(self.eval_expr(scope, state, lib, expr, level)?), } Ok(()) } /// Get the value at the indexed position of a base type fn get_indexed_mut<'a>( &self, state: &mut State, lib: &FunctionsLib, val: &'a mut Dynamic, is_ref: bool, mut idx: Dynamic, idx_pos: Position, op_pos: Position, create: bool, ) -> Result, Box> { self.inc_operations(state, op_pos)?; match val { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(arr)) => { // val_array[idx] let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; let arr_len = arr.len(); if index >= 0 { arr.get_mut(index as usize) .map(Target::from) .ok_or_else(|| { Box::new(EvalAltResult::ErrorArrayBounds(arr_len, index, idx_pos)) }) } else { Err(Box::new(EvalAltResult::ErrorArrayBounds( arr_len, index, idx_pos, ))) } } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(map)) => { // val_map[idx] Ok(if create { let index = idx .take_string() .map_err(|_| EvalAltResult::ErrorStringIndexExpr(idx_pos))?; map.entry(index).or_insert(Default::default()).into() } else { let index = idx .downcast_ref::() .ok_or_else(|| EvalAltResult::ErrorStringIndexExpr(idx_pos))?; map.get_mut(index) .map(Target::from) .unwrap_or_else(|| Target::from(())) }) } #[cfg(not(feature = "no_index"))] Dynamic(Union::Str(s)) => { // val_string[idx] let chars_len = s.chars().count(); let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; if index >= 0 { let offset = index as usize; let ch = s.chars().nth(offset).ok_or_else(|| { Box::new(EvalAltResult::ErrorStringBounds(chars_len, index, idx_pos)) })?; Ok(Target::StringChar(val, offset, ch.into())) } else { Err(Box::new(EvalAltResult::ErrorStringBounds( chars_len, index, idx_pos, ))) } } _ => { let fn_name = FUNC_INDEXER; let type_name = self.map_type_name(val.type_name()); let args = &mut [val, &mut idx]; self.exec_fn_call(state, lib, fn_name, true, 0, args, is_ref, None, op_pos, 0) .map(|(v, _)| v.into()) .map_err(|_| { Box::new(EvalAltResult::ErrorIndexingType(type_name.into(), op_pos)) }) } } } // Evaluate an 'in' expression fn eval_in_expr( &self, scope: &mut Scope, state: &mut State, lib: &FunctionsLib, lhs: &Expr, rhs: &Expr, level: usize, ) -> Result> { self.inc_operations(state, rhs.position())?; let lhs_value = self.eval_expr(scope, state, lib, lhs, level)?; let rhs_value = self.eval_expr(scope, state, lib, rhs, level)?; match rhs_value { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(mut rhs_value)) => { let op = "=="; let def_value = false.into(); // Call the `==` operator to compare each value for value in rhs_value.iter_mut() { let args = &mut [&mut lhs_value.clone(), value]; let def_value = Some(&def_value); let pos = rhs.position(); let hashes = ( // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. calc_fn_hash(empty(), op, args.len(), args.iter().map(|a| a.type_id())), 0, ); let (r, _) = self.call_fn_raw( None, state, lib, op, hashes, args, false, def_value, pos, level, )?; if r.as_bool().unwrap_or(false) { return Ok(true.into()); } } Ok(false.into()) } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains_key(s.as_str()).into()), Dynamic(Union::Char(c)) => Ok(rhs_value.contains_key(&c.to_string()).into()), _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, Dynamic(Union::Str(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains(s.as_str()).into()), Dynamic(Union::Char(c)) => Ok(rhs_value.contains(c).into()), _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, _ => Err(Box::new(EvalAltResult::ErrorInExpr(rhs.position()))), } } /// Evaluate an expression fn eval_expr( &self, scope: &mut Scope, state: &mut State, lib: &FunctionsLib, expr: &Expr, level: usize, ) -> Result> { self.inc_operations(state, expr.position())?; match expr { Expr::IntegerConstant(x) => Ok(x.0.into()), #[cfg(not(feature = "no_float"))] Expr::FloatConstant(x) => Ok(x.0.into()), Expr::StringConstant(x) => Ok(x.0.to_string().into()), Expr::CharConstant(x) => Ok(x.0.into()), Expr::Variable(_) => { let (val, _, _, _) = search_scope(scope, state, expr)?; Ok(val.clone()) } Expr::Property(_) => unreachable!(), // Statement block Expr::Stmt(stmt) => self.eval_stmt(scope, state, lib, &stmt.0, level), // var op= rhs Expr::Assignment(x) if matches!(x.0, Expr::Variable(_)) => { let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref(); let mut rhs_val = self.eval_expr(scope, state, lib, rhs_expr, level)?; let (lhs_ptr, name, typ, pos) = search_scope(scope, state, lhs_expr)?; self.inc_operations(state, pos)?; match typ { // Assignment to constant variable ScopeEntryType::Constant => Err(Box::new( EvalAltResult::ErrorAssignmentToConstant(name.to_string(), pos), )), // Normal assignment ScopeEntryType::Normal if op.is_empty() => { *lhs_ptr = rhs_val; Ok(Default::default()) } // Op-assignment - in order of precedence: ScopeEntryType::Normal => { // 1) Native registered overriding function // 2) Built-in implementation // 3) Map to `var = var op rhs` // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. let arg_types = once(lhs_ptr.type_id()).chain(once(rhs_val.type_id())); let hash_fn = calc_fn_hash(empty(), op, 2, arg_types); if let Some(CallableFunction::Method(func)) = self .global_module .get_fn(hash_fn) .or_else(|| self.packages.get_fn(hash_fn)) { // Overriding exact implementation func(&mut [lhs_ptr, &mut rhs_val])?; } else if run_builtin_op_assignment(op, lhs_ptr, &rhs_val)?.is_none() { // Not built in, map to `var = var op rhs` let op = &op[..op.len() - 1]; // extract operator without = let hash = calc_fn_hash(empty(), op, 2, empty()); let args = &mut [&mut lhs_ptr.clone(), &mut rhs_val]; // Set variable value *lhs_ptr = self .exec_fn_call( state, lib, op, true, hash, args, false, None, *op_pos, level, ) .map(|(v, _)| v)?; } Ok(Default::default()) } // A module cannot be assigned to ScopeEntryType::Module => unreachable!(), } } // lhs op= rhs Expr::Assignment(x) => { let (lhs_expr, op, rhs_expr, op_pos) = x.as_ref(); let mut rhs_val = self.eval_expr(scope, state, lib, rhs_expr, level)?; let new_val = Some(if op.is_empty() { // Normal assignment rhs_val } else { // Op-assignment - always map to `lhs = lhs op rhs` let op = &op[..op.len() - 1]; // extract operator without = let hash = calc_fn_hash(empty(), op, 2, empty()); let args = &mut [ &mut self.eval_expr(scope, state, lib, lhs_expr, level)?, &mut rhs_val, ]; self.exec_fn_call( state, lib, op, true, hash, args, false, None, *op_pos, level, ) .map(|(v, _)| v)? }); match lhs_expr { // name op= rhs Expr::Variable(_) => unreachable!(), // idx_lhs[idx_expr] op= rhs #[cfg(not(feature = "no_index"))] Expr::Index(x) => self.eval_dot_index_chain( scope, state, lib, &x.0, &x.1, true, x.2, level, new_val, ), // dot_lhs.dot_rhs op= rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x) => self.eval_dot_index_chain( scope, state, lib, &x.0, &x.1, false, *op_pos, level, new_val, ), // Error assignment to constant expr if expr.is_constant() => { Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( expr.get_constant_str(), expr.position(), ))) } // Syntax error expr => Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))), } } // lhs[idx_expr] #[cfg(not(feature = "no_index"))] Expr::Index(x) => { self.eval_dot_index_chain(scope, state, lib, &x.0, &x.1, true, x.2, level, None) } // lhs.dot_rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x) => { self.eval_dot_index_chain(scope, state, lib, &x.0, &x.1, false, x.2, level, None) } #[cfg(not(feature = "no_index"))] Expr::Array(x) => Ok(Dynamic(Union::Array(Box::new( x.0.iter() .map(|item| self.eval_expr(scope, state, lib, item, level)) .collect::, _>>()?, )))), #[cfg(not(feature = "no_object"))] Expr::Map(x) => Ok(Dynamic(Union::Map(Box::new( x.0.iter() .map(|((key, _), expr)| { self.eval_expr(scope, state, lib, expr, level) .map(|val| (key.clone(), val)) }) .collect::, _>>()?, )))), // Normal function call Expr::FnCall(x) if x.1.is_none() => { let ((name, native, pos), _, hash, args_expr, def_val) = x.as_ref(); let def_val = def_val.as_ref(); // Handle eval if name == KEYWORD_EVAL && args_expr.len() == 1 { let hash_fn = calc_fn_hash(empty(), name, 1, once(TypeId::of::())); if !self.has_override(lib, (hash_fn, *hash)) { // eval - only in function call style let prev_len = scope.len(); let pos = args_expr.get(0).position(); // Evaluate the text string as a script let script = self.eval_expr(scope, state, lib, args_expr.get(0), level)?; let result = self.eval_script_expr(scope, state, lib, &script, pos); if scope.len() != prev_len { // IMPORTANT! If the eval defines new variables in the current scope, // all variable offsets from this point on will be mis-aligned. state.always_search = true; } return result; } } // Normal function call - except for eval (handled above) let mut arg_values: StaticVec; let mut args: StaticVec<_>; let mut is_ref = false; if args_expr.is_empty() { // No arguments args = Default::default(); } else { // See if the first argument is a variable, if so, convert to method-call style // in order to leverage potential &mut first argument and avoid cloning the value match args_expr.get(0) { // func(x, ...) -> x.func(...) lhs @ Expr::Variable(_) => { arg_values = args_expr .iter() .skip(1) .map(|expr| self.eval_expr(scope, state, lib, expr, level)) .collect::>()?; let (target, _, typ, pos) = search_scope(scope, state, lhs)?; self.inc_operations(state, pos)?; match typ { ScopeEntryType::Module => unreachable!(), ScopeEntryType::Constant | ScopeEntryType::Normal => (), } args = once(target).chain(arg_values.iter_mut()).collect(); is_ref = true; } // func(..., ...) _ => { arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, state, lib, expr, level)) .collect::>()?; args = arg_values.iter_mut().collect(); } } } let args = args.as_mut(); self.exec_fn_call( state, lib, name, *native, *hash, args, is_ref, def_val, *pos, level, ) .map(|(v, _)| v) } // Module-qualified function call #[cfg(not(feature = "no_module"))] Expr::FnCall(x) if x.1.is_some() => { let ((name, _, pos), modules, hash_fn_def, args_expr, def_val) = x.as_ref(); let modules = modules.as_ref().unwrap(); let mut arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, state, lib, expr, level)) .collect::, _>>()?; let mut args: StaticVec<_> = arg_values.iter_mut().collect(); let (id, root_pos) = modules.get(0); // First module let module = if let Some(index) = modules.index() { scope .get_mut(scope.len() - index.get()) .0 .downcast_mut::() .unwrap() } else { scope.find_module(id).ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos)) })? }; // First search in script-defined functions (can override built-in) let func = match module.get_qualified_fn(name, *hash_fn_def) { Err(err) if matches!(*err, EvalAltResult::ErrorFunctionNotFound(_, _)) => { // Then search in Rust functions self.inc_operations(state, *pos)?; // Rust functions are indexed in two steps: // 1) Calculate a hash in a similar manner to script-defined functions, // i.e. qualifiers + function name + number of arguments. // 2) Calculate a second hash with no qualifiers, empty function name, // zero number of arguments, and the actual list of argument `TypeId`'.s let hash_fn_args = calc_fn_hash(empty(), "", 0, args.iter().map(|a| a.type_id())); // 3) The final hash is the XOR of the two hashes. let hash_fn_native = *hash_fn_def ^ hash_fn_args; module.get_qualified_fn(name, hash_fn_native) } r => r, }; match func { Ok(x) if x.is_script() => { let args = args.as_mut(); let fn_def = x.get_fn_def(); let result = self.call_script_fn(None, state, lib, name, fn_def, args, *pos, level)?; Ok(result) } Ok(x) => x.get_native_fn()(args.as_mut()).map_err(|err| err.new_position(*pos)), Err(err) if def_val.is_some() && matches!(*err, EvalAltResult::ErrorFunctionNotFound(_, _)) => { Ok(def_val.clone().unwrap()) } Err(err) => Err(err), } } Expr::In(x) => self.eval_in_expr(scope, state, lib, &x.0, &x.1, level), Expr::And(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, state, lib, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), lhs.position()) })? && // Short-circuit using && self .eval_expr(scope, state, lib, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), rhs.position()) })?) .into()) } Expr::Or(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, state, lib, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), lhs.position()) })? || // Short-circuit using || self .eval_expr(scope, state, lib, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), rhs.position()) })?) .into()) } Expr::True(_) => Ok(true.into()), Expr::False(_) => Ok(false.into()), Expr::Unit(_) => Ok(().into()), _ => unreachable!(), } } /// Evaluate a statement pub(crate) fn eval_stmt<'s>( &self, scope: &mut Scope<'s>, state: &mut State, lib: &FunctionsLib, stmt: &Stmt, level: usize, ) -> Result> { self.inc_operations(state, stmt.position())?; match stmt { // No-op Stmt::Noop(_) => Ok(Default::default()), // Expression as statement Stmt::Expr(expr) => { let result = self.eval_expr(scope, state, lib, expr, level)?; Ok(match expr.as_ref() { // If it is a simple assignment, erase the result at the root Expr::Assignment(_) => Default::default(), _ => result, }) } // Block scope Stmt::Block(x) => { let prev_len = scope.len(); state.scope_level += 1; let result = x.0.iter().try_fold(Default::default(), |_, stmt| { self.eval_stmt(scope, state, lib, stmt, level) }); scope.rewind(prev_len); state.scope_level -= 1; // The impact of an eval statement goes away at the end of a block // because any new variables introduced will go out of scope state.always_search = false; result } // If-else statement Stmt::IfThenElse(x) => { let (expr, if_block, else_block) = x.as_ref(); self.eval_expr(scope, state, lib, expr, level)? .as_bool() .map_err(|_| Box::new(EvalAltResult::ErrorLogicGuard(expr.position()))) .and_then(|guard_val| { if guard_val { self.eval_stmt(scope, state, lib, if_block, level) } else if let Some(stmt) = else_block { self.eval_stmt(scope, state, lib, stmt, level) } else { Ok(Default::default()) } }) } // While loop Stmt::While(x) => loop { let (expr, body) = x.as_ref(); match self.eval_expr(scope, state, lib, expr, level)?.as_bool() { Ok(true) => match self.eval_stmt(scope, state, lib, body, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()), _ => return Err(err), }, }, Ok(false) => return Ok(Default::default()), Err(_) => { return Err(Box::new(EvalAltResult::ErrorLogicGuard(expr.position()))) } } }, // Loop statement Stmt::Loop(body) => loop { match self.eval_stmt(scope, state, lib, body, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()), _ => return Err(err), }, } }, // For loop Stmt::For(x) => { let (name, expr, stmt) = x.as_ref(); let iter_type = self.eval_expr(scope, state, lib, expr, level)?; let tid = iter_type.type_id(); if let Some(func) = self .global_module .get_iter(tid) .or_else(|| self.packages.get_iter(tid)) { // Add the loop variable let var_name = unsafe_cast_var_name_to_lifetime(name, &state); scope.push(var_name, ()); let index = scope.len() - 1; state.scope_level += 1; for loop_var in func(iter_type) { *scope.get_mut(index).0 = loop_var; self.inc_operations(state, stmt.position())?; match self.eval_stmt(scope, state, lib, stmt, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => break, _ => return Err(err), }, } } scope.rewind(scope.len() - 1); state.scope_level -= 1; Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorFor(x.1.position()))) } } // Continue statement Stmt::Continue(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(false, *pos))), // Break statement Stmt::Break(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(true, *pos))), // Return value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return( self.eval_expr(scope, state, lib, x.1.as_ref().unwrap(), level)?, (x.0).1, ))) } // Empty return Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return(Default::default(), (x.0).1))) } // Throw value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Exception => { let val = self.eval_expr(scope, state, lib, x.1.as_ref().unwrap(), level)?; Err(Box::new(EvalAltResult::ErrorRuntime( val.take_string().unwrap_or_else(|_| "".into()), (x.0).1, ))) } // Empty throw Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Exception => { Err(Box::new(EvalAltResult::ErrorRuntime("".into(), (x.0).1))) } Stmt::ReturnWithVal(_) => unreachable!(), // Let statement Stmt::Let(x) if x.1.is_some() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr(scope, state, lib, expr.as_ref().unwrap(), level)?; let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Normal, val, false); Ok(Default::default()) } Stmt::Let(x) => { let ((var_name, _), _) = x.as_ref(); let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push(var_name, ()); Ok(Default::default()) } // Const statement Stmt::Const(x) if x.1.is_constant() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr(scope, state, lib, &expr, level)?; let var_name = unsafe_cast_var_name_to_lifetime(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Constant, val, true); Ok(Default::default()) } // Const expression not constant Stmt::Const(_) => unreachable!(), // Import statement Stmt::Import(x) => { #[cfg(feature = "no_module")] unreachable!(); #[cfg(not(feature = "no_module"))] { let (expr, (name, pos)) = x.as_ref(); // Guard against too many modules if state.modules >= self.max_modules { return Err(Box::new(EvalAltResult::ErrorTooManyModules(*pos))); } if let Some(path) = self .eval_expr(scope, state, lib, &expr, level)? .try_cast::() { if let Some(resolver) = &self.module_resolver { // Use an empty scope to create a module let module = resolver.resolve(self, Scope::new(), &path, expr.position())?; let mod_name = unsafe_cast_var_name_to_lifetime(name, &state); scope.push_module(mod_name, module); state.modules += 1; Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorModuleNotFound( path.to_string(), expr.position(), ))) } } else { Err(Box::new(EvalAltResult::ErrorImportExpr(expr.position()))) } } } // Export statement Stmt::Export(list) => { for ((id, id_pos), rename) in list.iter() { // Mark scope variables as public if let Some(index) = scope .get_index(id) .map(|(i, _)| i) .or_else(|| scope.get_module_index(id)) { let alias = rename .as_ref() .map(|(n, _)| n.clone()) .unwrap_or_else(|| id.clone()); scope.set_entry_alias(index, alias); } else { return Err(Box::new(EvalAltResult::ErrorVariableNotFound( id.into(), *id_pos, ))); } } Ok(Default::default()) } } } /// Check if the number of operations stay within limit. fn inc_operations(&self, state: &mut State, pos: Position) -> Result<(), Box> { state.operations += 1; #[cfg(not(feature = "unchecked"))] { // Guard against too many operations if state.operations > self.max_operations { return Err(Box::new(EvalAltResult::ErrorTooManyOperations(pos))); } } // Report progress - only in steps if let Some(progress) = &self.progress { if !progress(state.operations) { // Terminate script if progress returns false return Err(Box::new(EvalAltResult::ErrorTerminated(pos))); } } Ok(()) } /// Map a type_name into a pretty-print name pub(crate) fn map_type_name<'a>(&'a self, name: &'a str) -> &'a str { self.type_names .get(name) .map(String::as_str) .unwrap_or(name) } } /// Build in common binary operator implementations to avoid the cost of calling a registered function. fn run_builtin_binary_op( op: &str, x: &Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); #[cfg(not(feature = "unchecked"))] match op { "+" => return add(x, y).map(Into::::into).map(Some), "-" => return sub(x, y).map(Into::::into).map(Some), "*" => return mul(x, y).map(Into::::into).map(Some), "/" => return div(x, y).map(Into::::into).map(Some), "%" => return modulo(x, y).map(Into::::into).map(Some), "~" => return pow_i_i(x, y).map(Into::::into).map(Some), ">>" => return shr(x, y).map(Into::::into).map(Some), "<<" => return shl(x, y).map(Into::::into).map(Some), _ => (), } #[cfg(feature = "unchecked")] match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_i_i_u(x, y).map(Into::::into).map(Some), ">>" => return shr_u(x, y).map(Into::::into).map(Some), "<<" => return shl_u(x, y).map(Into::::into).map(Some), _ => (), } match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), "&" => return Ok(Some((x & y).into())), "|" => return Ok(Some((x | y).into())), "^" => return Ok(Some((x ^ y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "&" => return Ok(Some((x && y).into())), "|" => return Ok(Some((x || y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_ref::().unwrap(); let y = y.downcast_ref::().unwrap(); match op { "+" => return Ok(Some((x + y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::<()>() { match op { "==" => return Ok(Some(true.into())), "!=" | ">" | ">=" | "<" | "<=" => return Ok(Some(false.into())), _ => (), } } #[cfg(not(feature = "no_float"))] { if args_type == TypeId::of::() { let x = *x.downcast_ref::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_f_f(x, y).map(Into::::into).map(Some), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } } Ok(None) } /// Build in common operator assignment implementations to avoid the cost of calling a registered function. fn run_builtin_op_assignment( op: &str, x: &mut Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); #[cfg(not(feature = "unchecked"))] match op { "+=" => return Ok(Some(*x = add(*x, y)?)), "-=" => return Ok(Some(*x = sub(*x, y)?)), "*=" => return Ok(Some(*x = mul(*x, y)?)), "/=" => return Ok(Some(*x = div(*x, y)?)), "%=" => return Ok(Some(*x = modulo(*x, y)?)), "~=" => return Ok(Some(*x = pow_i_i(*x, y)?)), ">>=" => return Ok(Some(*x = shr(*x, y)?)), "<<=" => return Ok(Some(*x = shl(*x, y)?)), _ => (), } #[cfg(feature = "unchecked")] match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_i_i_u(*x, y)?)), ">>=" => return Ok(Some(*x = shr_u(*x, y)?)), "<<=" => return Ok(Some(*x = shl_u(*x, y)?)), _ => (), } match op { "&=" => return Ok(Some(*x &= y)), "|=" => return Ok(Some(*x |= y)), "^=" => return Ok(Some(*x ^= y)), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "&=" => return Ok(Some(*x = *x && y)), "|=" => return Ok(Some(*x = *x || y)), _ => (), } } else if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = y.downcast_ref::().unwrap(); match op { "+=" => return Ok(Some(*x += y)), _ => (), } } #[cfg(not(feature = "no_float"))] { if args_type == TypeId::of::() { let x = x.downcast_mut::().unwrap(); let y = *y.downcast_ref::().unwrap(); match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_f_f(*x, y)?)), _ => (), } } } Ok(None) }