//! Implement function-calling mechanism for `Engine`. use crate::any::Dynamic; use crate::calc_fn_hash; use crate::engine::{ search_imports, search_namespace, search_scope_only, Engine, Imports, State, KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_FN_PTR_CALL, KEYWORD_FN_PTR_CURRY, KEYWORD_PRINT, KEYWORD_TYPE_OF, KEYWORD_SHARED, }; use crate::error::ParseErrorType; use crate::fn_native::{FnCallArgs, FnPtr}; use crate::module::{Module, ModuleRef}; use crate::optimize::OptimizationLevel; use crate::parser::{Expr, ImmutableString, AST, INT}; use crate::result::EvalAltResult; use crate::scope::Scope; use crate::token::Position; use crate::utils::StaticVec; use crate::stdlib::ops::Deref; #[cfg(not(feature = "no_function"))] use crate::{ parser::ScriptFnDef, r#unsafe::unsafe_cast_var_name_to_lifetime, scope::{Entry as ScopeEntry, EntryType as ScopeEntryType}, }; #[cfg(not(feature = "no_float"))] use crate::parser::FLOAT; #[cfg(not(feature = "no_index"))] use crate::engine::{FN_IDX_GET, FN_IDX_SET}; #[cfg(not(feature = "no_object"))] use crate::engine::{Map, Target, FN_GET, FN_SET, KEYWORD_TAKE}; use crate::stdlib::{ any::{type_name, TypeId}, boxed::Box, collections::HashSet, convert::TryFrom, format, iter::{empty, once}, mem, string::{String, ToString}, vec::Vec, }; /// Extract the property name from a getter function name. #[inline(always)] fn extract_prop_from_getter(_fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] if _fn_name.starts_with(FN_GET) { return Some(&_fn_name[FN_GET.len()..]); } None } /// Extract the property name from a setter function name. #[inline(always)] fn extract_prop_from_setter(_fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] if _fn_name.starts_with(FN_SET) { return Some(&_fn_name[FN_SET.len()..]); } None } /// A type that temporarily stores a mutable reference to a `Dynamic`, /// replacing it with a cloned copy. #[derive(Debug, Default)] struct ArgBackup<'a> { orig_mut: Option<&'a mut Dynamic>, value_copy: Dynamic, } impl<'a> ArgBackup<'a> { /// This function replaces the first argument of a method call with a clone copy. /// This is to prevent a pure function unintentionally consuming the first argument. /// /// `restore_first_arg` must be called before the end of the scope to prevent the shorter lifetime from leaking. /// /// # Safety /// /// This method blindly casts a reference to another lifetime, which saves allocation and string cloning. /// /// If `restore_first_arg` is called before the end of the scope, the shorter lifetime will not leak. fn change_first_arg_to_copy(&mut self, normalize: bool, args: &mut FnCallArgs<'a>) { // Only do it for method calls with arguments. if !normalize || args.is_empty() { return; } // Clone the original value. self.value_copy = args[0].clone(); // Replace the first reference with a reference to the clone, force-casting the lifetime. // Must remember to restore it later with `restore_first_arg`. // // # Safety // // Blindly casting a reference to another lifetime saves allocation and string cloning, // but must be used with the utmost care. // // We can do this here because, before the end of this scope, we'd restore the original reference // via `restore_first_arg`. Therefore this shorter lifetime does not leak. self.orig_mut = Some(mem::replace(args.get_mut(0).unwrap(), unsafe { mem::transmute(&mut self.value_copy) })); } /// This function restores the first argument that was replaced by `change_first_arg_to_copy`. /// /// # Safety /// /// If `change_first_arg_to_copy` has been called, this function **MUST** be called _BEFORE_ exiting /// the current scope. Otherwise it is undefined behavior as the shorter lifetime will leak. fn restore_first_arg(&mut self, args: &mut FnCallArgs<'a>) { if let Some(this_pointer) = self.orig_mut.take() { args[0] = this_pointer; } } } impl Drop for ArgBackup<'_> { fn drop(&mut self) { // Panic if the shorter lifetime leaks. assert!( self.orig_mut.is_none(), "MutBackup::restore has not been called prior to existing this scope" ); } } // Add captured variables into scope #[cfg(not(feature = "no_capture"))] fn add_captured_variables_into_scope<'s>( externals: &HashSet, captured: Scope<'s>, scope: &mut Scope<'s>, ) { captured .into_iter() .filter(|ScopeEntry { name, .. }| externals.contains(name.as_ref())) .for_each( |ScopeEntry { name, typ, value, .. }| { match typ { ScopeEntryType::Normal => scope.push(name, value), ScopeEntryType::Constant => scope.push_constant(name, value), }; }, ); } impl Engine { /// Call a native Rust function registered with the `Engine`. /// Position in `EvalAltResult` is `None` and must be set afterwards. /// /// ## WARNING /// /// Function call arguments be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_native_fn( &self, state: &mut State, lib: &Module, fn_name: &str, hash_fn: u64, args: &mut FnCallArgs, is_ref: bool, pub_only: bool, def_val: Option, ) -> Result<(Dynamic, bool), Box> { self.inc_operations(state)?; // Search for the native function // First search registered functions (can override packages) // Then search packages let func = self .global_module .get_fn(hash_fn, pub_only) .or_else(|| self.packages.get_fn(hash_fn, pub_only)); if let Some(func) = func { assert!(func.is_native()); // Calling pure function but the first argument is a reference? let mut backup: ArgBackup = Default::default(); backup.change_first_arg_to_copy(is_ref && func.is_pure(), args); // Run external function let result = func.get_native_fn()(self, lib, args); // Restore the original reference backup.restore_first_arg(args); let result = result?; // See if the function match print/debug (which requires special processing) return Ok(match fn_name { KEYWORD_PRINT => ( (self.print)(result.as_str().map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), )) })?) .into(), false, ), KEYWORD_DEBUG => ( (self.debug)(result.as_str().map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), )) })?) .into(), false, ), _ => (result, func.is_method()), }); } // See if it is built in. if args.len() == 2 { match run_builtin_binary_op(fn_name, args[0], args[1])? { Some(v) => return Ok((v, false)), None => (), } } // Return default value (if any) if let Some(val) = def_val { return Ok((val.into(), false)); } // Getter function not found? if let Some(prop) = extract_prop_from_getter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!( "Unknown property '{}' for {}, or it is write-only", prop, self.map_type_name(args[0].type_name()) ), Position::none(), ))); } // Setter function not found? if let Some(prop) = extract_prop_from_setter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!( "Unknown property '{}' for {}, or it is read-only", prop, self.map_type_name(args[0].type_name()) ), Position::none(), ))); } // index getter function not found? #[cfg(not(feature = "no_index"))] if fn_name == FN_IDX_GET && args.len() == 2 { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} [{}]", self.map_type_name(args[0].type_name()), self.map_type_name(args[1].type_name()), ), Position::none(), ))); } // index setter function not found? #[cfg(not(feature = "no_index"))] if fn_name == FN_IDX_SET { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} [{}]=", self.map_type_name(args[0].type_name()), self.map_type_name(args[1].type_name()), ), Position::none(), ))); } // Raise error Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{} ({})", fn_name, args.iter() .map(|name| if name.is::() { "&str | ImmutableString | String" } else { self.map_type_name((*name).type_name()) }) .collect::>() .join(", ") ), Position::none(), ))) } /// Call a script-defined function. /// Position in `EvalAltResult` is `None` and must be set afterwards. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! #[cfg(not(feature = "no_function"))] pub(crate) fn call_script_fn( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, fn_name: &str, fn_def: &ScriptFnDef, args: &mut FnCallArgs, level: usize, ) -> Result> { self.inc_operations(state)?; // Check for stack overflow #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "unchecked"))] if level > self.limits.max_call_stack_depth { return Err(Box::new( EvalAltResult::ErrorStackOverflow(Position::none()), )); } let orig_scope_level = state.scope_level; state.scope_level += 1; let prev_scope_len = scope.len(); let prev_mods_len = mods.len(); // Put arguments into scope as variables // Actually consume the arguments instead of cloning them scope.extend( fn_def .params .iter() .zip(args.iter_mut().map(|v| mem::take(*v))) .map(|(name, value)| { let var_name = unsafe_cast_var_name_to_lifetime(name.as_str(), state); (var_name, ScopeEntryType::Normal, value) }), ); // Evaluate the function at one higher level of call depth let result = self .eval_stmt(scope, mods, state, lib, this_ptr, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, Position::none(), ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, Position::none(), ))), }); // Remove all local variables scope.rewind(prev_scope_len); mods.truncate(prev_mods_len); state.scope_level = orig_scope_level; result } // Has a system function an override? fn has_override(&self, lib: &Module, hash_fn: u64, hash_script: u64, pub_only: bool) -> bool { // NOTE: We skip script functions for global_module and packages, and native functions for lib // First check script-defined functions lib.contains_fn(hash_script, pub_only) //|| lib.contains_fn(hash_fn, pub_only) // Then check registered functions //|| self.global_module.contains_fn(hash_script, pub_only) || self.global_module.contains_fn(hash_fn, pub_only) // Then check packages //|| self.packages.contains_fn(hash_script, pub_only) || self.packages.contains_fn(hash_fn, pub_only) } /// Perform an actual function call, native Rust or scripted, taking care of special functions. /// Position in `EvalAltResult` is `None` and must be set afterwards. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn exec_fn_call( &self, state: &mut State, lib: &Module, fn_name: &str, hash_script: u64, args: &mut FnCallArgs, is_ref: bool, is_method: bool, pub_only: bool, capture: Option, def_val: Option, level: usize, ) -> Result<(Dynamic, bool), Box> { // Qualifiers (none) + function name + number of arguments + argument `TypeId`'s. let arg_types = args.iter().map(|a| a.type_id()); let hash_fn = calc_fn_hash(empty(), fn_name, args.len(), arg_types); match fn_name { // type_of KEYWORD_TYPE_OF if args.len() == 1 && !self.has_override(lib, hash_fn, hash_script, pub_only) => { Ok(( self.map_type_name(args[0].type_name()).to_string().into(), false, )) } // Fn KEYWORD_FN_PTR if args.len() == 1 && !self.has_override(lib, hash_fn, hash_script, pub_only) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'Fn' should not be called in method style. Try Fn(...);".into(), Position::none(), ))) } // eval - reaching this point it must be a method-style call KEYWORD_EVAL if args.len() == 1 && !self.has_override(lib, hash_fn, hash_script, pub_only) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'eval' should not be called in method style. Try eval(...);".into(), Position::none(), ))) } // Normal script function call #[cfg(not(feature = "no_function"))] _ if hash_script > 0 && lib.contains_fn(hash_script, pub_only) => { // Get scripted function let func = lib.get_fn(hash_script, pub_only).unwrap().get_fn_def(); let scope = &mut Scope::new(); let mods = &mut Imports::new(); // Add captured variables into scope #[cfg(not(feature = "no_capture"))] if let Some(captured) = capture { add_captured_variables_into_scope(&func.externals, captured, scope); } let result = if is_method { // Method call of script function - map first argument to `this` let (first, rest) = args.split_at_mut(1); self.call_script_fn( scope, mods, state, lib, &mut Some(first[0]), fn_name, func, rest, level, )? } else { // Normal call of script function - map first argument to `this` // The first argument is a reference? let mut backup: ArgBackup = Default::default(); backup.change_first_arg_to_copy(is_ref, args); let result = self.call_script_fn( scope, mods, state, lib, &mut None, fn_name, func, args, level, ); // Restore the original reference backup.restore_first_arg(args); result? }; Ok((result, false)) } // Normal native function call _ => self.call_native_fn( state, lib, fn_name, hash_fn, args, is_ref, pub_only, def_val, ), } } /// Evaluate a text string as a script - used primarily for 'eval'. /// Position in `EvalAltResult` is `None` and must be set afterwards. fn eval_script_expr( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, script_expr: &Dynamic, _level: usize, ) -> Result> { self.inc_operations(state)?; // Check for stack overflow #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "unchecked"))] if _level > self.limits.max_call_stack_depth { return Err(Box::new( EvalAltResult::ErrorStackOverflow(Position::none()), )); } let script = script_expr.as_str().map_err(|typ| { EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), Position::none(), ) })?; // Compile the script text // No optimizations because we only run it once let mut ast = self.compile_with_scope_and_optimization_level( &Scope::new(), &[script], OptimizationLevel::None, )?; // If new functions are defined within the eval string, it is an error if ast.lib().num_fn() != 0 { return Err(ParseErrorType::WrongFnDefinition.into()); } let statements = mem::take(ast.statements_mut()); let ast = AST::new(statements, lib.clone()); // Evaluate the AST let (result, operations) = self.eval_ast_with_scope_raw(scope, mods, &ast)?; state.operations += operations; self.inc_operations(state)?; return Ok(result); } /// Call a dot method. /// Position in `EvalAltResult` is `None` and must be set afterwards. #[cfg(not(feature = "no_object"))] pub(crate) fn make_method_call( &self, state: &mut State, lib: &Module, name: &str, hash_script: u64, target: &mut Target, idx_val: Dynamic, def_val: Option, native: bool, pub_only: bool, level: usize, ) -> Result<(Dynamic, bool), Box> { let is_ref = target.is_ref(); let is_value = target.is_value(); // Get a reference to the mutation target Dynamic let obj = target.as_mut(); let mut idx = idx_val.cast::>(); let mut _fn_name = name; let (result, updated) = if _fn_name == KEYWORD_FN_PTR_CALL && obj.is::() { // FnPtr call let fn_ptr = obj.read_lock::().unwrap(); let mut curry = fn_ptr.curry().iter().cloned().collect::>(); // Redirect function name let fn_name = fn_ptr.fn_name(); // Recalculate hash let hash = if native { 0 } else { calc_fn_hash(empty(), fn_name, curry.len() + idx.len(), empty()) }; // Arguments are passed as-is, adding the curried arguments let mut arg_values = curry .iter_mut() .chain(idx.iter_mut()) .collect::>(); let args = arg_values.as_mut(); // Map it to name(args) in function-call style self.exec_fn_call( state, lib, fn_name, hash, args, false, false, pub_only, None, def_val, level, ) } else if _fn_name == KEYWORD_FN_PTR_CALL && idx.len() > 0 && idx[0].is::() { // FnPtr call on object let fn_ptr = idx.remove(0).cast::(); let mut curry = fn_ptr.curry().iter().cloned().collect::>(); // Redirect function name let fn_name = fn_ptr.get_fn_name().clone(); // Recalculate hash let hash = if native { 0 } else { calc_fn_hash(empty(), &fn_name, curry.len() + idx.len(), empty()) }; // Replace the first argument with the object pointer, adding the curried arguments let mut arg_values = once(obj) .chain(curry.iter_mut()) .chain(idx.iter_mut()) .collect::>(); let args = arg_values.as_mut(); // Map it to name(args) in function-call style self.exec_fn_call( state, lib, &fn_name, hash, args, is_ref, true, pub_only, None, def_val, level, ) } else if _fn_name == KEYWORD_FN_PTR_CURRY && obj.is::() { // Curry call let fn_ptr = obj.read_lock::().unwrap(); Ok(( FnPtr::new_unchecked( fn_ptr.get_fn_name().clone(), fn_ptr .curry() .iter() .cloned() .chain(idx.into_iter()) .collect(), ) .into(), false, )) } else if _fn_name == KEYWORD_TAKE { // take call return Ok((obj.clone_inner_data::().unwrap(), false)); } else { #[cfg(not(feature = "no_object"))] let redirected; let mut _hash = hash_script; // Check if it is a map method call in OOP style #[cfg(not(feature = "no_object"))] if let Some(map) = obj.read_lock::() { if let Some(val) = map.get(_fn_name) { if let Some(f) = val.read_lock::() { // Remap the function name redirected = f.get_fn_name().clone(); _fn_name = &redirected; // Recalculate the hash based on the new function name _hash = calc_fn_hash(empty(), _fn_name, idx.len(), empty()); } } }; if native { _hash = 0; } // Attached object pointer in front of the arguments let mut arg_values = once(obj).chain(idx.iter_mut()).collect::>(); let args = arg_values.as_mut(); self.exec_fn_call( state, lib, _fn_name, _hash, args, is_ref, true, pub_only, None, def_val, level, ) }?; // Feed the changed temp value back if updated && !is_ref && !is_value { let new_val = target.as_mut().clone(); target.set_value(new_val)?; } Ok((result, updated)) } /// Call a function in normal function-call style. /// Position in `EvalAltResult` is `None` and must be set afterwards. pub(crate) fn make_function_call( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, name: &str, args_expr: &[Expr], def_val: Option, mut hash_script: u64, native: bool, pub_only: bool, capture: bool, level: usize, ) -> Result> { // Handle Fn() if name == KEYWORD_FN_PTR && args_expr.len() == 1 { let hash_fn = calc_fn_hash(empty(), name, 1, once(TypeId::of::())); if !self.has_override(lib, hash_fn, hash_script, pub_only) { // Fn - only in function call style let expr = args_expr.get(0).unwrap(); let arg_value = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; return arg_value .take_immutable_string() .map_err(|typ| { Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), typ.into(), expr.position(), )) }) .and_then(|s| FnPtr::try_from(s)) .map(Into::::into) .map_err(|err| err.new_position(expr.position())); } } // Handle curry() if name == KEYWORD_FN_PTR_CURRY && args_expr.len() > 1 { let expr = args_expr.get(0).unwrap(); let fn_ptr = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; if !fn_ptr.is::() { return Err(Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), self.map_type_name(fn_ptr.type_name()).into(), expr.position(), ))); } let (fn_name, fn_curry) = fn_ptr.cast::().take_data(); let curry: StaticVec<_> = args_expr .iter() .skip(1) .map(|expr| self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)) .collect::>()?; return Ok(FnPtr::new_unchecked( fn_name, fn_curry.into_iter().chain(curry.into_iter()).collect(), ) .into()); } // Handle shared() if name == KEYWORD_SHARED && args_expr.len() == 1 { let expr = args_expr.get(0).unwrap(); let value = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; return Ok(value.into_shared()); } // Handle call() - Redirect function call let redirected; let mut args_expr = args_expr.as_ref(); let mut curry: StaticVec<_> = Default::default(); let mut name = name; if name == KEYWORD_FN_PTR_CALL && args_expr.len() >= 1 && !self.has_override(lib, 0, hash_script, pub_only) { let expr = args_expr.get(0).unwrap(); let fn_name = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; if fn_name.is::() { let fn_ptr = fn_name.cast::(); curry = fn_ptr.curry().iter().cloned().collect(); // Redirect function name redirected = fn_ptr.take_data().0; name = &redirected; // Skip the first argument args_expr = &args_expr.as_ref()[1..]; // Recalculate hash hash_script = calc_fn_hash(empty(), name, curry.len() + args_expr.len(), empty()); } else { return Err(Box::new(EvalAltResult::ErrorMismatchOutputType( self.map_type_name(type_name::()).into(), fn_name.type_name().into(), expr.position(), ))); } } // Handle eval() if name == KEYWORD_EVAL && args_expr.len() == 1 { let hash_fn = calc_fn_hash(empty(), name, 1, once(TypeId::of::())); if !self.has_override(lib, hash_fn, hash_script, pub_only) { // eval - only in function call style let prev_len = scope.len(); let expr = args_expr.get(0).unwrap(); let script = self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)?; let result = self .eval_script_expr(scope, mods, state, lib, &script, level + 1) .map_err(|err| err.new_position(expr.position())); // IMPORTANT! If the eval defines new variables in the current scope, // all variable offsets from this point on will be mis-aligned. if scope.len() != prev_len { state.always_search = true; } return result; } } // Normal function call - except for Fn, curry, call and eval (handled above) let mut arg_values: StaticVec<_>; let mut args: StaticVec<_>; let mut is_ref = false; let capture = if capture && !scope.is_empty() { Some(scope.flatten_clone()) } else { None }; if args_expr.is_empty() && curry.is_empty() { // No arguments args = Default::default(); } else { // See if the first argument is a variable, if so, convert to method-call style // in order to leverage potential &mut first argument and avoid cloning the value match args_expr.get(0).unwrap() { // func(x, ...) -> x.func(...) lhs @ Expr::Variable(_) => { arg_values = args_expr .iter() .skip(1) .map(|expr| self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)) .collect::>()?; let (target, _, _, pos) = search_namespace(scope, mods, state, this_ptr, lhs)?; self.inc_operations(state) .map_err(|err| err.new_position(pos))?; args = once(target) .chain(curry.iter_mut()) .chain(arg_values.iter_mut()) .collect(); is_ref = true; } // func(..., ...) _ => { arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)) .collect::>()?; args = curry.iter_mut().chain(arg_values.iter_mut()).collect(); } } } let hash = if native { 0 } else { hash_script }; let args = args.as_mut(); self.exec_fn_call( state, lib, name, hash, args, is_ref, false, pub_only, capture, def_val, level, ) .map(|(v, _)| v) } /// Call a module-qualified function in normal function-call style. /// Position in `EvalAltResult` is `None` and must be set afterwards. pub(crate) fn make_qualified_function_call( &self, scope: &mut Scope, mods: &mut Imports, state: &mut State, lib: &Module, this_ptr: &mut Option<&mut Dynamic>, modules: &Option>, name: &str, args_expr: &[Expr], def_val: Option, hash_script: u64, capture: bool, level: usize, ) -> Result> { let modules = modules.as_ref().unwrap(); #[cfg(not(feature = "no_capture"))] let capture = if capture && !scope.is_empty() { Some(scope.flatten_clone()) } else { None }; let mut arg_values: StaticVec<_>; let mut args: StaticVec<_>; if args_expr.is_empty() { // No arguments args = Default::default(); } else { // See if the first argument is a variable (not module-qualified). // If so, convert to method-call style in order to leverage potential // &mut first argument and avoid cloning the value match args_expr.get(0).unwrap() { // func(x, ...) -> x.func(...) Expr::Variable(x) if x.1.is_none() => { arg_values = args_expr .iter() .skip(1) .map(|expr| self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)) .collect::>()?; let (target, _, _, pos) = search_scope_only(scope, state, this_ptr, args_expr.get(0).unwrap())?; self.inc_operations(state) .map_err(|err| err.new_position(pos))?; args = once(target).chain(arg_values.iter_mut()).collect(); } // func(..., ...) or func(mod::x, ...) _ => { arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, mods, state, lib, this_ptr, expr, level)) .collect::>()?; args = arg_values.iter_mut().collect(); } } } let module = search_imports(mods, state, modules)?; // First search in script-defined functions (can override built-in) let func = match module.get_qualified_fn(hash_script) { // Then search in Rust functions None => { self.inc_operations(state)?; // Qualified Rust functions are indexed in two steps: // 1) Calculate a hash in a similar manner to script-defined functions, // i.e. qualifiers + function name + number of arguments. // 2) Calculate a second hash with no qualifiers, empty function name, // zero number of arguments, and the actual list of argument `TypeId`'.s let hash_fn_args = calc_fn_hash(empty(), "", 0, args.iter().map(|a| a.type_id())); // 3) The final hash is the XOR of the two hashes. let hash_qualified_fn = hash_script ^ hash_fn_args; module.get_qualified_fn(hash_qualified_fn) } r => r, }; match func { #[cfg(not(feature = "no_function"))] Some(f) if f.is_script() => { let args = args.as_mut(); let func = f.get_fn_def(); let scope = &mut Scope::new(); let mods = &mut Imports::new(); // Add captured variables into scope #[cfg(not(feature = "no_capture"))] if let Some(captured) = capture { add_captured_variables_into_scope(&func.externals, captured, scope); } self.call_script_fn(scope, mods, state, lib, &mut None, name, func, args, level) } Some(f) => f.get_native_fn()(self, lib, args.as_mut()), None if def_val.is_some() => Ok(def_val.unwrap().into()), None => Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!( "{}{} ({})", modules, name, args.iter() .map(|a| if a.is::() { "&str | ImmutableString | String" } else { self.map_type_name((*a).type_name()) }) .collect::>() .join(", ") ), Position::none(), ))), } } } /// Build in common binary operator implementations to avoid the cost of calling a registered function. pub fn run_builtin_binary_op( op: &str, x: &Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let x = x.clone().cast::(); let y = y.clone().cast::(); #[cfg(not(feature = "unchecked"))] match op { "+" => return add(x, y).map(Into::into).map(Some), "-" => return sub(x, y).map(Into::into).map(Some), "*" => return mul(x, y).map(Into::into).map(Some), "/" => return div(x, y).map(Into::into).map(Some), "%" => return modulo(x, y).map(Into::into).map(Some), "~" => return pow_i_i(x, y).map(Into::into).map(Some), ">>" => return shr(x, y).map(Into::into).map(Some), "<<" => return shl(x, y).map(Into::into).map(Some), _ => (), } #[cfg(feature = "unchecked")] match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_i_i_u(x, y).map(Into::into).map(Some), ">>" => return shr_u(x, y).map(Into::into).map(Some), "<<" => return shl_u(x, y).map(Into::into).map(Some), _ => (), } match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), "&" => return Ok(Some((x & y).into())), "|" => return Ok(Some((x | y).into())), "^" => return Ok(Some((x ^ y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = x.clone().cast::(); let y = y.clone().cast::(); match op { "&" => return Ok(Some((x && y).into())), "|" => return Ok(Some((x || y).into())), "^" => return Ok(Some((x ^ y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = &*x.read_lock::().unwrap(); let y = &*y.read_lock::().unwrap(); match op { "+" => return Ok(Some((x + y).into())), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::() { let x = x.clone().cast::(); let y = y.clone().cast::(); match op { "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } else if args_type == TypeId::of::<()>() { match op { "==" => return Ok(Some(true.into())), "!=" | ">" | ">=" | "<" | "<=" => return Ok(Some(false.into())), _ => (), } } #[cfg(not(feature = "no_float"))] if args_type == TypeId::of::() { let x = x.clone().cast::(); let y = y.clone().cast::(); match op { "+" => return Ok(Some((x + y).into())), "-" => return Ok(Some((x - y).into())), "*" => return Ok(Some((x * y).into())), "/" => return Ok(Some((x / y).into())), "%" => return Ok(Some((x % y).into())), "~" => return pow_f_f(x, y).map(Into::into).map(Some), "==" => return Ok(Some((x == y).into())), "!=" => return Ok(Some((x != y).into())), ">" => return Ok(Some((x > y).into())), ">=" => return Ok(Some((x >= y).into())), "<" => return Ok(Some((x < y).into())), "<=" => return Ok(Some((x <= y).into())), _ => (), } } Ok(None) } /// Build in common operator assignment implementations to avoid the cost of calling a registered function. pub fn run_builtin_op_assignment( op: &str, x: &mut Dynamic, y: &Dynamic, ) -> Result, Box> { use crate::packages::arithmetic::*; let args_type = x.type_id(); if y.type_id() != args_type { return Ok(None); } if args_type == TypeId::of::() { let mut x = x.write_lock::().unwrap(); let y = y.clone().cast::(); #[cfg(not(feature = "unchecked"))] match op { "+=" => return Ok(Some(*x = add(*x, y)?)), "-=" => return Ok(Some(*x = sub(*x, y)?)), "*=" => return Ok(Some(*x = mul(*x, y)?)), "/=" => return Ok(Some(*x = div(*x, y)?)), "%=" => return Ok(Some(*x = modulo(*x, y)?)), "~=" => return Ok(Some(*x = pow_i_i(*x, y)?)), ">>=" => return Ok(Some(*x = shr(*x, y)?)), "<<=" => return Ok(Some(*x = shl(*x, y)?)), _ => (), } #[cfg(feature = "unchecked")] match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_i_i_u(*x, y)?)), ">>=" => return Ok(Some(*x = shr_u(*x, y)?)), "<<=" => return Ok(Some(*x = shl_u(*x, y)?)), _ => (), } match op { "&=" => return Ok(Some(*x &= y)), "|=" => return Ok(Some(*x |= y)), "^=" => return Ok(Some(*x ^= y)), _ => (), } } else if args_type == TypeId::of::() { let mut x = x.write_lock::().unwrap(); let y = y.clone().cast::(); match op { "&=" => return Ok(Some(*x = *x && y)), "|=" => return Ok(Some(*x = *x || y)), _ => (), } } else if args_type == TypeId::of::() { let mut x = x.write_lock::().unwrap(); let y = y.read_lock::().unwrap(); match op { "+=" => return Ok(Some(*x += y.deref())), _ => (), } } #[cfg(not(feature = "no_float"))] if args_type == TypeId::of::() { let mut x = x.write_lock::().unwrap(); let y = y.clone().cast::(); match op { "+=" => return Ok(Some(*x += y)), "-=" => return Ok(Some(*x -= y)), "*=" => return Ok(Some(*x *= y)), "/=" => return Ok(Some(*x /= y)), "%=" => return Ok(Some(*x %= y)), "~=" => return Ok(Some(*x = pow_f_f(*x, y)?)), _ => (), } } Ok(None) }