//! Module implementing the [`AST`] optimizer. use crate::ast::{Expr, OpAssignment, Stmt, AST_OPTION_FLAGS::*}; use crate::dynamic::AccessMode; use crate::engine::{ EvalState, Imports, KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF, }; use crate::fn_builtin::get_builtin_binary_op_fn; use crate::fn_hash::get_hasher; use crate::token::Token; use crate::{ calc_fn_hash, calc_fn_params_hash, combine_hashes, Dynamic, Engine, FnPtr, ImmutableString, Module, Position, Scope, StaticVec, AST, }; #[cfg(feature = "no_std")] use std::prelude::v1::*; use std::{ any::TypeId, hash::{Hash, Hasher}, mem, ops::DerefMut, }; #[cfg(not(feature = "no_closure"))] use crate::engine::KEYWORD_IS_SHARED; /// Level of optimization performed. #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] pub enum OptimizationLevel { /// No optimization performed. None, /// Only perform simple optimizations without evaluating functions. Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects as it essentially assumes that all functions are pure. Full, } impl Default for OptimizationLevel { #[inline(always)] fn default() -> Self { if cfg!(feature = "no_optimize") { Self::None } else { Self::Simple } } } /// Mutable state throughout an optimization pass. #[derive(Debug, Clone)] struct OptimizerState<'a> { /// Has the [`AST`] been changed during this pass? changed: bool, /// Collection of constants to use for eager function evaluations. variables: StaticVec<(String, AccessMode, Option)>, /// Activate constants propagation? propagate_constants: bool, /// An [`Engine`] instance for eager function evaluation. engine: &'a Engine, /// [Module] containing script-defined functions. lib: &'a [&'a Module], /// Optimization level. optimization_level: OptimizationLevel, } impl<'a> OptimizerState<'a> { /// Create a new State. #[inline(always)] pub fn new( engine: &'a Engine, lib: &'a [&'a Module], optimization_level: OptimizationLevel, ) -> Self { Self { changed: false, variables: StaticVec::new(), propagate_constants: true, engine, lib, optimization_level, } } /// Set the [`AST`] state to be dirty (i.e. changed). #[inline(always)] pub fn set_dirty(&mut self) { self.changed = true; } /// Set the [`AST`] state to be not dirty (i.e. unchanged). #[inline(always)] pub fn clear_dirty(&mut self) { self.changed = false; } /// Is the [`AST`] dirty (i.e. changed)? #[inline(always)] pub const fn is_dirty(&self) -> bool { self.changed } /// Prune the list of constants back to a specified size. #[inline(always)] pub fn restore_var(&mut self, len: usize) { self.variables.truncate(len) } /// Add a new constant to the list. #[inline(always)] pub fn push_var(&mut self, name: &str, access: AccessMode, value: Option) { self.variables.push((name.into(), access, value)) } /// Look up a constant from the list. #[inline] pub fn find_constant(&self, name: &str) -> Option<&Dynamic> { if !self.propagate_constants { return None; } for (n, access, value) in self.variables.iter().rev() { if n == name { return match access { AccessMode::ReadWrite => None, AccessMode::ReadOnly => value.as_ref(), }; } } None } /// Call a registered function #[inline] pub fn call_fn_with_constant_arguments( &self, fn_name: &str, arg_values: &mut [Dynamic], ) -> Option { self.engine .call_native_fn( &mut Imports::new(), &mut EvalState::new(), self.lib, fn_name, calc_fn_hash(fn_name, arg_values.len()), &mut arg_values.iter_mut().collect::>(), false, false, Position::NONE, ) .ok() .map(|(v, _)| v) } // Has a system function a Rust-native override? pub fn has_native_fn_override(&self, hash_script: u64, arg_types: &[TypeId]) -> bool { let hash_params = calc_fn_params_hash(arg_types.iter().cloned()); let hash = combine_hashes(hash_script, hash_params); // First check the global namespace and packages, but skip modules that are standard because // they should never conflict with system functions. self.engine.global_modules.iter().filter(|m| !m.standard).any(|m| m.contains_fn(hash)) // Then check sub-modules || self.engine.global_sub_modules.values().any(|m| m.contains_qualified_fn(hash)) } } /// Optimize a block of [statements][Stmt]. fn optimize_stmt_block( mut statements: StaticVec, state: &mut OptimizerState, preserve_result: bool, is_internal: bool, reduce_return: bool, ) -> StaticVec { if statements.is_empty() { return statements; } let mut is_dirty = state.is_dirty(); let is_pure = if is_internal { Stmt::is_internally_pure } else { Stmt::is_pure }; loop { state.clear_dirty(); let orig_constants_len = state.variables.len(); // Original number of constants in the state, for restore later let orig_propagate_constants = state.propagate_constants; // Remove everything following control flow breaking statements let mut dead_code = false; statements.retain(|stmt| { if dead_code { state.set_dirty(); false } else if stmt.is_control_flow_break() { dead_code = true; true } else { true } }); // Optimize each statement in the block statements.iter_mut().for_each(|stmt| { match stmt { Stmt::Var(value_expr, x, options, _) => { if options.contains(AST_OPTION_CONSTANT) { // Add constant literals into the state optimize_expr(value_expr, state, false); if value_expr.is_constant() { state.push_var( &x.name, AccessMode::ReadOnly, value_expr.get_literal_value(), ); } } else { // Add variables into the state optimize_expr(value_expr, state, false); state.push_var(&x.name, AccessMode::ReadWrite, None); } } // Optimize the statement _ => optimize_stmt(stmt, state, preserve_result), } }); // Remove all pure statements except the last one let mut index = 0; let mut first_non_constant = statements .iter() .rev() .enumerate() .find_map(|(i, stmt)| match stmt { stmt if !is_pure(stmt) => Some(i), Stmt::Var(e, _, _, _) | Stmt::Expr(e) if !e.is_constant() => Some(i), #[cfg(not(feature = "no_module"))] Stmt::Import(e, _, _) if !e.is_constant() => Some(i), _ => None, }) .map_or(0, |n| statements.len() - n - 1); while index < statements.len() { if preserve_result && index >= statements.len() - 1 { break; } else { match statements[index] { ref stmt if is_pure(stmt) && index >= first_non_constant => { state.set_dirty(); statements.remove(index); } ref stmt if stmt.is_pure() => { state.set_dirty(); if index < first_non_constant { first_non_constant -= 1; } statements.remove(index); } _ => index += 1, } } } // Remove all pure statements that do not return values at the end of a block. // We cannot remove anything for non-pure statements due to potential side-effects. if preserve_result { loop { match statements[..] { // { return; } -> {} [Stmt::Return(options, None, _)] if reduce_return && !options.contains(AST_OPTION_BREAK_OUT) => { state.set_dirty(); statements.clear(); } [ref stmt] if !stmt.returns_value() && is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., ref last_stmt, Stmt::Return(options, None, _)] if reduce_return && !options.contains(AST_OPTION_BREAK_OUT) && !last_stmt.returns_value() => { state.set_dirty(); statements .pop() .expect("`statements` contains at least two elements"); } // { ...; return val; } -> { ...; val } [.., Stmt::Return(options, ref mut expr, pos)] if reduce_return && !options.contains(AST_OPTION_BREAK_OUT) => { state.set_dirty(); *statements .last_mut() .expect("`statements` contains at least two elements") = if let Some(expr) = expr { Stmt::Expr(mem::take(expr)) } else { Stmt::Noop(pos) }; } // { ...; stmt; noop } -> done [.., ref second_last_stmt, Stmt::Noop(_)] if second_last_stmt.returns_value() => { break } // { ...; stmt_that_returns; pure_non_value_stmt } -> { ...; stmt_that_returns; noop } // { ...; stmt; pure_non_value_stmt } -> { ...; stmt } [.., ref second_last_stmt, ref last_stmt] if !last_stmt.returns_value() && is_pure(last_stmt) => { state.set_dirty(); if second_last_stmt.returns_value() { *statements .last_mut() .expect("`statements` contains at least two elements") = Stmt::Noop(last_stmt.position()); } else { statements .pop() .expect("`statements` contains at least two elements"); } } _ => break, } } } else { loop { match statements[..] { [ref stmt] if is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., Stmt::Return(options, None, _)] if reduce_return && !options.contains(AST_OPTION_BREAK_OUT) => { state.set_dirty(); statements .pop() .expect("`statements` contains at least two elements"); } // { ...; return pure_val; } -> { ... } [.., Stmt::Return(options, Some(ref expr), _)] if reduce_return && !options.contains(AST_OPTION_BREAK_OUT) && expr.is_pure() => { state.set_dirty(); statements .pop() .expect("`statements` contains at least two elements"); } [.., ref last_stmt] if is_pure(last_stmt) => { state.set_dirty(); statements .pop() .expect("`statements` contains at least one element"); } _ => break, } } } // Pop the stack and remove all the local constants state.restore_var(orig_constants_len); state.propagate_constants = orig_propagate_constants; if !state.is_dirty() { break; } is_dirty = true; } if is_dirty { state.set_dirty(); } statements.shrink_to_fit(); statements } /// Optimize a [statement][Stmt]. fn optimize_stmt(stmt: &mut Stmt, state: &mut OptimizerState, preserve_result: bool) { match stmt { // var = var op expr => var op= expr Stmt::Assignment(x, _) if x.1.is_none() && x.0.is_variable_access(true) && matches!(&x.2, Expr::FnCall(x2, _) if Token::lookup_from_syntax(&x2.name).map(|t| t.has_op_assignment()).unwrap_or(false) && x2.args.len() == 2 && x2.args[0].get_variable_name(true) == x.0.get_variable_name(true) ) => { match x.2 { Expr::FnCall(ref mut x2, _) => { state.set_dirty(); let op = Token::lookup_from_syntax(&x2.name).expect("`x2` is operator"); let op_assignment = op.make_op_assignment().expect("`op` is operator"); x.1 = Some(OpAssignment::new(op_assignment)); let value = mem::take(&mut x2.args[1]); if let Expr::Stack(slot, pos) = value { let value = mem::take( x2.constants .get_mut(slot) .expect("`constants[slot]` is valid"), ); x.2 = Expr::from_dynamic(value, pos); } else { x.2 = value; } } _ => unreachable!(), } } // expr op= expr Stmt::Assignment(x, _) => match x.0 { Expr::Variable(_, _, _) => optimize_expr(&mut x.2, state, false), _ => { optimize_expr(&mut x.0, state, false); optimize_expr(&mut x.2, state, false); } }, // if expr {} Stmt::If(condition, x, _) if x.0.is_empty() && x.1.is_empty() => { state.set_dirty(); let pos = condition.position(); let mut expr = mem::take(condition); optimize_expr(&mut expr, state, false); *stmt = if preserve_result { // -> { expr, Noop } Stmt::Block([Stmt::Expr(expr), Stmt::Noop(pos)].into(), pos) } else { // -> expr Stmt::Expr(expr) }; } // if false { if_block } -> Noop Stmt::If(Expr::BoolConstant(false, pos), x, _) if x.1.is_empty() => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // if false { if_block } else { else_block } -> else_block Stmt::If(Expr::BoolConstant(false, _), x, _) => { state.set_dirty(); let else_block = mem::take(&mut *x.1); *stmt = match optimize_stmt_block(else_block, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.1.position()), statements => Stmt::Block(statements.into_boxed_slice(), x.1.position()), } } // if true { if_block } else { else_block } -> if_block Stmt::If(Expr::BoolConstant(true, _), x, _) => { state.set_dirty(); let if_block = mem::take(&mut *x.0); *stmt = match optimize_stmt_block(if_block, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.0.position()), statements => Stmt::Block(statements.into_boxed_slice(), x.0.position()), } } // if expr { if_block } else { else_block } Stmt::If(condition, x, _) => { optimize_expr(condition, state, false); let if_block = mem::take(x.0.deref_mut()); *x.0 = optimize_stmt_block(if_block, state, preserve_result, true, false); let else_block = mem::take(x.1.deref_mut()); *x.1 = optimize_stmt_block(else_block, state, preserve_result, true, false); } // switch const { ... } Stmt::Switch(match_expr, x, pos) if match_expr.is_constant() => { let value = match_expr.get_literal_value().expect("constant"); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); state.set_dirty(); let table = &mut x.0; if let Some(block) = table.get_mut(&hash) { if let Some(mut condition) = mem::take(&mut block.0) { // switch const { case if condition => stmt, _ => def } => if condition { stmt } else { def } optimize_expr(&mut condition, state, false); let def_block = mem::take(&mut *x.1); let def_stmt = optimize_stmt_block(def_block, state, true, true, false); let def_pos = if x.1.position().is_none() { *pos } else { x.1.position() }; *stmt = Stmt::If( condition, Box::new(( mem::take(&mut block.1), Stmt::Block(def_stmt.into_boxed_slice(), def_pos).into(), )), match_expr.position(), ); } else { // Promote the matched case let new_pos = block.1.position(); let statements = mem::take(&mut *block.1); let statements = optimize_stmt_block(statements, state, true, true, false); *stmt = Stmt::Block(statements.into_boxed_slice(), new_pos); } } else { // Promote the default case let def_block = mem::take(&mut *x.1); let def_stmt = optimize_stmt_block(def_block, state, true, true, false); let def_pos = if x.1.position().is_none() { *pos } else { x.1.position() }; *stmt = Stmt::Block(def_stmt.into_boxed_slice(), def_pos); } } // switch Stmt::Switch(match_expr, x, _) => { optimize_expr(match_expr, state, false); x.0.values_mut().for_each(|block| { let condition = mem::take(&mut block.0).map_or_else( || Expr::Unit(Position::NONE), |mut condition| { optimize_expr(&mut condition, state, false); condition }, ); match condition { Expr::Unit(_) | Expr::BoolConstant(true, _) => (), _ => { block.0 = Some(condition); *block.1 = optimize_stmt_block( mem::take(block.1.deref_mut()), state, preserve_result, true, false, ); } } }); // Remove false cases while let Some((&key, _)) = x.0.iter().find(|(_, block)| match block.0 { Some(Expr::BoolConstant(false, _)) => true, _ => false, }) { state.set_dirty(); x.0.remove(&key); } let def_block = mem::take(x.1.deref_mut()); *x.1 = optimize_stmt_block(def_block, state, preserve_result, true, false); } // while false { block } -> Noop Stmt::While(Expr::BoolConstant(false, pos), _, _) => { state.set_dirty(); *stmt = Stmt::Noop(*pos) } // while expr { block } Stmt::While(condition, body, _) => { optimize_expr(condition, state, false); if let Expr::BoolConstant(true, pos) = condition { *condition = Expr::Unit(*pos); } let block = mem::take(body.as_mut().deref_mut()); *body.as_mut().deref_mut() = optimize_stmt_block(block, state, false, true, false); if body.len() == 1 { match body[0] { // while expr { break; } -> { expr; } Stmt::BreakLoop(options, pos) if options.contains(AST_OPTION_BREAK_OUT) => { // Only a single break statement - turn into running the guard expression once state.set_dirty(); if !condition.is_unit() { let mut statements = vec![Stmt::Expr(mem::take(condition))]; if preserve_result { statements.push(Stmt::Noop(pos)) } *stmt = Stmt::Block(statements.into_boxed_slice(), pos); } else { *stmt = Stmt::Noop(pos); }; } _ => (), } } } // do { block } while false | do { block } until true -> { block } Stmt::Do(body, Expr::BoolConstant(x, _), options, _) if *x == options.contains(AST_OPTION_NEGATED) => { state.set_dirty(); let block_pos = body.position(); let block = mem::take(body.as_mut().deref_mut()); *stmt = Stmt::Block( optimize_stmt_block(block, state, false, true, false).into_boxed_slice(), block_pos, ); } // do { block } while|until expr Stmt::Do(body, condition, _, _) => { optimize_expr(condition, state, false); let block = mem::take(body.as_mut().deref_mut()); *body.as_mut().deref_mut() = optimize_stmt_block(block, state, false, true, false); } // for id in expr { block } Stmt::For(iterable, x, _) => { optimize_expr(iterable, state, false); let body = mem::take(x.2.deref_mut()); *x.2 = optimize_stmt_block(body, state, false, true, false); } // let id = expr; Stmt::Var(expr, _, options, _) if !options.contains(AST_OPTION_CONSTANT) => { optimize_expr(expr, state, false) } // import expr as var; #[cfg(not(feature = "no_module"))] Stmt::Import(expr, _, _) => optimize_expr(expr, state, false), // { block } Stmt::Block(statements, pos) => { let statements = mem::take(statements).into_vec().into(); let mut block = optimize_stmt_block(statements, state, preserve_result, true, false); match block.as_mut_slice() { [] => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // Only one statement - promote [s] => { state.set_dirty(); *stmt = mem::take(s); } _ => *stmt = Stmt::Block(block.into_boxed_slice(), *pos), } } // try { pure try_block } catch ( var ) { catch_block } -> try_block Stmt::TryCatch(x, _) if x.0.iter().all(Stmt::is_pure) => { // If try block is pure, there will never be any exceptions state.set_dirty(); let try_pos = x.0.position(); let try_block = mem::take(&mut *x.0); *stmt = Stmt::Block( optimize_stmt_block(try_block, state, false, true, false).into_boxed_slice(), try_pos, ); } // try { try_block } catch ( var ) { catch_block } Stmt::TryCatch(x, _) => { let try_block = mem::take(x.0.deref_mut()); *x.0 = optimize_stmt_block(try_block, state, false, true, false); let catch_block = mem::take(x.2.deref_mut()); *x.2 = optimize_stmt_block(catch_block, state, false, true, false); } // func(...) Stmt::Expr(expr @ Expr::FnCall(_, _)) => { optimize_expr(expr, state, false); match expr { Expr::FnCall(x, pos) => { state.set_dirty(); *stmt = Stmt::FnCall(mem::take(x), *pos); } _ => (), } } // {} Stmt::Expr(Expr::Stmt(x)) if x.is_empty() => { state.set_dirty(); *stmt = Stmt::Noop(x.position()); } // {...}; Stmt::Expr(Expr::Stmt(x)) => { state.set_dirty(); *stmt = mem::take(x.as_mut()).into(); } // expr; Stmt::Expr(expr) => optimize_expr(expr, state, false), // return expr; Stmt::Return(_, Some(ref mut expr), _) => optimize_expr(expr, state, false), // All other statements - skip _ => (), } } /// Optimize an [expression][Expr]. fn optimize_expr(expr: &mut Expr, state: &mut OptimizerState, chaining: bool) { // These keywords are handled specially const DONT_EVAL_KEYWORDS: &[&str] = &[ KEYWORD_PRINT, // side effects KEYWORD_DEBUG, // side effects KEYWORD_EVAL, // arbitrary scripts ]; let _chaining = chaining; match expr { // {} Expr::Stmt(x) if x.is_empty() => { state.set_dirty(); *expr = Expr::Unit(x.position()) } // { stmt; ... } - do not count promotion as dirty because it gets turned back into an array Expr::Stmt(x) => { *x.as_mut().deref_mut() = optimize_stmt_block(mem::take(x.as_mut().deref_mut()), state, true, true, false); // { Stmt(Expr) } - promote match x.as_mut().as_mut() { [ Stmt::Expr(e) ] => { state.set_dirty(); *expr = mem::take(e); } _ => () } } // lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x,_, _) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // map.string (Expr::Map(m, pos), Expr::Property(p)) if m.0.iter().all(|(_, x)| x.is_pure()) => { let prop = p.2.0.as_str(); // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, _)| x.name == prop) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // var.rhs (Expr::Variable(_, _, _), rhs) => optimize_expr(rhs, state, true), // lhs.rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } } // ....lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x,_, _) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // lhs[rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, _, _) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // array[int] (Expr::Array(a, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let mut result = mem::take(&mut a[*i as usize]); result.set_position(*pos); *expr = result; } // array[-int] (Expr::Array(a, pos), Expr::IntegerConstant(i, _)) if *i < 0 && i.checked_abs().map(|n| n as usize <= a.len()).unwrap_or(false) && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let index = a.len() - i.abs() as usize; let mut result = mem::take(&mut a[index]); result.set_position(*pos); *expr = result; } // map[string] (Expr::Map(m, pos), Expr::StringConstant(s, _)) if m.0.iter().all(|(_, x)| x.is_pure()) => { // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, _)| x.name.as_str() == s.as_str()) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // int[int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < (std::mem::size_of_val(n) * 8) => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (*i as usize))) != 0, *pos); } // int[-int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, _)) if *i < 0 && i.checked_abs().map(|i| i as usize <= (std::mem::size_of_val(n) * 8)).unwrap_or(false) => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (std::mem::size_of_val(n) * 8 - i.abs() as usize))) != 0, *pos); } // string[int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().nth(*i as usize).expect("character position is valid"), *pos); } // string[-int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if *i < 0 && i.checked_abs().map(|n| n as usize <= s.chars().count()).unwrap_or(false) => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().rev().nth(i.abs() as usize - 1).expect("character position is valid"), *pos); } // var[rhs] (Expr::Variable(_, _, _), rhs) => optimize_expr(rhs, state, true), // lhs[rhs] (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } }, // ...[lhs][rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, _, _) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // `` Expr::InterpolatedString(x, pos) if x.is_empty() => { state.set_dirty(); *expr = Expr::StringConstant(state.engine.const_empty_string(), *pos); } // `...` Expr::InterpolatedString(x, _) if x.len() == 1 && matches!(x[0], Expr::StringConstant(_, _)) => { state.set_dirty(); *expr = mem::take(&mut x[0]); } // `... ${ ... } ...` Expr::InterpolatedString(x, _) => { x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)); let mut n = 0; // Merge consecutive strings while n < x.len()-1 { match (mem::take(&mut x[n]), mem::take(&mut x[n+1])) { (Expr::StringConstant(mut s1, pos), Expr::StringConstant(s2, _)) => { s1 += s2; x[n] = Expr::StringConstant(s1, pos); x.remove(n+1); state.set_dirty(); } (expr1, Expr::Unit(_)) => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::Unit(_), expr2) => { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, Expr::StringConstant(s, _)) if s.is_empty() => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::StringConstant(s, _), expr2) if s.is_empty()=> { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, expr2) => { x[n] = expr1; x[n+1] = expr2; n += 1; } } } x.shrink_to_fit(); } // [ constant .. ] #[cfg(not(feature = "no_index"))] Expr::Array(_, _) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().expect("constant").into(), expr.position()); } // [ items .. ] #[cfg(not(feature = "no_index"))] Expr::Array(x, _) => x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)), // #{ key:constant, .. } #[cfg(not(feature = "no_object"))] Expr::Map(_, _) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().expect("constant").into(), expr.position()); } // #{ key:value, .. } #[cfg(not(feature = "no_object"))] Expr::Map(x, _) => x.0.iter_mut().for_each(|(_, expr)| optimize_expr(expr, state, false)), // lhs && rhs Expr::And(x, _) => match (&mut x.lhs, &mut x.rhs) { // true && rhs -> rhs (Expr::BoolConstant(true, _), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // false && rhs -> false (Expr::BoolConstant(false, pos), _) => { state.set_dirty(); *expr = Expr::BoolConstant(false, *pos); } // lhs && true -> lhs (lhs, Expr::BoolConstant(true, _)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs && rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // lhs || rhs Expr::Or(ref mut x, _) => match (&mut x.lhs, &mut x.rhs) { // false || rhs -> rhs (Expr::BoolConstant(false, _), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // true || rhs -> true (Expr::BoolConstant(true, pos), _) => { state.set_dirty(); *expr = Expr::BoolConstant(true, *pos); } // lhs || false (lhs, Expr::BoolConstant(false, _)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs || rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // eval! Expr::FnCall(x, _) if x.name == KEYWORD_EVAL => { state.propagate_constants = false; } // Fn Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.len() == 1 && x.args[0].is_constant() && x.name == KEYWORD_FN_PTR => { let fn_name = match x.args[0] { Expr::Stack(slot, _) => Some(x.constants[slot].clone()), Expr::StringConstant(ref s, _) => Some(s.clone().into()), _ => None }; if let Some(fn_name) = fn_name { if fn_name.is::() { state.set_dirty(); let fn_ptr = FnPtr::new_unchecked( fn_name.as_str_ref().expect("`fn_name` is `ImmutableString`").into(), StaticVec::new() ); *expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), *pos); } } } // Do not call some special keywords Expr::FnCall(x, _) if DONT_EVAL_KEYWORDS.contains(&x.name.as_ref()) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // Call built-in operators Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants //&& !is_valid_identifier(x.name.chars()) // cannot be scripted => { let arg_values = &mut x.args.iter().map(|e| match e { Expr::Stack(slot, _) => x.constants[*slot].clone(), _ => e.get_literal_value().expect("constant") }).collect::>(); let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect(); match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => { state.set_dirty(); *expr = Expr::from_dynamic(state.engine.map_type_name(arg_values[0].type_name()).into(), *pos); return; } #[cfg(not(feature = "no_closure"))] KEYWORD_IS_SHARED if arg_values.len() == 1 => { state.set_dirty(); *expr = Expr::from_dynamic(Dynamic::FALSE, *pos); return; } // Overloaded operators can override built-in. _ if x.args.len() == 2 && !state.has_native_fn_override(x.hashes.native, arg_types.as_ref()) => { if let Some(result) = get_builtin_binary_op_fn(x.name.as_ref(), &arg_values[0], &arg_values[1]) .and_then(|f| { let context = (state.engine, x.name.as_ref(), state.lib).into(); let (first, second) = arg_values.split_first_mut().expect("`arg_values` is not empty"); (f)(context, &mut [ first, &mut second[0] ]).ok() }) { state.set_dirty(); *expr = Expr::from_dynamic(result, *pos); return; } } _ => () } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); // Move constant arguments for arg in x.args.iter_mut() { if let Some(value) = arg.get_literal_value() { state.set_dirty(); x.constants.push(value); *arg = Expr::Stack(x.constants.len()-1, arg.position()); } } } // Eagerly call functions Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Full // full optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants => { // First search for script-defined functions (can override built-in) #[cfg(not(feature = "no_function"))] let has_script_fn = state.lib.iter().any(|&m| m.get_script_fn(x.name.as_ref(), x.args.len()).is_some()); #[cfg(feature = "no_function")] let has_script_fn = false; if !has_script_fn { let arg_values = &mut x.args.iter().map(|e| match e { Expr::Stack(slot, _) => x.constants[*slot].clone(), _ => e.get_literal_value().expect("constant") }).collect::>(); let result = match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => Some(state.engine.map_type_name(arg_values[0].type_name()).into()), #[cfg(not(feature = "no_closure"))] KEYWORD_IS_SHARED if arg_values.len() == 1 => Some(Dynamic::FALSE), _ => state.call_fn_with_constant_arguments(x.name.as_ref(), arg_values) }; if let Some(result) = result { state.set_dirty(); *expr = Expr::from_dynamic(result, *pos); return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // id(args ..) -> optimize function call arguments Expr::FnCall(x, _) => for arg in x.args.iter_mut() { optimize_expr(arg, state, false); // Move constant arguments if let Some(value) = arg.get_literal_value() { state.set_dirty(); x.constants.push(value); *arg = Expr::Stack(x.constants.len()-1, arg.position()); } }, // constant-name Expr::Variable(_, pos, x) if x.1.is_none() && state.find_constant(&x.2).is_some() => { // Replace constant with value *expr = Expr::from_dynamic(state.find_constant(&x.2).expect("constant exists").clone(), *pos); state.set_dirty(); } // Custom syntax Expr::Custom(x, _) => { if x.scope_may_be_changed { state.propagate_constants = false; } x.inputs.iter_mut().for_each(|expr| optimize_expr(expr, state, false)); } // All other expressions - skip _ => (), } } /// Optimize a block of [statements][Stmt] at top level. /// /// Constants and variables from the scope are added. fn optimize_top_level( statements: StaticVec, engine: &Engine, scope: &Scope, lib: &[&Module], optimization_level: OptimizationLevel, ) -> StaticVec { let mut statements = statements; // If optimization level is None then skip optimizing if optimization_level == OptimizationLevel::None { statements.shrink_to_fit(); return statements; } // Set up the state let mut state = OptimizerState::new(engine, lib, optimization_level); // Add constants and variables from the scope scope.iter().for_each(|(name, constant, value)| { if !constant { state.push_var(name, AccessMode::ReadWrite, None); } else { state.push_var(name, AccessMode::ReadOnly, Some(value)); } }); statements = optimize_stmt_block(statements, &mut state, true, false, true); statements } /// Optimize an [`AST`]. pub fn optimize_into_ast( engine: &Engine, scope: &Scope, statements: StaticVec, functions: StaticVec>, optimization_level: OptimizationLevel, ) -> AST { let level = if cfg!(feature = "no_optimize") { Default::default() } else { optimization_level }; let mut statements = statements; let _functions = functions; #[cfg(not(feature = "no_function"))] let lib = { let mut module = Module::new(); if level != OptimizationLevel::None { // We only need the script library's signatures for optimization purposes let mut lib2 = Module::new(); _functions .iter() .map(|fn_def| crate::ast::ScriptFnDef { name: fn_def.name.clone(), access: fn_def.access, body: crate::ast::StmtBlock::empty(), params: fn_def.params.clone(), lib: None, #[cfg(not(feature = "no_module"))] mods: crate::engine::Imports::new(), #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: None, }) .for_each(|fn_def| { lib2.set_script_fn(fn_def); }); let lib2 = &[&lib2]; _functions .into_iter() .map(|fn_def| { let mut fn_def = crate::fn_native::shared_take_or_clone(fn_def); // Optimize the function body let body = mem::take(fn_def.body.deref_mut()); *fn_def.body = optimize_top_level(body, engine, scope, lib2, level); fn_def }) .for_each(|fn_def| { module.set_script_fn(fn_def); }); } else { _functions.into_iter().for_each(|fn_def| { module.set_script_fn(fn_def); }); } module }; #[cfg(feature = "no_function")] let lib = Module::new(); statements.shrink_to_fit(); AST::new( match level { OptimizationLevel::None => statements, OptimizationLevel::Simple | OptimizationLevel::Full => { optimize_top_level(statements, engine, &scope, &[&lib], level) } }, lib, ) }