//! Module implementing the AST optimizer. use crate::ast::{Expr, ScriptFnDef, Stmt, AST}; use crate::dynamic::Dynamic; use crate::engine::{ Engine, KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_IS_DEF_FN, KEYWORD_IS_DEF_VAR, KEYWORD_PRINT, KEYWORD_TYPE_OF, }; use crate::fn_call::run_builtin_binary_op; use crate::module::Module; use crate::parser::map_dynamic_to_expr; use crate::scope::Scope; use crate::token::{is_valid_identifier, Position, NO_POS}; use crate::utils::get_hasher; use crate::{calc_native_fn_hash, StaticVec}; #[cfg(not(feature = "no_function"))] use crate::ast::ReturnType; use crate::stdlib::{ boxed::Box, hash::{Hash, Hasher}, iter::empty, mem, string::{String, ToString}, vec, vec::Vec, }; /// Level of optimization performed. /// /// Not available under the `no_optimize` feature. #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] pub enum OptimizationLevel { /// No optimization performed. None, /// Only perform simple optimizations without evaluating functions. Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects as it essentially assumes that all functions are pure. Full, } impl OptimizationLevel { /// Is the `OptimizationLevel` None. #[inline(always)] pub fn is_none(self) -> bool { self == Self::None } /// Is the `OptimizationLevel` Simple. #[cfg(not(feature = "no_optimize"))] #[inline(always)] pub fn is_simple(self) -> bool { self == Self::Simple } /// Is the `OptimizationLevel` Full. #[cfg(not(feature = "no_optimize"))] #[inline(always)] pub fn is_full(self) -> bool { self == Self::Full } } /// Mutable state throughout an optimization pass. #[derive(Debug, Clone)] struct State<'a> { /// Has the AST been changed during this pass? changed: bool, /// Collection of constants to use for eager function evaluations. constants: Vec<(String, Expr)>, /// An `Engine` instance for eager function evaluation. engine: &'a Engine, /// Library of script-defined functions. lib: &'a [&'a Module], /// Optimization level. optimization_level: OptimizationLevel, } impl<'a> State<'a> { /// Create a new State. #[inline(always)] pub fn new(engine: &'a Engine, lib: &'a [&'a Module], level: OptimizationLevel) -> Self { Self { changed: false, constants: vec![], engine, lib, optimization_level: level, } } /// Reset the state from dirty to clean. #[inline(always)] pub fn reset(&mut self) { self.changed = false; } /// Set the AST state to be dirty (i.e. changed). #[inline(always)] pub fn set_dirty(&mut self) { self.changed = true; } /// Is the AST dirty (i.e. changed)? #[inline(always)] pub fn is_dirty(&self) -> bool { self.changed } /// Does a constant exist? #[inline(always)] pub fn contains_constant(&self, name: &str) -> bool { self.constants.iter().any(|(n, _)| n == name) } /// Prune the list of constants back to a specified size. #[inline(always)] pub fn restore_constants(&mut self, len: usize) { self.constants.truncate(len) } /// Add a new constant to the list. #[inline(always)] pub fn push_constant(&mut self, name: &str, value: Expr) { self.constants.push((name.into(), value)) } /// Look up a constant from the list. #[inline] pub fn find_constant(&self, name: &str) -> Option<&Expr> { for (n, expr) in self.constants.iter().rev() { if n == name { return Some(expr); } } None } } /// Call a registered function fn call_fn_with_constant_arguments( state: &State, fn_name: &str, arg_values: &mut [Dynamic], ) -> Option { // Search built-in's and external functions let hash_fn = calc_native_fn_hash(empty(), fn_name, arg_values.iter().map(|a| a.type_id())); state .engine .call_native_fn( &mut Default::default(), &mut Default::default(), state.lib, fn_name, hash_fn, arg_values.iter_mut().collect::>().as_mut(), false, true, None, ) .ok() .map(|(v, _)| v) } /// Optimize a block of statements. fn optimize_stmt_block( mut statements: Vec, pos: Position, state: &mut State, preserve_result: bool, count_promote_as_dirty: bool, ) -> Stmt { let orig_len = statements.len(); // Original number of statements in the block, for change detection let orig_constants_len = state.constants.len(); // Original number of constants in the state, for restore later // Optimize each statement in the block statements.iter_mut().for_each(|stmt| match stmt { // Add constant literals into the state Stmt::Const(var_def, Some(expr), _, pos) if expr.is_constant() => { state.set_dirty(); state.push_constant(&var_def.name, mem::take(expr)); *stmt = Stmt::Noop(*pos); // No need to keep constants } Stmt::Const(var_def, None, _, pos) => { state.set_dirty(); state.push_constant(&var_def.name, Expr::Unit(var_def.pos)); *stmt = Stmt::Noop(*pos); // No need to keep constants } // Optimize the statement _ => optimize_stmt(stmt, state, preserve_result), }); // Remove all raw expression statements that are pure except for the very last statement let last_stmt = if preserve_result { statements.pop() } else { None }; statements.retain(|stmt| !stmt.is_pure()); if let Some(stmt) = last_stmt { statements.push(stmt); } // Remove all let/import statements at the end of a block - the new variables will go away anyway. // But be careful only remove ones that have no initial values or have values that are pure expressions, // otherwise there may be side effects. let mut removed = false; while let Some(expr) = statements.pop() { match expr { Stmt::Let(_, expr, _, _) => removed = expr.as_ref().map(Expr::is_pure).unwrap_or(true), #[cfg(not(feature = "no_module"))] Stmt::Import(expr, _, _) => removed = expr.is_pure(), _ => { statements.push(expr); break; } } } if preserve_result { if removed { statements.push(Stmt::Noop(pos)) } // Optimize all the statements again let num_statements = statements.len(); statements .iter_mut() .enumerate() .for_each(|(i, stmt)| optimize_stmt(stmt, state, i == num_statements)); } // Remove everything following the the first return/throw let mut dead_code = false; statements.retain(|stmt| { if dead_code { return false; } match stmt { Stmt::ReturnWithVal(_, _, _) | Stmt::Break(_) => dead_code = true, _ => (), } true }); // Change detection if orig_len != statements.len() { state.set_dirty(); } // Pop the stack and remove all the local constants state.restore_constants(orig_constants_len); match &statements[..] { // No statements in block - change to No-op [] => { state.set_dirty(); Stmt::Noop(pos) } // Only one let statement - leave it alone [x] if matches!(x, Stmt::Let(_, _, _, _)) => Stmt::Block(statements, pos), // Only one import statement - leave it alone #[cfg(not(feature = "no_module"))] [x] if matches!(x, Stmt::Import(_, _, _)) => Stmt::Block(statements, pos), // Only one statement - promote [_] => { if count_promote_as_dirty { state.set_dirty(); } statements.remove(0) } _ => Stmt::Block(statements, pos), } } /// Optimize a statement. fn optimize_stmt(stmt: &mut Stmt, state: &mut State, preserve_result: bool) { match stmt { // expr op= expr Stmt::Assignment(ref mut x, _) => match x.0 { Expr::Variable(_) => optimize_expr(&mut x.2, state), _ => { optimize_expr(&mut x.0, state); optimize_expr(&mut x.2, state); } }, // if false { if_block } -> Noop Stmt::IfThenElse(Expr::False(pos), x, _) if x.1.is_none() => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // if true { if_block } -> if_block Stmt::IfThenElse(Expr::True(_), x, _) if x.1.is_none() => { *stmt = mem::take(&mut x.0); optimize_stmt(stmt, state, true); } // if expr { Noop } Stmt::IfThenElse(ref mut condition, x, _) if x.1.is_none() && matches!(x.0, Stmt::Noop(_)) => { state.set_dirty(); let pos = condition.position(); let mut expr = mem::take(condition); optimize_expr(&mut expr, state); *stmt = if preserve_result { // -> { expr, Noop } let mut statements = Vec::new(); statements.push(Stmt::Expr(expr)); statements.push(mem::take(&mut x.0)); Stmt::Block(statements, pos) } else { // -> expr Stmt::Expr(expr) }; } // if expr { if_block } Stmt::IfThenElse(ref mut condition, ref mut x, _) if x.1.is_none() => { optimize_expr(condition, state); optimize_stmt(&mut x.0, state, true); } // if false { if_block } else { else_block } -> else_block Stmt::IfThenElse(Expr::False(_), x, _) if x.1.is_some() => { *stmt = mem::take(x.1.as_mut().unwrap()); optimize_stmt(stmt, state, true); } // if true { if_block } else { else_block } -> if_block Stmt::IfThenElse(Expr::True(_), x, _) => { *stmt = mem::take(&mut x.0); optimize_stmt(stmt, state, true); } // if expr { if_block } else { else_block } Stmt::IfThenElse(ref mut condition, ref mut x, _) => { optimize_expr(condition, state); optimize_stmt(&mut x.0, state, true); if let Some(else_block) = x.1.as_mut() { optimize_stmt(else_block, state, true); match else_block { Stmt::Noop(_) => x.1 = None, // Noop -> no else block _ => (), } } } // while false { block } -> Noop Stmt::While(Expr::False(pos), _, _) => { state.set_dirty(); *stmt = Stmt::Noop(*pos) } // while true { block } -> loop { block } Stmt::While(Expr::True(_), block, pos) => { optimize_stmt(block, state, false); *stmt = Stmt::Loop(Box::new(mem::take(block)), *pos) } // while expr { block } Stmt::While(condition, block, _) => { optimize_stmt(block, state, false); optimize_expr(condition, state); match **block { // while expr { break; } -> { expr; } Stmt::Break(pos) => { // Only a single break statement - turn into running the guard expression once state.set_dirty(); let mut statements = Vec::new(); statements.push(Stmt::Expr(mem::take(condition))); if preserve_result { statements.push(Stmt::Noop(pos)) } *stmt = Stmt::Block(statements, pos); } _ => (), } } // loop { block } Stmt::Loop(block, _) => { optimize_stmt(block, state, false); match **block { // loop { break; } -> Noop Stmt::Break(pos) => { // Only a single break statement state.set_dirty(); *stmt = Stmt::Noop(pos) } _ => (), } } // for id in expr { block } Stmt::For(ref mut iterable, ref mut x, _) => { optimize_expr(iterable, state); optimize_stmt(&mut x.1, state, false); } // let id = expr; Stmt::Let(_, Some(ref mut expr), _, _) => optimize_expr(expr, state), // let id; Stmt::Let(_, None, _, _) => (), // import expr as var; #[cfg(not(feature = "no_module"))] Stmt::Import(ref mut expr, _, _) => optimize_expr(expr, state), // { block } Stmt::Block(statements, pos) => { *stmt = optimize_stmt_block(mem::take(statements), *pos, state, preserve_result, true); } // try { block } catch ( var ) { block } Stmt::TryCatch(x, _, _) if x.0.is_pure() => { // If try block is pure, there will never be any exceptions state.set_dirty(); let pos = x.0.position(); optimize_stmt(&mut x.0, state, preserve_result); let mut statements = match mem::take(&mut x.0) { Stmt::Block(statements, _) => statements, stmt => vec![stmt], }; statements.push(Stmt::Noop(pos)); *stmt = Stmt::Block(statements, pos); } // try { block } catch ( var ) { block } Stmt::TryCatch(ref mut x, _, _) => { optimize_stmt(&mut x.0, state, false); optimize_stmt(&mut x.2, state, false); } // {} Stmt::Expr(Expr::Stmt(x, pos)) if x.is_empty() => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // {...}; Stmt::Expr(Expr::Stmt(x, pos)) => { state.set_dirty(); *stmt = Stmt::Block(mem::take(x).into_vec(), *pos); } // expr; Stmt::Expr(ref mut expr) => optimize_expr(expr, state), // return expr; Stmt::ReturnWithVal(_, Some(ref mut expr), _) => optimize_expr(expr, state), // All other statements - skip _ => (), } } /// Optimize an expression. fn optimize_expr(expr: &mut Expr, state: &mut State) { // These keywords are handled specially const DONT_EVAL_KEYWORDS: &[&str] = &[ KEYWORD_PRINT, // side effects KEYWORD_DEBUG, // side effects KEYWORD_EVAL, // arbitrary scripts KEYWORD_IS_DEF_FN, // functions collection is volatile KEYWORD_IS_DEF_VAR, // variables scope is volatile ]; match expr { // expr - do not promote because there is a reason it is wrapped in an `Expr::Expr` Expr::Expr(x) => optimize_expr(x, state), // {} Expr::Stmt(x, pos) if x.is_empty() => { state.set_dirty(); *expr = Expr::Unit(*pos) } // { stmt; ... } - do not count promotion as dirty because it gets turned back into an array Expr::Stmt(x, pos) => match optimize_stmt_block(mem::take(x).into_vec(), *pos, state, true, false) { // {} Stmt::Noop(_) => { state.set_dirty(); *expr = Expr::Unit(*pos); } // { stmt, .. } Stmt::Block(statements, _) => *x = Box::new(statements.into()), // { expr } Stmt::Expr(inner) => { state.set_dirty(); *expr = inner; } // { stmt } stmt => x.push(stmt), } // lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x, _) => match (&mut x.lhs, &mut x.rhs) { // map.string (Expr::Map(m, pos), Expr::Property(p)) if m.iter().all(|(_, x)| x.is_pure()) => { let prop = &p.1.name; // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(m).into_iter().find(|(x, _)| &x.name == prop) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // var.rhs (Expr::Variable(_), rhs) => optimize_expr(rhs, state), // lhs.rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } } // lhs[rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, _) => match (&mut x.lhs, &mut x.rhs) { // array[int] (Expr::Array(a, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let mut result = a.remove(*i as usize); result.set_position(*pos); *expr = result; } // map[string] (Expr::Map(m, pos), Expr::StringConstant(s, _)) if m.iter().all(|(_, x)| x.is_pure()) => { // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(m).into_iter().find(|(x, _)| x.name == *s) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // string[int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().nth(*i as usize).unwrap(), *pos); } // var[rhs] (Expr::Variable(_), rhs) => optimize_expr(rhs, state), // lhs[rhs] (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // [ items .. ] #[cfg(not(feature = "no_index"))] Expr::Array(a, _) => a.iter_mut().for_each(|expr| optimize_expr(expr, state)), // #{ key:value, .. } #[cfg(not(feature = "no_object"))] Expr::Map(m, _) => m.iter_mut().for_each(|(_, expr)| optimize_expr(expr, state)), // lhs in rhs Expr::In(x, _) => match (&mut x.lhs, &mut x.rhs) { // "xxx" in "xxxxx" (Expr::StringConstant(a, pos), Expr::StringConstant(b, _)) => { state.set_dirty(); *expr = if b.contains(a.as_str()) { Expr::True(*pos) } else { Expr::False(*pos) }; } // 'x' in "xxxxx" (Expr::CharConstant(a, pos), Expr::StringConstant(b, _)) => { state.set_dirty(); *expr = if b.contains(*a) { Expr::True(*pos) } else { Expr::False(*pos) }; } // "xxx" in #{...} (Expr::StringConstant(a, pos), Expr::Map(b, _)) => { state.set_dirty(); *expr = if b.iter().find(|(x, _)| x.name == *a).is_some() { Expr::True(*pos) } else { Expr::False(*pos) }; } // 'x' in #{...} (Expr::CharConstant(a, pos), Expr::Map(b, _)) => { state.set_dirty(); let ch = a.to_string(); *expr = if b.iter().find(|(x, _)| x.name == &ch).is_some() { Expr::True(*pos) } else { Expr::False(*pos) }; } // lhs in rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // lhs && rhs Expr::And(x, _) => match (&mut x.lhs, &mut x.rhs) { // true && rhs -> rhs (Expr::True(_), rhs) => { state.set_dirty(); optimize_expr(rhs, state); *expr = mem::take(rhs); } // false && rhs -> false (Expr::False(pos), _) => { state.set_dirty(); *expr = Expr::False(*pos); } // lhs && true -> lhs (lhs, Expr::True(_)) => { state.set_dirty(); optimize_expr(lhs, state); *expr = mem::take(lhs); } // lhs && rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // lhs || rhs Expr::Or(ref mut x, _) => match (&mut x.lhs, &mut x.rhs) { // false || rhs -> rhs (Expr::False(_), rhs) => { state.set_dirty(); optimize_expr(rhs, state); *expr = mem::take(rhs); } // true || rhs -> true (Expr::True(pos), _) => { state.set_dirty(); *expr = Expr::True(*pos); } // lhs || false (lhs, Expr::False(_)) => { state.set_dirty(); optimize_expr(lhs, state); *expr = mem::take(lhs); } // lhs || rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // Do not call some special keywords Expr::FnCall(x, _) if DONT_EVAL_KEYWORDS.contains(&x.name.as_ref()) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state)); } // Call built-in operators Expr::FnCall(x, pos) if x.namespace.is_none() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.len() == 2 // binary call && x.args.iter().all(Expr::is_constant) // all arguments are constants && !is_valid_identifier(x.name.chars()) // cannot be scripted => { let arg_values: StaticVec<_> = x.args.iter().map(|e| e.get_constant_value().unwrap()).collect(); let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect(); // Search for overloaded operators (can override built-in). if !state.engine.has_override_by_name_and_arguments(state.lib, x.name.as_ref(), arg_types.as_ref(), false) { if let Some(result) = run_builtin_binary_op(x.name.as_ref(), &arg_values[0], &arg_values[1]) .ok().flatten() .and_then(|result| map_dynamic_to_expr(result, *pos)) { state.set_dirty(); *expr = result; return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state)); } // Eagerly call functions Expr::FnCall(x, pos) if x.namespace.is_none() // Non-qualified && state.optimization_level == OptimizationLevel::Full // full optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants => { // First search for script-defined functions (can override built-in) #[cfg(not(feature = "no_function"))] let has_script_fn = state.lib.iter().any(|&m| m.get_script_fn(x.name.as_ref(), x.args.len(), false).is_some()); #[cfg(feature = "no_function")] let has_script_fn = false; if !has_script_fn { let mut arg_values: StaticVec<_> = x.args.iter().map(|e| e.get_constant_value().unwrap()).collect(); // Save the typename of the first argument if it is `type_of()` // This is to avoid `call_args` being passed into the closure let arg_for_type_of = if x.name == KEYWORD_TYPE_OF && arg_values.len() == 1 { state.engine.map_type_name(arg_values[0].type_name()) } else { "" }; if let Some(result) = call_fn_with_constant_arguments(&state, x.name.as_ref(), arg_values.as_mut()) .or_else(|| { if !arg_for_type_of.is_empty() { // Handle `type_of()` Some(arg_for_type_of.to_string().into()) } else { // Otherwise use the default value, if any x.def_value.map(|v| v.into()) } }) .and_then(|result| map_dynamic_to_expr(result, *pos)) { state.set_dirty(); *expr = result; return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state)); } // id(args ..) -> optimize function call arguments Expr::FnCall(x, _) => x.args.iter_mut().for_each(|a| optimize_expr(a, state)), // constant-name Expr::Variable(x) if x.1.is_none() && state.contains_constant(&x.3.name) => { state.set_dirty(); // Replace constant with value let mut result = state.find_constant(&x.3.name).unwrap().clone(); result.set_position(x.3.pos); *expr = result; } // switch const { ... } Expr::Switch(x, pos) if x.0.is_constant() => { let value = x.0.get_constant_value().unwrap(); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); state.set_dirty(); let table = &mut x.1; if let Some(stmt) = table.get_mut(&hash) { optimize_stmt(stmt, state, true); *expr = Expr::Stmt(Box::new(vec![mem::take(stmt)].into()), *pos); } else if let Some(def_stmt) = x.2.as_mut() { optimize_stmt(def_stmt, state, true); *expr = Expr::Stmt(Box::new(vec![mem::take(def_stmt)].into()), *pos); } else { *expr = Expr::Unit(*pos); } } // switch Expr::Switch(x, _) => { optimize_expr(&mut x.0, state); x.1.values_mut().for_each(|stmt| optimize_stmt(stmt, state, true)); if let Some(def_stmt) = x.2.as_mut() { optimize_stmt(def_stmt, state, true); match def_stmt { Stmt::Noop(_) | Stmt::Expr(Expr::Unit(_)) => x.2 = None, _ => () } } } // Custom syntax Expr::Custom(x, _) => x.keywords.iter_mut().for_each(|expr| optimize_expr(expr, state)), // All other expressions - skip _ => (), } } fn optimize( statements: Vec, engine: &Engine, scope: &Scope, lib: &[&Module], level: OptimizationLevel, ) -> Vec { // If optimization level is None then skip optimizing if level == OptimizationLevel::None { return statements; } // Set up the state let mut state = State::new(engine, lib, level); // Add constants from the scope that can be made into a literal into the state scope .iter() .filter(|(_, typ, _)| *typ) .for_each(|(name, _, value)| { if let Some(val) = map_dynamic_to_expr(value, NO_POS) { state.push_constant(name, val); } }); let orig_constants_len = state.constants.len(); let mut result = statements; // Optimization loop loop { state.reset(); state.restore_constants(orig_constants_len); let num_statements = result.len(); result.iter_mut().enumerate().for_each(|(i, stmt)| { match stmt { Stmt::Const(var_def, expr, _, _) if expr.is_some() => { // Load constants let value_expr = expr.as_mut().unwrap(); optimize_expr(value_expr, &mut state); if value_expr.is_constant() { state.push_constant(&var_def.name, value_expr.clone()); } // Keep it in the global scope if value_expr.is_unit() { state.set_dirty(); *expr = None; } } Stmt::Const(var_def, None, _, _) => { state.push_constant(&var_def.name, Expr::Unit(var_def.pos)); } _ => { // Keep all variable declarations at this level // and always keep the last return value let keep = match stmt { Stmt::Let(_, _, _, _) => true, #[cfg(not(feature = "no_module"))] Stmt::Import(_, _, _) => true, _ => i == num_statements - 1, }; optimize_stmt(stmt, &mut state, keep); } } }); if !state.is_dirty() { break; } } // Eliminate code that is pure but always keep the last statement let last_stmt = result.pop(); // Remove all pure statements at global level result.retain(|stmt| !stmt.is_pure()); // Add back the last statement unless it is a lone No-op if let Some(stmt) = last_stmt { if !result.is_empty() || !stmt.is_noop() { result.push(stmt); } } result } /// Optimize an AST. pub fn optimize_into_ast( engine: &Engine, scope: &Scope, statements: Vec, _functions: Vec, level: OptimizationLevel, ) -> AST { let level = if cfg!(feature = "no_optimize") { OptimizationLevel::None } else { level }; #[cfg(not(feature = "no_function"))] let lib = { let mut module = Module::new(); if !level.is_none() { // We only need the script library's signatures for optimization purposes let mut lib2 = Module::new(); _functions .iter() .map(|fn_def| { ScriptFnDef { name: fn_def.name.clone(), access: fn_def.access, body: Default::default(), params: fn_def.params.clone(), #[cfg(not(feature = "no_closure"))] externals: fn_def.externals.clone(), lib: None, #[cfg(not(feature = "no_module"))] mods: Default::default(), } .into() }) .for_each(|fn_def| { lib2.set_script_fn(fn_def); }); _functions .into_iter() .map(|mut fn_def| { let pos = fn_def.body.position(); // Optimize the function body let mut body = optimize(vec![fn_def.body], engine, &Scope::new(), &[&lib2], level); // {} -> Noop fn_def.body = match body.pop().unwrap_or_else(|| Stmt::Noop(pos)) { // { return val; } -> val Stmt::ReturnWithVal((ReturnType::Return, _), Some(expr), _) => { Stmt::Expr(expr) } // { return; } -> () Stmt::ReturnWithVal((ReturnType::Return, pos), None, _) => { Stmt::Expr(Expr::Unit(pos)) } // All others stmt => stmt, }; fn_def.into() }) .for_each(|fn_def| { module.set_script_fn(fn_def); }); } else { _functions.into_iter().for_each(|fn_def| { module.set_script_fn(fn_def.into()); }); } module }; #[cfg(feature = "no_function")] let lib = Default::default(); AST::new( match level { OptimizationLevel::None => statements, OptimizationLevel::Simple | OptimizationLevel::Full => { optimize(statements, engine, &scope, &[&lib], level) } }, lib, ) }