#![cfg(not(feature = "no_optimize"))] use crate::any::Dynamic; use crate::engine::{Engine, FnCallArgs, KEYWORD_DEBUG, KEYWORD_DUMP_AST, KEYWORD_PRINT}; use crate::parser::{map_dynamic_to_expr, Expr, FnDef, Stmt, AST}; use crate::scope::{Scope, ScopeEntry, VariableType}; use std::sync::Arc; /// Level of optimization performed #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] pub enum OptimizationLevel { /// No optimization performed None, /// Only perform simple optimizations without evaluating functions Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects. Full, } struct State<'a> { changed: bool, constants: Vec<(String, Expr)>, engine: Option<&'a Engine<'a>>, } impl State<'_> { pub fn new() -> Self { State { changed: false, constants: vec![], engine: None, } } pub fn reset(&mut self) { self.changed = false; } pub fn set_dirty(&mut self) { self.changed = true; } pub fn is_dirty(&self) -> bool { self.changed } pub fn contains_constant(&self, name: &str) -> bool { self.constants.iter().any(|(n, _)| n == name) } pub fn restore_constants(&mut self, len: usize) { self.constants.truncate(len) } pub fn push_constant(&mut self, name: &str, value: Expr) { self.constants.push((name.to_string(), value)) } pub fn find_constant(&self, name: &str) -> Option<&Expr> { for (n, expr) in self.constants.iter().rev() { if n == name { return Some(expr); } } None } } fn optimize_stmt<'a>(stmt: Stmt, state: &mut State<'a>, preserve_result: bool) -> Stmt { match stmt { Stmt::IfElse(expr, stmt1, None) if stmt1.is_noop() => { state.set_dirty(); let pos = expr.position(); let expr = optimize_expr(*expr, state); if matches!(expr, Expr::False(_) | Expr::True(_)) { Stmt::Noop(stmt1.position()) } else { let stmt = Stmt::Expr(Box::new(expr)); if preserve_result { Stmt::Block(vec![stmt, *stmt1], pos) } else { stmt } } } Stmt::IfElse(expr, stmt1, None) => match *expr { Expr::False(pos) => { state.set_dirty(); Stmt::Noop(pos) } Expr::True(_) => optimize_stmt(*stmt1, state, true), expr => Stmt::IfElse( Box::new(optimize_expr(expr, state)), Box::new(optimize_stmt(*stmt1, state, true)), None, ), }, Stmt::IfElse(expr, stmt1, Some(stmt2)) => match *expr { Expr::False(_) => optimize_stmt(*stmt2, state, true), Expr::True(_) => optimize_stmt(*stmt1, state, true), expr => Stmt::IfElse( Box::new(optimize_expr(expr, state)), Box::new(optimize_stmt(*stmt1, state, true)), match optimize_stmt(*stmt2, state, true) { stmt if stmt.is_noop() => None, stmt => Some(Box::new(stmt)), }, ), }, Stmt::While(expr, stmt) => match *expr { Expr::False(pos) => { state.set_dirty(); Stmt::Noop(pos) } Expr::True(_) => Stmt::Loop(Box::new(optimize_stmt(*stmt, state, false))), expr => Stmt::While( Box::new(optimize_expr(expr, state)), Box::new(optimize_stmt(*stmt, state, false)), ), }, Stmt::Loop(stmt) => Stmt::Loop(Box::new(optimize_stmt(*stmt, state, false))), Stmt::For(id, expr, stmt) => Stmt::For( id, Box::new(optimize_expr(*expr, state)), Box::new(optimize_stmt(*stmt, state, false)), ), Stmt::Let(id, Some(expr), pos) => { Stmt::Let(id, Some(Box::new(optimize_expr(*expr, state))), pos) } Stmt::Let(_, None, _) => stmt, Stmt::Block(statements, pos) => { let orig_len = statements.len(); let orig_constants_len = state.constants.len(); let mut result: Vec<_> = statements .into_iter() // For each statement .map(|stmt| { if let Stmt::Const(name, value, pos) = stmt { state.push_constant(&name, *value); state.set_dirty(); Stmt::Noop(pos) // No need to keep constants } else { optimize_stmt(stmt, state, preserve_result) // Optimize the statement } }) .enumerate() .filter(|(i, stmt)| stmt.is_op() || (preserve_result && *i == orig_len - 1)) // Remove no-op's but leave the last one if we need the result .map(|(_, stmt)| stmt) .collect(); // Remove all raw expression statements that are pure except for the very last statement let last_stmt = if preserve_result { result.pop() } else { None }; result.retain(|stmt| !matches!(stmt, Stmt::Expr(expr) if expr.is_pure())); if let Some(stmt) = last_stmt { result.push(stmt); } // Remove all let statements at the end of a block - the new variables will go away anyway. // But be careful only remove ones that have no initial values or have values that are pure expressions, // otherwise there may be side effects. let mut removed = false; while let Some(expr) = result.pop() { match expr { Stmt::Let(_, None, _) => removed = true, Stmt::Let(_, Some(val_expr), _) if val_expr.is_pure() => removed = true, _ => { result.push(expr); break; } } } if preserve_result { if removed { result.push(Stmt::Noop(pos)) } result = result .into_iter() .rev() .enumerate() .map(|(i, s)| optimize_stmt(s, state, i == 0)) // Optimize all other statements again .rev() .collect(); } if orig_len != result.len() { state.set_dirty(); } state.restore_constants(orig_constants_len); match result[..] { // No statements in block - change to No-op [] => { state.set_dirty(); Stmt::Noop(pos) } // Only one statement - promote [_] => { state.set_dirty(); result.remove(0) } _ => Stmt::Block(result, pos), } } Stmt::Expr(expr) => Stmt::Expr(Box::new(optimize_expr(*expr, state))), Stmt::ReturnWithVal(Some(expr), is_return, pos) => { Stmt::ReturnWithVal(Some(Box::new(optimize_expr(*expr, state))), is_return, pos) } stmt => stmt, } } fn optimize_expr<'a>(expr: Expr, state: &mut State<'a>) -> Expr { match expr { Expr::Stmt(stmt, pos) => match optimize_stmt(*stmt, state, true) { Stmt::Noop(_) => { state.set_dirty(); Expr::Unit(pos) } Stmt::Expr(expr) => { state.set_dirty(); *expr } stmt => Expr::Stmt(Box::new(stmt), pos), }, Expr::Assignment(id1, expr1, pos1) => match *expr1 { Expr::Assignment(id2, expr2, pos2) => match (*id1, *id2) { (Expr::Variable(var1, _), Expr::Variable(var2, _)) if var1 == var2 => { // Assignment to the same variable - fold state.set_dirty(); Expr::Assignment( Box::new(Expr::Variable(var1, pos1)), Box::new(optimize_expr(*expr2, state)), pos1, ) } (id1, id2) => Expr::Assignment( Box::new(id1), Box::new(Expr::Assignment( Box::new(id2), Box::new(optimize_expr(*expr2, state)), pos2, )), pos1, ), }, expr => Expr::Assignment(id1, Box::new(optimize_expr(expr, state)), pos1), }, Expr::Dot(lhs, rhs, pos) => Expr::Dot( Box::new(optimize_expr(*lhs, state)), Box::new(optimize_expr(*rhs, state)), pos, ), #[cfg(not(feature = "no_index"))] Expr::Index(lhs, rhs, pos) => match (*lhs, *rhs) { (Expr::Array(mut items, _), Expr::IntegerConstant(i, _)) if i >= 0 && (i as usize) < items.len() && items.iter().all(|x| x.is_pure()) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); items.remove(i as usize) } (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if i >= 0 && (i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); Expr::CharConstant(s.chars().nth(i as usize).expect("should get char"), pos) } (lhs, rhs) => Expr::Index( Box::new(optimize_expr(lhs, state)), Box::new(optimize_expr(rhs, state)), pos, ), }, #[cfg(not(feature = "no_index"))] Expr::Array(items, pos) => { let orig_len = items.len(); let items: Vec<_> = items .into_iter() .map(|expr| optimize_expr(expr, state)) .collect(); if orig_len != items.len() { state.set_dirty(); } Expr::Array(items, pos) } Expr::And(lhs, rhs) => match (*lhs, *rhs) { (Expr::True(_), rhs) => { state.set_dirty(); rhs } (Expr::False(pos), _) => { state.set_dirty(); Expr::False(pos) } (lhs, Expr::True(_)) => { state.set_dirty(); lhs } (lhs, rhs) => Expr::And( Box::new(optimize_expr(lhs, state)), Box::new(optimize_expr(rhs, state)), ), }, Expr::Or(lhs, rhs) => match (*lhs, *rhs) { (Expr::False(_), rhs) => { state.set_dirty(); rhs } (Expr::True(pos), _) => { state.set_dirty(); Expr::True(pos) } (lhs, Expr::False(_)) => { state.set_dirty(); lhs } (lhs, rhs) => Expr::Or( Box::new(optimize_expr(lhs, state)), Box::new(optimize_expr(rhs, state)), ), }, // Do not optimize anything within `dump_ast` Expr::FunctionCall(id, args, def_value, pos) if id == KEYWORD_DUMP_AST => { Expr::FunctionCall(id, args, def_value, pos) } // Actually call function to optimize it Expr::FunctionCall(id, args, def_value, pos) if id != KEYWORD_DEBUG // not debug && id != KEYWORD_PRINT // not print && state.engine.map(|eng| eng.optimization_level == OptimizationLevel::Full).unwrap_or(false) // full optimizations && args.iter().all(|expr| expr.is_constant()) // all arguments are constants => { let engine = state.engine.expect("engine should be Some"); let mut arg_values: Vec<_> = args.iter().map(Expr::get_constant_value).collect(); let call_args: FnCallArgs = arg_values.iter_mut().map(Dynamic::as_mut).collect(); engine.call_ext_fn_raw(&id, call_args, pos).ok().map(|r| r.or(def_value.clone()).and_then(|result| map_dynamic_to_expr(result, pos).0) .map(|expr| { state.set_dirty(); expr })).flatten() .unwrap_or_else(|| Expr::FunctionCall(id, args, def_value, pos)) } // Optimize the function call arguments Expr::FunctionCall(id, args, def_value, pos) => { let orig_len = args.len(); let args: Vec<_> = args.into_iter().map(|a| optimize_expr(a, state)).collect(); if orig_len != args.len() { state.set_dirty(); } Expr::FunctionCall(id, args, def_value, pos) } Expr::Variable(ref name, _) if state.contains_constant(name) => { state.set_dirty(); // Replace constant with value state .find_constant(name) .expect("should find constant in scope!") .clone() } expr => expr, } } pub(crate) fn optimize<'a>( statements: Vec, engine: Option<&Engine<'a>>, scope: &Scope, ) -> Vec { // If optimization level is None then skip optimizing if engine .map(|eng| eng.optimization_level == OptimizationLevel::None) .unwrap_or(false) { return statements; } // Set up the state let mut state = State::new(); state.engine = engine; scope .iter() .filter(|ScopeEntry { var_type, expr, .. }| { // Get all the constants with definite constant expressions *var_type == VariableType::Constant && expr.as_ref().map(Expr::is_constant).unwrap_or(false) }) .for_each(|ScopeEntry { name, expr, .. }| { state.push_constant( name.as_ref(), expr.as_ref().expect("should be Some(expr)").clone(), ) }); let orig_constants_len = state.constants.len(); // Optimization loop let mut result = statements; loop { state.reset(); state.restore_constants(orig_constants_len); let num_statements = result.len(); result = result .into_iter() .enumerate() .map(|(i, stmt)| { if let Stmt::Const(name, value, _) = &stmt { // Load constants state.push_constant(name, value.as_ref().clone()); stmt // Keep it in the top scope } else { // Keep all variable declarations at this level // and always keep the last return value let keep = stmt.is_var() || i == num_statements - 1; optimize_stmt(stmt, &mut state, keep) } }) .collect(); if !state.is_dirty() { break; } } // Eliminate code that is pure but always keep the last statement let last_stmt = result.pop(); // Remove all pure statements at top level result.retain(|stmt| !matches!(stmt, Stmt::Expr(expr) if expr.is_pure())); if let Some(stmt) = last_stmt { result.push(stmt); // Add back the last statement } result } pub fn optimize_ast( engine: &Engine, scope: &Scope, statements: Vec, functions: Vec, ) -> AST { AST( match engine.optimization_level { OptimizationLevel::None => statements, OptimizationLevel::Simple => optimize(statements, None, &scope), OptimizationLevel::Full => optimize(statements, Some(engine), &scope), }, functions .into_iter() .map(|mut fn_def| { match engine.optimization_level { OptimizationLevel::None => (), OptimizationLevel::Simple | OptimizationLevel::Full => { let pos = fn_def.body.position(); let mut body = optimize(vec![fn_def.body], None, &Scope::new()); fn_def.body = body.pop().unwrap_or_else(|| Stmt::Noop(pos)); } } Arc::new(fn_def) }) .collect(), ) }