//! Module defining script expressions. use super::{ASTFlags, ASTNode, Ident, Stmt, StmtBlock}; use crate::engine::{KEYWORD_FN_PTR, OP_EXCLUSIVE_RANGE, OP_INCLUSIVE_RANGE}; use crate::func::hashing::ALT_ZERO_HASH; use crate::tokenizer::Token; use crate::types::dynamic::Union; use crate::{ calc_fn_hash, Dynamic, FnPtr, Identifier, ImmutableString, Position, SmartString, StaticVec, INT, }; #[cfg(feature = "no_std")] use std::prelude::v1::*; use std::{ collections::BTreeMap, fmt, fmt::Write, hash::Hash, iter::once, num::{NonZeroU8, NonZeroUsize}, }; #[cfg(not(feature = "no_float"))] use std::{ hash::Hasher, ops::{Deref, DerefMut}, str::FromStr, }; #[cfg(not(feature = "no_float"))] use num_traits::float::FloatCore as Float; /// _(internals)_ A binary expression. /// Exported under the `internals` feature only. #[derive(Debug, Clone, Hash)] pub struct BinaryExpr { /// LHS expression. pub lhs: Expr, /// RHS expression. pub rhs: Expr, } impl From<(Expr, Expr)> for BinaryExpr { #[inline(always)] fn from(value: (Expr, Expr)) -> Self { Self { lhs: value.0, rhs: value.1, } } } /// _(internals)_ A custom syntax expression. /// Exported under the `internals` feature only. /// /// Not available under `no_custom_syntax`. #[cfg(not(feature = "no_custom_syntax"))] #[derive(Debug, Clone, Hash)] pub struct CustomExpr { /// List of keywords. pub inputs: StaticVec, /// List of tokens actually parsed. pub tokens: StaticVec, /// Is the current [`Scope`][crate::Scope] possibly modified by this custom statement /// (e.g. introducing a new variable)? pub scope_may_be_changed: bool, /// Is this custom syntax self-terminated? pub self_terminated: bool, } #[cfg(not(feature = "no_custom_syntax"))] impl CustomExpr { /// Is this custom syntax self-terminated (i.e. no need for a semicolon terminator)? /// /// A self-terminated custom syntax always ends in `$block$`, `}` or `;` #[must_use] #[inline(always)] pub const fn is_self_terminated(&self) -> bool { self.self_terminated } } /// _(internals)_ A set of function call hashes. Exported under the `internals` feature only. /// /// Two separate hashes are pre-calculated because of the following patterns: /// /// ```js /// func(a, b, c); // Native: func(a, b, c) - 3 parameters /// // Script: func(a, b, c) - 3 parameters /// /// a.func(b, c); // Native: func(&mut a, b, c) - 3 parameters /// // Script: func(b, c) - 2 parameters /// ``` /// /// For normal function calls, the native hash equals the script hash. /// /// For method-style calls, the script hash contains one fewer parameter. /// /// Function call hashes are used in the following manner: /// /// * First, the script hash is tried, which contains only the called function's name plus the /// number of parameters. /// /// * Next, the actual types of arguments are hashed and _combined_ with the native hash, which is /// then used to search for a native function. In other words, a complete native function call /// hash always contains the called function's name plus the types of the arguments. This is due /// to possible function overloading for different parameter types. #[derive(Clone, Copy, Eq, PartialEq, Hash, Default)] pub struct FnCallHashes { /// Pre-calculated hash for a script-defined function (zero if native functions only). #[cfg(not(feature = "no_function"))] pub script: u64, /// Pre-calculated hash for a native Rust function with no parameter types. pub native: u64, } impl fmt::Debug for FnCallHashes { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { #[cfg(not(feature = "no_function"))] if self.script != 0 { return if self.script == self.native { fmt::Debug::fmt(&self.native, f) } else { write!(f, "({}, {})", self.script, self.native) }; } write!(f, "{} (native only)", self.native) } } impl From for FnCallHashes { #[inline(always)] fn from(hash: u64) -> Self { let hash = if hash == 0 { ALT_ZERO_HASH } else { hash }; Self { #[cfg(not(feature = "no_function"))] script: hash, native: hash, } } } impl FnCallHashes { /// Create a [`FnCallHashes`] with only the native Rust hash. #[inline(always)] #[must_use] pub const fn from_native(hash: u64) -> Self { Self { #[cfg(not(feature = "no_function"))] script: 0, native: if hash == 0 { ALT_ZERO_HASH } else { hash }, } } /// Create a [`FnCallHashes`] with both native Rust and script function hashes. #[inline(always)] #[must_use] pub const fn from_all(#[cfg(not(feature = "no_function"))] script: u64, native: u64) -> Self { Self { #[cfg(not(feature = "no_function"))] script: if script == 0 { ALT_ZERO_HASH } else { script }, native: if native == 0 { ALT_ZERO_HASH } else { native }, } } /// Is this [`FnCallHashes`] native Rust only? #[inline(always)] #[must_use] pub const fn is_native_only(&self) -> bool { #[cfg(not(feature = "no_function"))] return self.script == 0; #[cfg(feature = "no_function")] return true; } } /// _(internals)_ A function call. /// Exported under the `internals` feature only. #[derive(Clone, Default, Hash)] pub struct FnCallExpr { /// Namespace of the function, if any. #[cfg(not(feature = "no_module"))] pub namespace: super::Namespace, /// Function name. pub name: Identifier, /// Pre-calculated hashes. pub hashes: FnCallHashes, /// List of function call argument expressions. pub args: StaticVec, /// Does this function call capture the parent scope? pub capture_parent_scope: bool, /// [Position] of the function name. pub pos: Position, } impl fmt::Debug for FnCallExpr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut ff = f.debug_struct("FnCallExpr"); #[cfg(not(feature = "no_module"))] if !self.namespace.is_empty() { ff.field("namespace", &self.namespace); } if self.capture_parent_scope { ff.field("capture_parent_scope", &self.capture_parent_scope); } ff.field("hash", &self.hashes) .field("name", &self.name) .field("args", &self.args); ff.field("pos", &self.pos); ff.finish() } } impl FnCallExpr { /// Does this function call contain a qualified namespace? /// /// Always `false` under `no_module`. #[inline(always)] #[must_use] pub fn is_qualified(&self) -> bool { #[cfg(not(feature = "no_module"))] return !self.namespace.is_empty(); #[cfg(feature = "no_module")] return false; } /// Convert this into an [`Expr::FnCall`]. #[inline(always)] #[must_use] pub fn into_fn_call_expr(self, pos: Position) -> Expr { Expr::FnCall(self.into(), pos) } } /// A type that wraps a floating-point number and implements [`Hash`]. /// /// Not available under `no_float`. #[cfg(not(feature = "no_float"))] #[derive(Clone, Copy, PartialEq, PartialOrd)] pub struct FloatWrapper(F); #[cfg(not(feature = "no_float"))] impl Hash for FloatWrapper { #[inline(always)] fn hash(&self, state: &mut H) { self.0.to_ne_bytes().hash(state); } } #[cfg(not(feature = "no_float"))] impl AsRef for FloatWrapper { #[inline(always)] fn as_ref(&self) -> &F { &self.0 } } #[cfg(not(feature = "no_float"))] impl AsMut for FloatWrapper { #[inline(always)] fn as_mut(&mut self) -> &mut F { &mut self.0 } } #[cfg(not(feature = "no_float"))] impl Deref for FloatWrapper { type Target = F; #[inline(always)] fn deref(&self) -> &Self::Target { &self.0 } } #[cfg(not(feature = "no_float"))] impl DerefMut for FloatWrapper { #[inline(always)] fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } #[cfg(not(feature = "no_float"))] impl fmt::Debug for FloatWrapper { #[inline(always)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&self.0, f) } } #[cfg(not(feature = "no_float"))] impl> fmt::Display for FloatWrapper { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let abs = self.0.abs(); if abs.is_zero() { f.write_str("0.0") } else if abs > Self::MAX_NATURAL_FLOAT_FOR_DISPLAY.into() || abs < Self::MIN_NATURAL_FLOAT_FOR_DISPLAY.into() { write!(f, "{:e}", self.0) } else { fmt::Display::fmt(&self.0, f)?; if abs.fract().is_zero() { f.write_str(".0")?; } Ok(()) } } } #[cfg(not(feature = "no_float"))] impl From for FloatWrapper { #[inline(always)] fn from(value: F) -> Self { Self::new(value) } } #[cfg(not(feature = "no_float"))] impl FromStr for FloatWrapper { type Err = ::Err; #[inline] fn from_str(s: &str) -> Result { F::from_str(s).map(Into::into) } } #[cfg(not(feature = "no_float"))] impl FloatWrapper { /// Maximum floating-point number for natural display before switching to scientific notation. pub const MAX_NATURAL_FLOAT_FOR_DISPLAY: f32 = 10_000_000_000_000.0; /// Minimum floating-point number for natural display before switching to scientific notation. pub const MIN_NATURAL_FLOAT_FOR_DISPLAY: f32 = 0.000_000_000_000_1; /// Create a new [`FloatWrapper`]. #[inline(always)] #[must_use] pub fn new(value: F) -> Self { Self(value) } } #[cfg(not(feature = "no_float"))] impl FloatWrapper { /// Create a new [`FloatWrapper`]. #[inline(always)] #[must_use] pub const fn new_const(value: crate::FLOAT) -> Self { Self(value) } } /// _(internals)_ An expression sub-tree. /// Exported under the `internals` feature only. #[derive(Clone, Hash)] #[non_exhaustive] pub enum Expr { /// Dynamic constant. /// /// Used to hold complex constants such as [`Array`][crate::Array] or [`Map`][crate::Map] for quick cloning. /// Primitive data types should use the appropriate variants to avoid an allocation. DynamicConstant(Box, Position), /// Boolean constant. BoolConstant(bool, Position), /// Integer constant. IntegerConstant(INT, Position), /// Floating-point constant. #[cfg(not(feature = "no_float"))] FloatConstant(FloatWrapper, Position), /// Character constant. CharConstant(char, Position), /// [String][ImmutableString] constant. StringConstant(ImmutableString, Position), /// An interpolated [string][ImmutableString]. InterpolatedString(Box>, Position), /// [ expr, ... ] Array(Box>, Position), /// #{ name:expr, ... } Map( Box<(StaticVec<(Ident, Expr)>, BTreeMap)>, Position, ), /// () Unit(Position), /// Variable access - (optional long index, namespace, namespace hash, variable name), optional short index, position /// /// The short index is [`u8`] which is used when the index is <= 255, which should be the vast /// majority of cases (unless there are more than 255 variables defined!). /// This is to avoid reading a pointer redirection during each variable access. Variable( #[cfg(not(feature = "no_module"))] Box<(Option, super::Namespace, u64, Identifier)>, #[cfg(feature = "no_module")] Box<(Option, (), u64, Identifier)>, Option, Position, ), /// Property access - ((getter, hash), (setter, hash), prop) Property( Box<((Identifier, u64), (Identifier, u64), ImmutableString)>, Position, ), /// xxx `.` method `(` expr `,` ... `)` MethodCall(Box, Position), /// { [statement][Stmt] ... } Stmt(Box), /// func `(` expr `,` ... `)` FnCall(Box, Position), /// lhs `.` rhs | lhs `?.` rhs /// /// ### Flags /// /// [`NEGATED`][ASTFlags::NEGATED] = `?.` (`.` if unset) /// [`BREAK`][ASTFlags::BREAK] = terminate the chain (recurse into the chain if unset) Dot(Box, ASTFlags, Position), /// lhs `[` rhs `]` /// /// ### Flags /// /// [`NEGATED`][ASTFlags::NEGATED] = `?[` ... `]` (`[` ... `]` if unset) /// [`BREAK`][ASTFlags::BREAK] = terminate the chain (recurse into the chain if unset) Index(Box, ASTFlags, Position), /// lhs `&&` rhs And(Box, Position), /// lhs `||` rhs Or(Box, Position), /// lhs `??` rhs Coalesce(Box, Position), /// Custom syntax #[cfg(not(feature = "no_custom_syntax"))] Custom(Box, Position), } impl Default for Expr { #[inline(always)] fn default() -> Self { Self::Unit(Position::NONE) } } impl fmt::Debug for Expr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut display_pos = format!(" @ {:?}", self.start_position()); match self { Self::DynamicConstant(value, ..) => write!(f, "{:?}", value), Self::BoolConstant(value, ..) => write!(f, "{:?}", value), Self::IntegerConstant(value, ..) => write!(f, "{:?}", value), #[cfg(not(feature = "no_float"))] Self::FloatConstant(value, ..) => write!(f, "{:?}", value), Self::CharConstant(value, ..) => write!(f, "{:?}", value), Self::StringConstant(value, ..) => write!(f, "{:?}", value), Self::Unit(..) => f.write_str("()"), Self::InterpolatedString(x, ..) => { f.write_str("InterpolatedString")?; return f.debug_list().entries(x.iter()).finish(); } Self::Array(x, ..) => { f.write_str("Array")?; f.debug_list().entries(x.iter()).finish() } Self::Map(x, ..) => { f.write_str("Map")?; f.debug_map() .entries(x.0.iter().map(|(k, v)| (k, v))) .finish() } Self::Variable(x, i, ..) => { f.write_str("Variable(")?; #[cfg(not(feature = "no_module"))] if !x.1.is_empty() { write!(f, "{}{}", x.1, Token::DoubleColon.literal_syntax())?; let pos = x.1.position(); if !pos.is_none() { display_pos = format!(" @ {:?}", pos); } } f.write_str(&x.3)?; if let Some(n) = i.map_or_else(|| x.0, |n| NonZeroUsize::new(n.get() as usize)) { write!(f, " #{}", n)?; } f.write_str(")") } Self::Property(x, ..) => write!(f, "Property({})", x.2), Self::MethodCall(x, ..) => f.debug_tuple("MethodCall").field(x).finish(), Self::Stmt(x) => { let pos = x.span(); if !pos.is_none() { display_pos = format!(" @ {:?}", pos); } f.write_str("ExprStmtBlock")?; f.debug_list().entries(x.iter()).finish() } Self::FnCall(x, ..) => fmt::Debug::fmt(x, f), Self::Index(x, options, pos) => { if !pos.is_none() { display_pos = format!(" @ {:?}", pos); } let mut f = f.debug_struct("Index"); f.field("lhs", &x.lhs).field("rhs", &x.rhs); if !options.is_empty() { f.field("options", options); } f.finish() } Self::Dot(x, options, pos) => { if !pos.is_none() { display_pos = format!(" @ {:?}", pos); } let mut f = f.debug_struct("Dot"); f.field("lhs", &x.lhs).field("rhs", &x.rhs); if !options.is_empty() { f.field("options", options); } f.finish() } Self::And(x, pos) | Self::Or(x, pos) | Self::Coalesce(x, pos) => { let op_name = match self { Self::And(..) => "And", Self::Or(..) => "Or", Self::Coalesce(..) => "Coalesce", expr => unreachable!("`And`, `Or` or `Coalesce` expected but gets {:?}", expr), }; if !pos.is_none() { display_pos = format!(" @ {:?}", pos); } f.debug_struct(op_name) .field("lhs", &x.lhs) .field("rhs", &x.rhs) .finish() } #[cfg(not(feature = "no_custom_syntax"))] Self::Custom(x, ..) => f.debug_tuple("Custom").field(x).finish(), }?; f.write_str(&display_pos) } } impl Expr { /// Get the [`Dynamic`] value of a literal constant expression. /// /// Returns [`None`] if the expression is not a literal constant. #[inline] #[must_use] pub fn get_literal_value(&self) -> Option { Some(match self { Self::DynamicConstant(x, ..) => x.as_ref().clone(), Self::IntegerConstant(x, ..) => (*x).into(), #[cfg(not(feature = "no_float"))] Self::FloatConstant(x, ..) => (*x).into(), Self::CharConstant(x, ..) => (*x).into(), Self::StringConstant(x, ..) => x.clone().into(), Self::BoolConstant(x, ..) => (*x).into(), Self::Unit(..) => Dynamic::UNIT, #[cfg(not(feature = "no_index"))] Self::Array(x, ..) if self.is_constant() => { let mut arr = crate::Array::with_capacity(x.len()); arr.extend(x.iter().map(|v| v.get_literal_value().unwrap())); Dynamic::from_array(arr) } #[cfg(not(feature = "no_object"))] Self::Map(x, ..) if self.is_constant() => { Dynamic::from_map(x.0.iter().fold(x.1.clone(), |mut map, (k, v)| { let value_ref = map.get_mut(k.name.as_str()).unwrap(); *value_ref = v.get_literal_value().unwrap(); map })) } // Interpolated string Self::InterpolatedString(x, ..) if self.is_constant() => { let mut s = SmartString::new_const(); for segment in x.iter() { let v = segment.get_literal_value().unwrap(); write!(&mut s, "{}", v).unwrap(); } s.into() } // Fn Self::FnCall(ref x, ..) if !x.is_qualified() && x.args.len() == 1 && x.name == KEYWORD_FN_PTR => { if let Expr::StringConstant(ref s, ..) = x.args[0] { FnPtr::new(s).ok()?.into() } else { return None; } } // Binary operators Self::FnCall(x, ..) if !x.is_qualified() && x.args.len() == 2 => { match x.name.as_str() { // x..y OP_EXCLUSIVE_RANGE => { if let Expr::IntegerConstant(ref start, ..) = x.args[0] { if let Expr::IntegerConstant(ref end, ..) = x.args[1] { (*start..*end).into() } else { return None; } } else { return None; } } // x..=y OP_INCLUSIVE_RANGE => { if let Expr::IntegerConstant(ref start, ..) = x.args[0] { if let Expr::IntegerConstant(ref end, ..) = x.args[1] { (*start..=*end).into() } else { return None; } } else { return None; } } _ => return None, } } _ => return None, }) } /// Create an [`Expr`] from a [`Dynamic`] value. #[inline] #[must_use] pub fn from_dynamic(value: Dynamic, pos: Position) -> Self { match value.0 { Union::Unit(..) => Self::Unit(pos), Union::Bool(b, ..) => Self::BoolConstant(b, pos), Union::Str(s, ..) => Self::StringConstant(s, pos), Union::Char(c, ..) => Self::CharConstant(c, pos), Union::Int(i, ..) => Self::IntegerConstant(i, pos), #[cfg(feature = "decimal")] Union::Decimal(value, ..) => Self::DynamicConstant(Box::new((*value).into()), pos), #[cfg(not(feature = "no_float"))] Union::Float(f, ..) => Self::FloatConstant(f, pos), #[cfg(not(feature = "no_index"))] Union::Array(a, ..) => Self::DynamicConstant(Box::new((*a).into()), pos), #[cfg(not(feature = "no_object"))] Union::Map(m, ..) => Self::DynamicConstant(Box::new((*m).into()), pos), Union::FnPtr(f, ..) if !f.is_curried() => Self::FnCall( FnCallExpr { #[cfg(not(feature = "no_module"))] namespace: super::Namespace::NONE, name: KEYWORD_FN_PTR.into(), hashes: calc_fn_hash(f.fn_name(), 1).into(), args: once(Self::StringConstant(f.fn_name().into(), pos)).collect(), capture_parent_scope: false, pos, } .into(), pos, ), _ => Self::DynamicConstant(value.into(), pos), } } /// Is the expression a simple variable access? /// /// `non_qualified` is ignored under `no_module`. #[inline] #[must_use] pub(crate) fn is_variable_access(&self, _non_qualified: bool) -> bool { match self { #[cfg(not(feature = "no_module"))] Self::Variable(x, ..) if _non_qualified && !x.1.is_empty() => false, Self::Variable(..) => true, _ => false, } } /// Return the variable name if the expression a simple variable access. /// /// `non_qualified` is ignored under `no_module`. #[inline] #[must_use] pub(crate) fn get_variable_name(&self, _non_qualified: bool) -> Option<&str> { match self { #[cfg(not(feature = "no_module"))] Self::Variable(x, ..) if _non_qualified && !x.1.is_empty() => None, Self::Variable(x, ..) => Some(x.3.as_str()), _ => None, } } /// Get the [position][Position] of the expression. #[inline] #[must_use] pub const fn position(&self) -> Position { match self { #[cfg(not(feature = "no_float"))] Self::FloatConstant(.., pos) => *pos, Self::DynamicConstant(.., pos) | Self::BoolConstant(.., pos) | Self::IntegerConstant(.., pos) | Self::CharConstant(.., pos) | Self::Unit(pos) | Self::StringConstant(.., pos) | Self::Array(.., pos) | Self::Map(.., pos) | Self::Variable(.., pos) | Self::And(.., pos) | Self::Or(.., pos) | Self::Coalesce(.., pos) | Self::Index(.., pos) | Self::Dot(.., pos) | Self::InterpolatedString(.., pos) | Self::Property(.., pos) => *pos, #[cfg(not(feature = "no_custom_syntax"))] Self::Custom(.., pos) => *pos, Self::FnCall(x, ..) | Self::MethodCall(x, ..) => x.pos, Self::Stmt(x) => x.position(), } } /// Get the starting [position][Position] of the expression. /// For a binary expression, this will be the left-most LHS instead of the operator. #[inline] #[must_use] pub fn start_position(&self) -> Position { match self { #[cfg(not(feature = "no_module"))] Self::Variable(x, ..) => { if x.1.is_empty() { self.position() } else { x.1.position() } } Self::And(x, ..) | Self::Or(x, ..) | Self::Coalesce(x, ..) | Self::Index(x, ..) | Self::Dot(x, ..) => x.lhs.start_position(), Self::FnCall(.., pos) => *pos, _ => self.position(), } } /// Override the [position][Position] of the expression. #[inline] pub fn set_position(&mut self, new_pos: Position) -> &mut Self { match self { #[cfg(not(feature = "no_float"))] Self::FloatConstant(.., pos) => *pos = new_pos, Self::DynamicConstant(.., pos) | Self::BoolConstant(.., pos) | Self::IntegerConstant(.., pos) | Self::CharConstant(.., pos) | Self::Unit(pos) | Self::StringConstant(.., pos) | Self::Array(.., pos) | Self::Map(.., pos) | Self::And(.., pos) | Self::Or(.., pos) | Self::Coalesce(.., pos) | Self::Dot(.., pos) | Self::Index(.., pos) | Self::Variable(.., pos) | Self::FnCall(.., pos) | Self::MethodCall(.., pos) | Self::InterpolatedString(.., pos) | Self::Property(.., pos) => *pos = new_pos, #[cfg(not(feature = "no_custom_syntax"))] Self::Custom(.., pos) => *pos = new_pos, Self::Stmt(x) => x.set_position(new_pos, Position::NONE), } self } /// Is the expression pure? /// /// A pure expression has no side effects. #[inline] #[must_use] pub fn is_pure(&self) -> bool { match self { Self::InterpolatedString(x, ..) | Self::Array(x, ..) => x.iter().all(Self::is_pure), Self::Map(x, ..) => x.0.iter().map(|(.., v)| v).all(Self::is_pure), Self::And(x, ..) | Self::Or(x, ..) | Self::Coalesce(x, ..) => { x.lhs.is_pure() && x.rhs.is_pure() } Self::Stmt(x) => x.iter().all(Stmt::is_pure), Self::Variable(..) => true, _ => self.is_constant(), } } /// Is the expression the unit `()` literal? #[inline(always)] #[must_use] pub const fn is_unit(&self) -> bool { matches!(self, Self::Unit(..)) } /// Is the expression a constant? #[inline] #[must_use] pub fn is_constant(&self) -> bool { match self { #[cfg(not(feature = "no_float"))] Self::FloatConstant(..) => true, Self::DynamicConstant(..) | Self::BoolConstant(..) | Self::IntegerConstant(..) | Self::CharConstant(..) | Self::StringConstant(..) | Self::Unit(..) => true, Self::InterpolatedString(x, ..) | Self::Array(x, ..) => x.iter().all(Self::is_constant), Self::Map(x, ..) => x.0.iter().map(|(.., expr)| expr).all(Self::is_constant), _ => false, } } /// Is a particular [token][Token] allowed as a postfix operator to this expression? #[inline] #[must_use] pub const fn is_valid_postfix(&self, token: &Token) -> bool { match token { #[cfg(not(feature = "no_object"))] Token::Period | Token::Elvis => return true, #[cfg(not(feature = "no_index"))] Token::LeftBracket | Token::QuestionBracket => return true, _ => (), } match self { #[cfg(not(feature = "no_float"))] Self::FloatConstant(..) => false, Self::DynamicConstant(..) | Self::BoolConstant(..) | Self::CharConstant(..) | Self::And(..) | Self::Or(..) | Self::Coalesce(..) | Self::Unit(..) => false, Self::IntegerConstant(..) | Self::StringConstant(..) | Self::InterpolatedString(..) | Self::FnCall(..) | Self::MethodCall(..) | Self::Stmt(..) | Self::Dot(..) | Self::Index(..) | Self::Array(..) | Self::Map(..) => false, #[cfg(not(feature = "no_custom_syntax"))] Self::Custom(..) => false, Self::Variable(..) => match token { Token::LeftParen => true, Token::Unit => true, Token::Bang => true, Token::DoubleColon => true, _ => false, }, Self::Property(..) => match token { Token::LeftParen => true, _ => false, }, } } /// Recursively walk this expression. /// Return `false` from the callback to terminate the walk. pub fn walk<'a>( &'a self, path: &mut Vec>, on_node: &mut impl FnMut(&[ASTNode]) -> bool, ) -> bool { // Push the current node onto the path path.push(self.into()); if !on_node(path) { return false; } match self { Self::Stmt(x) => { for s in &**x { if !s.walk(path, on_node) { return false; } } } Self::InterpolatedString(x, ..) | Self::Array(x, ..) => { for e in &**x { if !e.walk(path, on_node) { return false; } } } Self::Map(x, ..) => { for (.., e) in &x.0 { if !e.walk(path, on_node) { return false; } } } Self::Index(x, ..) | Self::Dot(x, ..) | Expr::And(x, ..) | Expr::Or(x, ..) | Expr::Coalesce(x, ..) => { if !x.lhs.walk(path, on_node) { return false; } if !x.rhs.walk(path, on_node) { return false; } } Self::FnCall(x, ..) => { for e in &x.args { if !e.walk(path, on_node) { return false; } } } #[cfg(not(feature = "no_custom_syntax"))] Self::Custom(x, ..) => { for e in &x.inputs { if !e.walk(path, on_node) { return false; } } } _ => (), } path.pop().unwrap(); true } }