//! Module containing various utility types and functions. use crate::fn_native::{shared_make_mut, shared_take, Shared}; use crate::stdlib::{ any::TypeId, borrow::Borrow, boxed::Box, fmt, hash::{BuildHasher, Hash, Hasher}, iter::FromIterator, ops::{Add, AddAssign, Deref}, str::FromStr, string::{String, ToString}, }; #[cfg(not(feature = "no_std"))] use crate::stdlib::collections::hash_map::DefaultHasher; #[cfg(feature = "no_std")] use ahash::AHasher; use smallvec::SmallVec; /// A hasher that only takes one single `u64` and returns it as a hash key. /// /// # Panics /// /// Panics when hashing any data type other than a `u64`. #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash, Default)] pub struct StraightHasher(u64); impl Hasher for StraightHasher { fn finish(&self) -> u64 { self.0 } fn write(&mut self, bytes: &[u8]) { let mut key = [0_u8; 8]; key.copy_from_slice(&bytes[..8]); // Panics if fewer than 8 bytes self.0 = u64::from_le_bytes(key); } } impl StraightHasher { /// Create a `StraightHasher`. pub fn new() -> Self { Self(0) } } /// A hash builder for `StraightHasher`. #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash, Default)] pub struct StraightHasherBuilder; impl BuildHasher for StraightHasherBuilder { type Hasher = StraightHasher; fn build_hasher(&self) -> Self::Hasher { StraightHasher::new() } } /// Calculate a `u64` hash key from a module-qualified function name and parameter types. /// /// Module names are passed in via `&str` references from an iterator. /// Parameter types are passed in via `TypeId` values from an iterator. /// /// # Note /// /// The first module name is skipped. Hashing starts from the _second_ module in the chain. pub fn calc_fn_spec<'a>( modules: impl Iterator, fn_name: &str, num: usize, params: impl Iterator, ) -> u64 { #[cfg(feature = "no_std")] let mut s: AHasher = Default::default(); #[cfg(not(feature = "no_std"))] let mut s = DefaultHasher::new(); // We always skip the first module modules.skip(1).for_each(|m| m.hash(&mut s)); s.write(fn_name.as_bytes()); s.write_usize(num); params.for_each(|t| t.hash(&mut s)); s.finish() } pub type StaticVec = SmallVec<[T; 4]>; /// The system immutable string type. /// /// An `ImmutableString` wraps an `Rc` (or `Arc` under the `sync` feature) /// so that it can be simply shared and not cloned. /// /// # Examples /// /// ``` /// use rhai::ImmutableString; /// /// let s1: ImmutableString = "hello".into(); /// /// // No actual cloning of the string is involved below. /// let s2 = s1.clone(); /// let s3 = s2.clone(); /// /// assert_eq!(s1, s2); /// /// // Clones the underlying string (because it is already shared) and extracts it. /// let mut s: String = s1.into_owned(); /// /// // Changing the clone has no impact on the previously shared version. /// s.push_str(", world!"); /// /// // The old version still exists. /// assert_eq!(s2, s3); /// assert_eq!(s2.as_str(), "hello"); /// /// // Not equals! /// assert_ne!(s2.as_str(), s.as_str()); /// assert_eq!(s, "hello, world!"); /// ``` #[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Default)] pub struct ImmutableString(Shared); impl Deref for ImmutableString { type Target = String; fn deref(&self) -> &Self::Target { &self.0 } } impl AsRef for ImmutableString { fn as_ref(&self) -> &String { &self.0 } } impl Borrow for ImmutableString { fn borrow(&self) -> &str { self.0.as_str() } } impl From<&str> for ImmutableString { fn from(value: &str) -> Self { Self(value.to_string().into()) } } impl From for ImmutableString { fn from(value: String) -> Self { Self(value.into()) } } impl From> for ImmutableString { fn from(value: Box) -> Self { Self(value.into()) } } impl From for String { fn from(value: ImmutableString) -> Self { value.into_owned() } } impl FromStr for ImmutableString { type Err = (); fn from_str(s: &str) -> Result { Ok(Self(s.to_string().into())) } } impl FromIterator for ImmutableString { fn from_iter>(iter: T) -> Self { Self(iter.into_iter().collect::().into()) } } impl<'a> FromIterator<&'a char> for ImmutableString { fn from_iter>(iter: T) -> Self { Self(iter.into_iter().cloned().collect::().into()) } } impl<'a> FromIterator<&'a str> for ImmutableString { fn from_iter>(iter: T) -> Self { Self(iter.into_iter().collect::().into()) } } impl<'a> FromIterator for ImmutableString { fn from_iter>(iter: T) -> Self { Self(iter.into_iter().collect::().into()) } } impl fmt::Display for ImmutableString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self.0.as_str(), f) } } impl fmt::Debug for ImmutableString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(self.0.as_str(), f) } } impl Add for ImmutableString { type Output = Self; fn add(mut self, rhs: Self) -> Self::Output { if rhs.is_empty() { self } else if self.is_empty() { rhs } else { self.make_mut().push_str(rhs.0.as_str()); self } } } impl Add for &ImmutableString { type Output = ImmutableString; fn add(self, rhs: Self) -> Self::Output { if rhs.is_empty() { self.clone() } else if self.is_empty() { rhs.clone() } else { let mut s = self.clone(); s.make_mut().push_str(rhs.0.as_str()); s } } } impl AddAssign<&ImmutableString> for ImmutableString { fn add_assign(&mut self, rhs: &ImmutableString) { if !rhs.is_empty() { if self.is_empty() { self.0 = rhs.0.clone(); } else { self.make_mut().push_str(rhs.0.as_str()); } } } } impl Add<&str> for ImmutableString { type Output = Self; fn add(mut self, rhs: &str) -> Self::Output { if rhs.is_empty() { self } else { self.make_mut().push_str(rhs); self } } } impl Add<&str> for &ImmutableString { type Output = ImmutableString; fn add(self, rhs: &str) -> Self::Output { if rhs.is_empty() { self.clone() } else { let mut s = self.clone(); s.make_mut().push_str(rhs); s } } } impl AddAssign<&str> for ImmutableString { fn add_assign(&mut self, rhs: &str) { if !rhs.is_empty() { self.make_mut().push_str(rhs); } } } impl Add for ImmutableString { type Output = Self; fn add(mut self, rhs: String) -> Self::Output { if rhs.is_empty() { self } else if self.is_empty() { rhs.into() } else { self.make_mut().push_str(&rhs); self } } } impl Add for &ImmutableString { type Output = ImmutableString; fn add(self, rhs: String) -> Self::Output { if rhs.is_empty() { self.clone() } else if self.is_empty() { rhs.into() } else { let mut s = self.clone(); s.make_mut().push_str(&rhs); s } } } impl Add for ImmutableString { type Output = Self; fn add(mut self, rhs: char) -> Self::Output { self.make_mut().push(rhs); self } } impl Add for &ImmutableString { type Output = ImmutableString; fn add(self, rhs: char) -> Self::Output { let mut s = self.clone(); s.make_mut().push(rhs); s } } impl AddAssign for ImmutableString { fn add_assign(&mut self, rhs: char) { self.make_mut().push(rhs); } } impl ImmutableString { /// Consume the `ImmutableString` and convert it into a `String`. /// If there are other references to the same string, a cloned copy is returned. pub fn into_owned(mut self) -> String { self.make_mut(); // Make sure it is unique reference shared_take(self.0) // Should succeed } /// Make sure that the `ImmutableString` is unique (i.e. no other outstanding references). /// Then return a mutable reference to the `String`. pub fn make_mut(&mut self) -> &mut String { shared_make_mut(&mut self.0) } }