//! Module which defines the function registration mechanism. #![allow(non_snake_case)] use crate::any::{Any, Dynamic}; use crate::engine::{Engine, FnCallArgs}; use crate::parser::Position; use crate::result::EvalAltResult; use crate::stdlib::{any::TypeId, boxed::Box, string::ToString, vec}; /// A trait to register custom functions with the `Engine`. pub trait RegisterFn { /// Register a custom function with the `Engine`. /// /// # Example /// /// ``` /// # fn main() -> Result<(), rhai::EvalAltResult> { /// use rhai::{Engine, RegisterFn}; /// /// // Normal function /// fn add(x: i64, y: i64) -> i64 { /// x + y /// } /// /// let mut engine = Engine::new(); /// /// // You must use the trait rhai::RegisterFn to get this method. /// engine.register_fn("add", add); /// /// assert_eq!(engine.eval::("add(40, 2)")?, 42); /// /// // You can also register a closure. /// engine.register_fn("sub", |x: i64, y: i64| x - y ); /// /// assert_eq!(engine.eval::("sub(44, 2)")?, 42); /// # Ok(()) /// # } /// ``` fn register_fn(&mut self, name: &str, f: FN); } /// A trait to register custom functions that return `Dynamic` values with the `Engine`. pub trait RegisterDynamicFn { /// Register a custom function returning `Dynamic` values with the `Engine`. /// /// # Example /// /// ``` /// # fn main() -> Result<(), rhai::EvalAltResult> { /// use rhai::{Engine, Dynamic, RegisterDynamicFn}; /// /// // Function that returns a Dynamic value /// fn return_the_same_as_dynamic(x: i64) -> Dynamic { /// Box::new(x) /// } /// /// let mut engine = Engine::new(); /// /// // You must use the trait rhai::RegisterDynamicFn to get this method. /// engine.register_dynamic_fn("get_any_number", return_the_same_as_dynamic); /// /// assert_eq!(engine.eval::("get_any_number(42)")?, 42); /// # Ok(()) /// # } /// ``` fn register_dynamic_fn(&mut self, name: &str, f: FN); } /// A trait to register fallible custom functions returning Result<_, EvalAltResult> with the `Engine`. pub trait RegisterResultFn { /// Register a custom fallible function with the `Engine`. /// /// # Example /// /// ``` /// use rhai::{Engine, RegisterResultFn, EvalAltResult}; /// /// // Normal function /// fn div(x: i64, y: i64) -> Result { /// if y == 0 { /// // '.into()' automatically converts to 'EvalAltResult::ErrorRuntime' /// Err("division by zero!".into()) /// } else { /// Ok(x / y) /// } /// } /// /// let mut engine = Engine::new(); /// /// // You must use the trait rhai::RegisterResultFn to get this method. /// engine.register_result_fn("div", div); /// /// engine.eval::("div(42, 0)") /// .expect_err("expecting division by zero error!"); /// ``` fn register_result_fn(&mut self, name: &str, f: FN); } // These types are used to build a unique _marker_ tuple type for each combination // of function parameter types in order to make each trait implementation unique. // That is because stable Rust currently does not allow distinguishing implementations // based purely on parameter types of traits (Fn, FnOnce and FnMut). // // For example: // // `RegisterFn, B, Ref), R>` // // will have the function prototype constraint to: // // `FN: (&mut A, B, &C) -> R` // // These types are not actually used anywhere. pub struct Mut(T); //pub struct Ref(T); /// Identity dereferencing function. #[inline] fn identity(data: T) -> T { data } /// This macro counts the number of arguments via recursion. macro_rules! count_args { () => { 0_usize }; ( $head:ident $($tail:ident)* ) => { 1_usize + count_args!($($tail)*) }; } macro_rules! def_register { () => { def_register!(imp); }; (imp $($par:ident => $mark:ty => $param:ty => $clone:expr),*) => { // ^ function parameter generic type name // ^ function parameter marker type (T, Ref or Mut) // ^ function parameter actual type // ^ dereferencing function impl< $($par: Any + Clone,)* FN: Fn($($param),*) -> RET + 'static, RET: Any > RegisterFn for Engine<'_> { fn register_fn(&mut self, name: &str, f: FN) { let fn_name = name.to_string(); let fun = move |mut args: FnCallArgs, pos: Position| { // Check for length at the beginning to avoid per-element bound checks. const NUM_ARGS: usize = count_args!($($par)*); if args.len() != NUM_ARGS { return Err(EvalAltResult::ErrorFunctionArgsMismatch(fn_name.clone(), NUM_ARGS, args.len(), pos)); } #[allow(unused_variables, unused_mut)] let mut drain = args.drain(..); $( // Downcast every element, return in case of a type mismatch let $par = drain.next().unwrap().downcast_mut::<$par>().unwrap(); )* // Call the user-supplied function using ($clone) to // potentially clone the value, otherwise pass the reference. let r = f($(($clone)($par)),*); Ok(Box::new(r) as Dynamic) }; self.register_fn_raw(name, Some(vec![$(TypeId::of::<$par>()),*]), Box::new(fun)); } } impl< $($par: Any + Clone,)* FN: Fn($($param),*) -> Dynamic + 'static, > RegisterDynamicFn for Engine<'_> { fn register_dynamic_fn(&mut self, name: &str, f: FN) { let fn_name = name.to_string(); let fun = move |mut args: FnCallArgs, pos: Position| { // Check for length at the beginning to avoid per-element bound checks. const NUM_ARGS: usize = count_args!($($par)*); if args.len() != NUM_ARGS { return Err(EvalAltResult::ErrorFunctionArgsMismatch(fn_name.clone(), NUM_ARGS, args.len(), pos)); } #[allow(unused_variables, unused_mut)] let mut drain = args.drain(..); $( // Downcast every element, return in case of a type mismatch let $par = drain.next().unwrap().downcast_mut::<$par>().unwrap(); )* // Call the user-supplied function using ($clone) to // potentially clone the value, otherwise pass the reference. Ok(f($(($clone)($par)),*)) }; self.register_fn_raw(name, Some(vec![$(TypeId::of::<$par>()),*]), Box::new(fun)); } } impl< $($par: Any + Clone,)* FN: Fn($($param),*) -> Result + 'static, RET: Any > RegisterResultFn for Engine<'_> { fn register_result_fn(&mut self, name: &str, f: FN) { let fn_name = name.to_string(); let fun = move |mut args: FnCallArgs, pos: Position| { // Check for length at the beginning to avoid per-element bound checks. const NUM_ARGS: usize = count_args!($($par)*); if args.len() != NUM_ARGS { return Err(EvalAltResult::ErrorFunctionArgsMismatch(fn_name.clone(), NUM_ARGS, args.len(), pos)); } #[allow(unused_variables, unused_mut)] let mut drain = args.drain(..); $( // Downcast every element, return in case of a type mismatch let $par = drain.next().unwrap().downcast_mut::<$par>().unwrap(); )* // Call the user-supplied function using ($clone) to // potentially clone the value, otherwise pass the reference. f($(($clone)($par)),*).map(|r| Box::new(r) as Dynamic).map_err(|mut err| { err.set_position(pos); err }) }; self.register_fn_raw(name, Some(vec![$(TypeId::of::<$par>()),*]), Box::new(fun)); } } //def_register!(imp_pop $($par => $mark => $param),*); }; ($p0:ident $(, $p:ident)*) => { def_register!(imp $p0 => $p0 => $p0 => Clone::clone $(, $p => $p => $p => Clone::clone)*); def_register!(imp $p0 => Mut<$p0> => &mut $p0 => identity $(, $p => $p => $p => Clone::clone)*); // handle the first parameter ^ first parameter passed through // others passed by value (cloned) ^ // No support for functions where the first argument is a reference //def_register!(imp $p0 => Ref<$p0> => &$p0 => identity $(, $p => $p => $p => Clone::clone)*); def_register!($($p),*); }; // (imp_pop) => {}; // (imp_pop $head:ident => $head_mark:ty => $head_param:ty $(,$tail:ident => $tail_mark:ty => $tp:ty)*) => { // def_register!(imp $($tail => $tail_mark => $tp),*); // }; } #[rustfmt::skip] def_register!(A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q, R, S, T, U, V);