#![allow(non_snake_case)] use crate::plugin::*; use crate::{def_package, Position, INT}; #[cfg(feature = "no_std")] use std::prelude::v1::*; #[cfg(not(feature = "no_float"))] use crate::FLOAT; #[cfg(not(feature = "no_float"))] use crate::result::EvalAltResult; #[cfg(feature = "no_std")] #[cfg(not(feature = "no_float"))] use num_traits::Float; #[cfg(feature = "decimal")] use rust_decimal::Decimal; #[cfg(feature = "decimal")] use super::arithmetic::make_err; #[allow(dead_code)] #[cfg(feature = "only_i32")] pub const MAX_INT: INT = i32::MAX; #[allow(dead_code)] #[cfg(not(feature = "only_i32"))] pub const MAX_INT: INT = i64::MAX; macro_rules! gen_conversion_as_functions { ($root:ident => $func_name:ident ( $($arg_type:ident),+ ) -> $result_type:ty) => { pub mod $root { $(pub mod $arg_type { use super::super::*; #[export_fn] pub fn $func_name(x: $arg_type) -> $result_type { x as $result_type } })* } } } #[cfg(feature = "decimal")] macro_rules! gen_conversion_into_functions { ($root:ident => $func_name:ident ( $($arg_type:ident),+ ) -> $result_type:ty) => { pub mod $root { $(pub mod $arg_type { use super::super::*; #[export_fn] pub fn $func_name(x: $arg_type) -> $result_type { x.into() } })* } } } macro_rules! reg_functions { ($mod_name:ident += $root:ident :: $func_name:ident ( $($arg_type:ident),+ ) ) => { $( set_exported_fn!($mod_name, stringify!($func_name), $root::$arg_type::$func_name); )* } } def_package!(crate:BasicMathPackage:"Basic mathematic functions.", lib, { // Integer functions combine_with_exported_module!(lib, "int", int_functions); reg_functions!(lib += basic_to_int::to_int(char)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_functions!(lib += numbers_to_int::to_int(i8, u8, i16, u16, i32, u32, i64, u64)); #[cfg(not(any(target_arch = "wasm32", target_arch = "wasm64")))] reg_functions!(lib += num_128_to_int::to_int(i128, u128)); } #[cfg(not(feature = "no_float"))] { // Floating point functions combine_with_exported_module!(lib, "float", float_functions); // Trig functions combine_with_exported_module!(lib, "trig", trig_functions); reg_functions!(lib += basic_to_float::to_float(INT)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_functions!(lib += numbers_to_float::to_float(i8, u8, i16, u16, i32, u32, i64, u32)); #[cfg(not(any(target_arch = "wasm32", target_arch = "wasm64")))] reg_functions!(lib += num_128_to_float::to_float(i128, u128)); } } // Decimal functions #[cfg(feature = "decimal")] { combine_with_exported_module!(lib, "decimal", decimal_functions); reg_functions!(lib += basic_to_decimal::to_decimal(INT)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] reg_functions!(lib += numbers_to_decimal::to_decimal(i8, u8, i16, u16, i32, u32, i64, u64)); } }); #[export_module] mod int_functions { #[rhai_fn(name = "parse_int", return_raw)] pub fn parse_int_radix(s: &str, radix: INT) -> Result> { if radix < 2 || radix > 36 { return EvalAltResult::ErrorArithmetic( format!("Invalid radix: '{}'", radix), Position::NONE, ) .into(); } INT::from_str_radix(s.trim(), radix as u32).map_err(|err| { EvalAltResult::ErrorArithmetic( format!("Error parsing integer number '{}': {}", s, err), Position::NONE, ) .into() }) } #[rhai_fn(name = "parse_int", return_raw)] pub fn parse_int(s: &str) -> Result> { parse_int_radix(s, 10) } } #[cfg(not(feature = "no_float"))] #[export_module] mod trig_functions { use crate::FLOAT; pub fn sin(x: FLOAT) -> FLOAT { x.sin() } pub fn cos(x: FLOAT) -> FLOAT { x.cos() } pub fn tan(x: FLOAT) -> FLOAT { x.tan() } pub fn sinh(x: FLOAT) -> FLOAT { x.sinh() } pub fn cosh(x: FLOAT) -> FLOAT { x.cosh() } pub fn tanh(x: FLOAT) -> FLOAT { x.tanh() } pub fn asin(x: FLOAT) -> FLOAT { x.asin() } pub fn acos(x: FLOAT) -> FLOAT { x.acos() } pub fn atan(x: FLOAT) -> FLOAT { x.atan() } #[rhai_fn(name = "atan")] pub fn atan2(x: FLOAT, y: FLOAT) -> FLOAT { x.atan2(y) } pub fn asinh(x: FLOAT) -> FLOAT { x.asinh() } pub fn acosh(x: FLOAT) -> FLOAT { x.acosh() } pub fn atanh(x: FLOAT) -> FLOAT { x.atanh() } pub fn hypot(x: FLOAT, y: FLOAT) -> FLOAT { x.hypot(y) } } #[cfg(not(feature = "no_float"))] #[export_module] mod float_functions { use crate::FLOAT; #[rhai_fn(name = "E")] pub fn e() -> FLOAT { #[cfg(not(feature = "f32_float"))] return std::f64::consts::E; #[cfg(feature = "f32_float")] return std::f32::consts::E; } #[rhai_fn(name = "PI")] pub fn pi() -> FLOAT { #[cfg(not(feature = "f32_float"))] return std::f64::consts::PI; #[cfg(feature = "f32_float")] return std::f32::consts::PI; } pub fn to_radians(x: FLOAT) -> FLOAT { x.to_radians() } pub fn to_degrees(x: FLOAT) -> FLOAT { x.to_degrees() } pub fn sqrt(x: FLOAT) -> FLOAT { x.sqrt() } pub fn exp(x: FLOAT) -> FLOAT { x.exp() } pub fn ln(x: FLOAT) -> FLOAT { x.ln() } pub fn log(x: FLOAT, base: FLOAT) -> FLOAT { x.log(base) } #[rhai_fn(name = "log")] pub fn log10(x: FLOAT) -> FLOAT { x.log10() } #[rhai_fn(name = "floor", get = "floor")] pub fn floor(x: FLOAT) -> FLOAT { x.floor() } #[rhai_fn(name = "ceiling", get = "ceiling")] pub fn ceiling(x: FLOAT) -> FLOAT { x.ceil() } #[rhai_fn(name = "round", get = "round")] pub fn round(x: FLOAT) -> FLOAT { x.round() } #[rhai_fn(name = "int", get = "int")] pub fn int(x: FLOAT) -> FLOAT { x.trunc() } #[rhai_fn(name = "fraction", get = "fraction")] pub fn fraction(x: FLOAT) -> FLOAT { x.fract() } #[rhai_fn(name = "is_nan", get = "is_nan")] pub fn is_nan(x: FLOAT) -> bool { x.is_nan() } #[rhai_fn(name = "is_finite", get = "is_finite")] pub fn is_finite(x: FLOAT) -> bool { x.is_finite() } #[rhai_fn(name = "is_infinite", get = "is_infinite")] pub fn is_infinite(x: FLOAT) -> bool { x.is_infinite() } #[rhai_fn(name = "to_int", return_raw)] pub fn f32_to_int(x: f32) -> Result> { if cfg!(not(feature = "unchecked")) && x > (MAX_INT as f32) { EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::NONE, ) .into() } else { Ok(x.trunc() as INT) } } #[rhai_fn(name = "to_int", return_raw)] pub fn f64_to_int(x: f64) -> Result> { if cfg!(not(feature = "unchecked")) && x > (MAX_INT as f64) { EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::NONE, ) .into() } else { Ok(x.trunc() as INT) } } #[rhai_fn(return_raw)] pub fn parse_float(s: &str) -> Result> { s.trim().parse::().map_err(|err| { EvalAltResult::ErrorArithmetic( format!("Error parsing floating-point number '{}': {}", s, err), Position::NONE, ) .into() }) } #[cfg(not(feature = "f32_float"))] pub mod f32_f64 { #[rhai_fn(name = "to_float")] pub fn f32_to_f64(x: f32) -> f64 { x as f64 } } } #[cfg(feature = "decimal")] #[export_module] mod decimal_functions { use rust_decimal::{ prelude::{FromStr, RoundingStrategy}, Decimal, MathematicalOps, }; #[rhai_fn(return_raw)] pub fn sqrt(x: Decimal) -> Result> { x.sqrt() .ok_or_else(|| make_err(format!("Error taking the square root of {}", x,))) } #[rhai_fn(return_raw)] pub fn exp(x: Decimal) -> Result> { if cfg!(not(feature = "unchecked")) { x.checked_exp() .ok_or_else(|| make_err(format!("Exponential overflow: e ** {}", x,))) } else { Ok(x.exp()) } } pub fn ln(x: Decimal) -> Decimal { x.ln() } #[rhai_fn(name = "floor", get = "floor")] pub fn floor(x: Decimal) -> Decimal { x.floor() } #[rhai_fn(name = "ceiling", get = "ceiling")] pub fn ceiling(x: Decimal) -> Decimal { x.ceil() } #[rhai_fn(name = "round", get = "round")] pub fn round(x: Decimal) -> Decimal { x.round() } #[rhai_fn(name = "round", return_raw)] pub fn round_dp(x: Decimal, dp: INT) -> Result> { if cfg!(not(feature = "unchecked")) { if dp < 0 { return Err(make_err(format!( "Invalid number of digits for rounding: {}", dp ))); } if cfg!(not(feature = "only_i32")) && dp > (u32::MAX as INT) { return Ok(x); } } Ok(x.round_dp(dp as u32)) } #[rhai_fn(return_raw)] pub fn round_up(x: Decimal, dp: INT) -> Result> { if cfg!(not(feature = "unchecked")) { if dp < 0 { return Err(make_err(format!( "Invalid number of digits for rounding: {}", dp ))); } if cfg!(not(feature = "only_i32")) && dp > (u32::MAX as INT) { return Ok(x); } } Ok(x.round_dp_with_strategy(dp as u32, RoundingStrategy::AwayFromZero)) } #[rhai_fn(return_raw)] pub fn round_down(x: Decimal, dp: INT) -> Result> { if cfg!(not(feature = "unchecked")) { if dp < 0 { return Err(make_err(format!( "Invalid number of digits for rounding: {}", dp ))); } if cfg!(not(feature = "only_i32")) && dp > (u32::MAX as INT) { return Ok(x); } } Ok(x.round_dp_with_strategy(dp as u32, RoundingStrategy::ToZero)) } #[rhai_fn(return_raw)] pub fn round_half_up(x: Decimal, dp: INT) -> Result> { if cfg!(not(feature = "unchecked")) { if dp < 0 { return Err(make_err(format!( "Invalid number of digits for rounding: {}", dp ))); } if cfg!(not(feature = "only_i32")) && dp > (u32::MAX as INT) { return Ok(x); } } Ok(x.round_dp_with_strategy(dp as u32, RoundingStrategy::MidpointAwayFromZero)) } #[rhai_fn(return_raw)] pub fn round_half_down(x: Decimal, dp: INT) -> Result> { if cfg!(not(feature = "unchecked")) { if dp < 0 { return Err(make_err(format!( "Invalid number of digits for rounding: {}", dp ))); } if cfg!(not(feature = "only_i32")) && dp > (u32::MAX as INT) { return Ok(x); } } Ok(x.round_dp_with_strategy(dp as u32, RoundingStrategy::MidpointTowardZero)) } #[rhai_fn(name = "int", get = "int")] pub fn int(x: Decimal) -> Decimal { x.trunc() } #[rhai_fn(name = "fraction", get = "fraction")] pub fn fraction(x: Decimal) -> Decimal { x.fract() } #[rhai_fn(return_raw)] pub fn parse_decimal(s: &str) -> Result> { Decimal::from_str(s) .or_else(|_| Decimal::from_scientific(s)) .map_err(|err| { EvalAltResult::ErrorArithmetic( format!("Error parsing decimal number '{}': {}", s, err), Position::NONE, ) .into() }) } #[cfg(not(feature = "no_float"))] pub mod float { use std::convert::TryFrom; #[rhai_fn(name = "to_decimal", return_raw)] pub fn f32_to_decimal(x: f32) -> Result> { Decimal::try_from(x).map_err(|_| { EvalAltResult::ErrorArithmetic( format!("Cannot convert to Decimal: to_decimal({})", x), Position::NONE, ) .into() }) } #[rhai_fn(name = "to_decimal", return_raw)] pub fn f64_to_decimal(x: f64) -> Result> { Decimal::try_from(x).map_err(|_| { EvalAltResult::ErrorArithmetic( format!("Cannot convert to Decimal: to_decimal({})", x), Position::NONE, ) .into() }) } #[rhai_fn(return_raw)] pub fn to_float(x: Decimal) -> Result> { FLOAT::try_from(x).map_err(|_| { EvalAltResult::ErrorArithmetic( format!("Cannot convert to floating-point: to_float({})", x), Position::NONE, ) .into() }) } } } #[cfg(not(feature = "no_float"))] gen_conversion_as_functions!(basic_to_float => to_float (INT) -> FLOAT); #[cfg(not(feature = "no_float"))] #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] gen_conversion_as_functions!(numbers_to_float => to_float (i8, u8, i16, u16, i32, u32, i64, u64) -> FLOAT); #[cfg(not(feature = "no_float"))] #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] #[cfg(not(any(target_arch = "wasm32", target_arch = "wasm64")))] gen_conversion_as_functions!(num_128_to_float => to_float (i128, u128) -> FLOAT); gen_conversion_as_functions!(basic_to_int => to_int (char) -> INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] gen_conversion_as_functions!(numbers_to_int => to_int (i8, u8, i16, u16, i32, u32, i64, u64) -> INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] #[cfg(not(any(target_arch = "wasm32", target_arch = "wasm64")))] gen_conversion_as_functions!(num_128_to_int => to_int (i128, u128) -> INT); #[cfg(feature = "decimal")] gen_conversion_into_functions!(basic_to_decimal => to_decimal (INT) -> Decimal); #[cfg(feature = "decimal")] #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] gen_conversion_into_functions!(numbers_to_decimal => to_decimal (i8, u8, i16, u16, i32, u32, i64, u64) -> Decimal);