//! Main module defining the script evaluation `Engine`. use crate::any::{Dynamic, Union}; use crate::calc_fn_hash; use crate::error::ParseErrorType; use crate::fn_native::{FnCallArgs, NativeFunctionABI, PrintCallback}; use crate::module::Module; use crate::optimize::OptimizationLevel; use crate::packages::{CorePackage, Package, PackageLibrary, PackagesCollection, StandardPackage}; use crate::parser::{Expr, FnAccess, FnDef, ReturnType, SharedFnDef, Stmt, AST}; use crate::result::EvalAltResult; use crate::scope::{EntryType as ScopeEntryType, Scope}; use crate::token::Position; use crate::utils::{StaticVec, EMPTY_TYPE_ID}; #[cfg(not(feature = "no_module"))] use crate::module::{resolvers, ModuleRef, ModuleResolver}; #[cfg(feature = "no_module")] use crate::parser::ModuleRef; use crate::stdlib::{ any::TypeId, borrow::Cow, boxed::Box, collections::HashMap, format, iter::{empty, once, repeat}, mem, num::NonZeroUsize, ops::{Deref, DerefMut}, rc::Rc, string::{String, ToString}, sync::Arc, vec::Vec, }; /// An dynamic array of `Dynamic` values. /// /// Not available under the `no_index` feature. #[cfg(not(feature = "no_index"))] pub type Array = Vec; /// An dynamic hash map of `Dynamic` values with `String` keys. /// /// Not available under the `no_object` feature. #[cfg(not(feature = "no_object"))] pub type Map = HashMap; #[cfg(debug_assertions)] pub const MAX_CALL_STACK_DEPTH: usize = 28; #[cfg(not(debug_assertions))] pub const MAX_CALL_STACK_DEPTH: usize = 256; pub const KEYWORD_PRINT: &str = "print"; pub const KEYWORD_DEBUG: &str = "debug"; pub const KEYWORD_TYPE_OF: &str = "type_of"; pub const KEYWORD_EVAL: &str = "eval"; pub const FUNC_TO_STRING: &str = "to_string"; pub const FUNC_GETTER: &str = "get$"; pub const FUNC_SETTER: &str = "set$"; pub const FUNC_INDEXER: &str = "$index$"; /// A type that encapsulates a mutation target for an expression with side effects. enum Target<'a> { /// The target is a mutable reference to a `Dynamic` value somewhere. Ref(&'a mut Dynamic), /// The target is a temporary `Dynamic` value (i.e. the mutation can cause no side effects). Value(Box), /// The target is a character inside a String. /// This is necessary because directly pointing to a char inside a String is impossible. StringChar(Box<(&'a mut Dynamic, usize, Dynamic)>), } impl Target<'_> { /// Get the value of the `Target` as a `Dynamic`. pub fn clone_into_dynamic(self) -> Dynamic { match self { Target::Ref(r) => r.clone(), Target::Value(v) => *v, Target::StringChar(s) => s.2, } } /// Update the value of the `Target`. pub fn set_value(&mut self, new_val: Dynamic, pos: Position) -> Result<(), Box> { match self { Target::Ref(r) => **r = new_val, Target::Value(_) => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS(pos))) } Target::StringChar(x) => match x.0 { Dynamic(Union::Str(s)) => { // Replace the character at the specified index position let new_ch = new_val .as_char() .map_err(|_| EvalAltResult::ErrorCharMismatch(pos))?; let mut chars: StaticVec = s.chars().collect(); let ch = *chars.get_ref(x.1); // See if changed - if so, update the String if ch != new_ch { *chars.get_mut(x.1) = new_ch; s.clear(); chars.iter().for_each(|&ch| s.push(ch)); } } _ => unreachable!(), }, } Ok(()) } } impl<'a> From<&'a mut Dynamic> for Target<'a> { fn from(value: &'a mut Dynamic) -> Self { Self::Ref(value) } } impl> From for Target<'_> { fn from(value: T) -> Self { Self::Value(Box::new(value.into())) } } /// A type that holds all the current states of the Engine. #[derive(Debug, Clone, Copy)] pub struct State<'a> { /// Global script-defined functions. pub fn_lib: &'a FunctionsLib, /// Normally, access to variables are parsed with a relative offset into the scope to avoid a lookup. /// In some situation, e.g. after running an `eval` statement, subsequent offsets may become mis-aligned. /// When that happens, this flag is turned on to force a scope lookup by name. pub always_search: bool, /// Level of the current scope. The global (root) level is zero, a new block (or function call) /// is one level higher, and so on. pub scope_level: usize, } impl<'a> State<'a> { /// Create a new `State`. pub fn new(fn_lib: &'a FunctionsLib) -> Self { Self { always_search: false, fn_lib, scope_level: 0, } } /// Does a certain script-defined function exist in the `State`? pub fn has_function(&self, hash: u64) -> bool { self.fn_lib.contains_key(&hash) } /// Get a script-defined function definition from the `State`. pub fn get_function(&self, hash: u64) -> Option<&FnDef> { self.fn_lib.get(&hash).map(|f| f.as_ref()) } } /// A type that holds a library (`HashMap`) of script-defined functions. /// /// Since script-defined functions have `Dynamic` parameters, functions with the same name /// and number of parameters are considered equivalent. /// /// The key of the `HashMap` is a `u64` hash calculated by the function `calc_fn_hash` /// with dummy parameter types `EMPTY_TYPE_ID()` repeated the correct number of times. #[derive(Debug, Clone, Default)] pub struct FunctionsLib(HashMap); impl FunctionsLib { /// Create a new `FunctionsLib` from a collection of `FnDef`. pub fn from_iter(vec: impl IntoIterator) -> Self { FunctionsLib( vec.into_iter() .map(|fn_def| { // Qualifiers (none) + function name + placeholders (one for each parameter). let args_iter = repeat(EMPTY_TYPE_ID()).take(fn_def.params.len()); let hash = calc_fn_hash(empty(), &fn_def.name, args_iter); #[cfg(feature = "sync")] { (hash, Arc::new(fn_def)) } #[cfg(not(feature = "sync"))] { (hash, Rc::new(fn_def)) } }) .collect(), ) } /// Does a certain function exist in the `FunctionsLib`? /// /// The `u64` hash is calculated by the function `crate::calc_fn_hash`. pub fn has_function(&self, hash_fn_def: u64) -> bool { self.contains_key(&hash_fn_def) } /// Get a function definition from the `FunctionsLib`. /// /// The `u64` hash is calculated by the function `crate::calc_fn_hash`. pub fn get_function(&self, hash_fn_def: u64) -> Option<&FnDef> { self.get(&hash_fn_def).map(|fn_def| fn_def.as_ref()) } /// Get a function definition from the `FunctionsLib`. pub fn get_function_by_signature( &self, name: &str, params: usize, public_only: bool, ) -> Option<&FnDef> { // Qualifiers (none) + function name + placeholders (one for each parameter). let hash_fn_def = calc_fn_hash(empty(), name, repeat(EMPTY_TYPE_ID()).take(params)); let fn_def = self.get_function(hash_fn_def); match fn_def.as_ref().map(|f| f.access) { None => None, Some(FnAccess::Private) if public_only => None, Some(FnAccess::Private) => fn_def, Some(FnAccess::Public) => fn_def, } } /// Merge another `FunctionsLib` into this `FunctionsLib`. pub fn merge(&self, other: &Self) -> Self { if self.is_empty() { other.clone() } else if other.is_empty() { self.clone() } else { let mut functions = self.clone(); functions.extend(other.iter().map(|(hash, fn_def)| (*hash, fn_def.clone()))); functions } } } impl From> for FunctionsLib { fn from(values: Vec<(u64, SharedFnDef)>) -> Self { FunctionsLib(values.into_iter().collect()) } } impl Deref for FunctionsLib { #[cfg(feature = "sync")] type Target = HashMap>; #[cfg(not(feature = "sync"))] type Target = HashMap>; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for FunctionsLib { #[cfg(feature = "sync")] fn deref_mut(&mut self) -> &mut HashMap> { &mut self.0 } #[cfg(not(feature = "sync"))] fn deref_mut(&mut self) -> &mut HashMap> { &mut self.0 } } /// A dangerous function that blindly casts a `&str` from one lifetime to a `Cow` of /// another lifetime. This is mainly used to let us push a block-local variable into the /// current `Scope` without cloning the variable name. Doing this is safe because all local /// variables in the `Scope` are cleared out before existing the block. /// /// Force-casting a local variable lifetime to the current `Scope`'s larger lifetime saves /// on allocations and string cloning, thus avoids us having to maintain a chain of `Scope`'s. fn unsafe_cast_var_name<'s>(name: &str, state: &State) -> Cow<'s, str> { // If not at global level, we can force-cast if state.scope_level > 0 { // WARNING - force-cast the variable name into the scope's lifetime to avoid cloning it // this is safe because all local variables are cleared at the end of the block unsafe { mem::transmute::<_, &'s str>(name) }.into() } else { name.to_string().into() } } /// Rhai main scripting engine. /// /// ``` /// # fn main() -> Result<(), Box> { /// use rhai::Engine; /// /// let engine = Engine::new(); /// /// let result = engine.eval::("40 + 2")?; /// /// println!("Answer: {}", result); // prints 42 /// # Ok(()) /// # } /// ``` /// /// Currently, `Engine` is neither `Send` nor `Sync`. Turn on the `sync` feature to make it `Send + Sync`. pub struct Engine { /// A module containing all functions directly loaded into the Engine. pub(crate) global_module: Module, /// A collection of all library packages loaded into the Engine. pub(crate) packages: PackagesCollection, /// A module resolution service. #[cfg(not(feature = "no_module"))] pub(crate) module_resolver: Option>, /// A hashmap mapping type names to pretty-print names. pub(crate) type_names: HashMap, /// Closure for implementing the `print` command. pub(crate) print: Box, /// Closure for implementing the `debug` command. pub(crate) debug: Box, /// Optimize the AST after compilation. pub(crate) optimization_level: OptimizationLevel, /// Maximum levels of call-stack to prevent infinite recursion. /// /// Defaults to 28 for debug builds and 256 for non-debug builds. pub(crate) max_call_stack_depth: usize, } impl Default for Engine { fn default() -> Self { // Create the new scripting Engine let mut engine = Self { packages: Default::default(), global_module: Default::default(), #[cfg(not(feature = "no_module"))] #[cfg(not(feature = "no_std"))] module_resolver: Some(Box::new(resolvers::FileModuleResolver::new())), #[cfg(not(feature = "no_module"))] #[cfg(feature = "no_std")] module_resolver: None, type_names: Default::default(), // default print/debug implementations print: Box::new(default_print), debug: Box::new(default_print), // optimization level #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] #[cfg(not(feature = "optimize_full"))] optimization_level: OptimizationLevel::Simple, #[cfg(not(feature = "no_optimize"))] #[cfg(feature = "optimize_full")] optimization_level: OptimizationLevel::Full, max_call_stack_depth: MAX_CALL_STACK_DEPTH, }; #[cfg(feature = "no_stdlib")] engine.load_package(CorePackage::new().get()); #[cfg(not(feature = "no_stdlib"))] engine.load_package(StandardPackage::new().get()); engine } } /// Make getter function pub fn make_getter(id: &str) -> String { format!("{}{}", FUNC_GETTER, id) } /// Extract the property name from a getter function name. fn extract_prop_from_getter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] { if fn_name.starts_with(FUNC_GETTER) { Some(&fn_name[FUNC_GETTER.len()..]) } else { None } } #[cfg(feature = "no_object")] { None } } /// Make setter function pub fn make_setter(id: &str) -> String { format!("{}{}", FUNC_SETTER, id) } /// Extract the property name from a setter function name. fn extract_prop_from_setter(fn_name: &str) -> Option<&str> { #[cfg(not(feature = "no_object"))] { if fn_name.starts_with(FUNC_SETTER) { Some(&fn_name[FUNC_SETTER.len()..]) } else { None } } #[cfg(feature = "no_object")] { None } } /// Print/debug to stdout fn default_print(s: &str) { #[cfg(not(feature = "no_std"))] println!("{}", s); } /// Search for a variable within the scope fn search_scope<'a>( scope: &'a mut Scope, name: &str, #[cfg(not(feature = "no_module"))] modules: Option<(&Box, u64)>, #[cfg(feature = "no_module")] _: Option<(&ModuleRef, u64)>, index: Option, pos: Position, ) -> Result<(&'a mut Dynamic, ScopeEntryType), Box> { #[cfg(not(feature = "no_module"))] { if let Some((modules, hash_var)) = modules { let module = if let Some(index) = modules.index() { scope .get_mut(scope.len() - index.get()) .0 .downcast_mut::() .unwrap() } else { let (id, root_pos) = modules.get_ref(0); scope.find_module(id).ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos)) })? }; return Ok(( module.get_qualified_var_mut(name, hash_var, pos)?, // Module variables are constant ScopeEntryType::Constant, )); } } let index = if let Some(index) = index { scope.len() - index.get() } else { scope .get_index(name) .ok_or_else(|| Box::new(EvalAltResult::ErrorVariableNotFound(name.into(), pos)))? .0 }; Ok(scope.get_mut(index)) } impl Engine { /// Create a new `Engine` pub fn new() -> Self { Default::default() } /// Create a new `Engine` with _no_ built-in functions. /// Use the `load_package` method to load packages of functions. pub fn new_raw() -> Self { Self { packages: Default::default(), global_module: Default::default(), #[cfg(not(feature = "no_module"))] module_resolver: None, type_names: Default::default(), print: Box::new(|_| {}), debug: Box::new(|_| {}), #[cfg(feature = "no_optimize")] optimization_level: OptimizationLevel::None, #[cfg(not(feature = "no_optimize"))] #[cfg(not(feature = "optimize_full"))] optimization_level: OptimizationLevel::Simple, #[cfg(not(feature = "no_optimize"))] #[cfg(feature = "optimize_full")] optimization_level: OptimizationLevel::Full, max_call_stack_depth: MAX_CALL_STACK_DEPTH, } } /// Load a new package into the `Engine`. /// /// When searching for functions, packages loaded later are preferred. /// In other words, loaded packages are searched in reverse order. pub fn load_package(&mut self, package: PackageLibrary) { // Push the package to the top - packages are searched in reverse order self.packages.push(package); } /// Load a new package into the `Engine`. /// /// When searching for functions, packages loaded later are preferred. /// In other words, loaded packages are searched in reverse order. pub fn load_packages(&mut self, package: PackageLibrary) { // Push the package to the top - packages are searched in reverse order self.packages.push(package); } /// Control whether and how the `Engine` will optimize an AST after compilation. /// /// Not available under the `no_optimize` feature. #[cfg(not(feature = "no_optimize"))] pub fn set_optimization_level(&mut self, optimization_level: OptimizationLevel) { self.optimization_level = optimization_level } /// Set the maximum levels of function calls allowed for a script in order to avoid /// infinite recursion and stack overflows. pub fn set_max_call_levels(&mut self, levels: usize) { self.max_call_stack_depth = levels } /// Set the module resolution service used by the `Engine`. /// /// Not available under the `no_module` feature. #[cfg(not(feature = "no_module"))] pub fn set_module_resolver(&mut self, resolver: Option) { self.module_resolver = resolver.map(|f| Box::new(f) as Box); } /// Universal method for calling functions either registered with the `Engine` or written in Rhai. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_fn_raw( &self, scope: Option<&mut Scope>, state: &State, fn_name: &str, hashes: (u64, u64), args: &mut FnCallArgs, is_ref: bool, def_val: Option<&Dynamic>, pos: Position, level: usize, ) -> Result<(Dynamic, bool), Box> { // Check for stack overflow if level > self.max_call_stack_depth { return Err(Box::new(EvalAltResult::ErrorStackOverflow(pos))); } // First search in script-defined functions (can override built-in) if hashes.1 > 0 { if let Some(fn_def) = state.get_function(hashes.1) { return self .call_script_fn(scope, state, fn_name, fn_def, args, pos, level) .map(|v| (v, false)); } } // Search built-in's and external functions if let Some(func) = self .global_module .get_fn(hashes.0) .or_else(|| self.packages.get_fn(hashes.0)) { let mut backup: Dynamic = Default::default(); let (updated, restore) = match func.abi() { // Calling pure function in method-call NativeFunctionABI::Pure if is_ref && args.len() > 0 => { // Backup the original value. It'll be consumed because the function // is pure and doesn't know that the first value is a reference (i.e. `is_ref`) backup = args[0].clone(); (false, true) } NativeFunctionABI::Pure => (false, false), NativeFunctionABI::Method => (true, false), }; // Run external function let result = match func.call(args) { Ok(r) => { // Restore the backup value for the first argument since it has been consumed! if restore { *args[0] = backup; } r } Err(err) => { return Err(err.new_position(pos)); } }; // See if the function match print/debug (which requires special processing) return Ok(match fn_name { KEYWORD_PRINT => ( (self.print)(result.as_str().map_err(|type_name| { Box::new(EvalAltResult::ErrorMismatchOutputType( type_name.into(), pos, )) })?) .into(), false, ), KEYWORD_DEBUG => ( (self.debug)(result.as_str().map_err(|type_name| { Box::new(EvalAltResult::ErrorMismatchOutputType( type_name.into(), pos, )) })?) .into(), false, ), _ => (result, updated), }); } // Return default value (if any) if let Some(val) = def_val { return Ok((val.clone(), false)); } // Getter function not found? if let Some(prop) = extract_prop_from_getter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or write-only", prop), pos, ))); } // Setter function not found? if let Some(prop) = extract_prop_from_setter(fn_name) { return Err(Box::new(EvalAltResult::ErrorDotExpr( format!("- property '{}' unknown or read-only", prop), pos, ))); } let types_list: Vec<_> = args .iter() .map(|name| self.map_type_name(name.type_name())) .collect(); // Getter function not found? if fn_name == FUNC_INDEXER { return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!("[]({})", types_list.join(", ")), pos, ))); } // Raise error Err(Box::new(EvalAltResult::ErrorFunctionNotFound( format!("{} ({})", fn_name, types_list.join(", ")), pos, ))) } /// Call a script-defined function. /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! pub(crate) fn call_script_fn<'s>( &self, scope: Option<&mut Scope<'s>>, state: &State, fn_name: &str, fn_def: &FnDef, args: &mut FnCallArgs, pos: Position, level: usize, ) -> Result> { match scope { // Extern scope passed in which is not empty Some(scope) if scope.len() > 0 => { let scope_len = scope.len(); let mut state = State::new(state.fn_lib); state.scope_level += 1; // Put arguments into scope as variables scope.extend( fn_def .params .iter() .zip( // Actually consume the arguments instead of cloning them args.into_iter().map(|v| mem::take(*v)), ) .map(|(name, value)| { let var_name = unsafe_cast_var_name(name.as_str(), &state); (var_name, ScopeEntryType::Normal, value) }), ); // Evaluate the function at one higher level of call depth let result = self .eval_stmt(scope, &mut state, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, pos, ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, pos, ))), }); // Remove all local variables // No need to reset `state.scope_level` because it is thrown away scope.rewind(scope_len); return result; } // No new scope - create internal scope _ => { let mut scope = Scope::new(); let mut state = State::new(state.fn_lib); state.scope_level += 1; // Put arguments into scope as variables scope.extend( fn_def .params .iter() .zip( // Actually consume the arguments instead of cloning them args.into_iter().map(|v| mem::take(*v)), ) .map(|(name, value)| (name, ScopeEntryType::Normal, value)), ); // Evaluate the function at one higher level of call depth // No need to reset `state.scope_level` because it is thrown away return self .eval_stmt(&mut scope, &mut state, &fn_def.body, level + 1) .or_else(|err| match *err { // Convert return statement to return value EvalAltResult::Return(x, _) => Ok(x), EvalAltResult::ErrorInFunctionCall(name, err, _) => { Err(Box::new(EvalAltResult::ErrorInFunctionCall( format!("{} > {}", fn_name, name), err, pos, ))) } _ => Err(Box::new(EvalAltResult::ErrorInFunctionCall( fn_name.to_string(), err, pos, ))), }); } } } // Has a system function an override? fn has_override(&self, state: &State, hashes: (u64, u64)) -> bool { // First check registered functions self.global_module.contains_fn(hashes.0) // Then check packages || self.packages.contains_fn(hashes.0) // Then check script-defined functions || state.has_function(hashes.1) } // Perform an actual function call, taking care of special functions /// /// ## WARNING /// /// Function call arguments may be _consumed_ when the function requires them to be passed by value. /// All function arguments not in the first position are always passed by value and thus consumed. /// **DO NOT** reuse the argument values unless for the first `&mut` argument - all others are silently replaced by `()`! fn exec_fn_call( &self, state: &State, fn_name: &str, hash_fn_def: u64, args: &mut FnCallArgs, is_ref: bool, def_val: Option<&Dynamic>, pos: Position, level: usize, ) -> Result<(Dynamic, bool), Box> { // Qualifiers (none) + function name + argument `TypeId`'s. let hash_fn = calc_fn_hash(empty(), fn_name, args.iter().map(|a| a.type_id())); let hashes = (hash_fn, hash_fn_def); match fn_name { // type_of KEYWORD_TYPE_OF if args.len() == 1 && !self.has_override(state, hashes) => Ok(( self.map_type_name(args[0].type_name()).to_string().into(), false, )), // eval - reaching this point it must be a method-style call KEYWORD_EVAL if args.len() == 1 && !self.has_override(state, hashes) => { Err(Box::new(EvalAltResult::ErrorRuntime( "'eval' should not be called in method style. Try eval(...);".into(), pos, ))) } // Normal function call _ => self.call_fn_raw( None, state, fn_name, hashes, args, is_ref, def_val, pos, level, ), } } /// Evaluate a text string as a script - used primarily for 'eval'. fn eval_script_expr( &self, scope: &mut Scope, state: &State, script: &Dynamic, pos: Position, ) -> Result> { let script = script .as_str() .map_err(|type_name| EvalAltResult::ErrorMismatchOutputType(type_name.into(), pos))?; // Compile the script text // No optimizations because we only run it once let mut ast = self.compile_with_scope_and_optimization_level( &Scope::new(), &[script], OptimizationLevel::None, )?; // If new functions are defined within the eval string, it is an error if ast.fn_lib().len() > 0 { return Err(Box::new(EvalAltResult::ErrorParsing( ParseErrorType::WrongFnDefinition.into_err(pos), ))); } let statements = mem::take(ast.statements_mut()); let ast = AST::new(statements, state.fn_lib.clone()); // Evaluate the AST self.eval_ast_with_scope_raw(scope, &ast) .map_err(|err| err.new_position(pos)) } /// Chain-evaluate a dot/index chain. fn eval_dot_index_chain_helper( &self, state: &State, mut target: Target, rhs: &Expr, idx_values: &mut StaticVec, is_index: bool, op_pos: Position, level: usize, mut new_val: Option, ) -> Result<(Dynamic, bool), Box> { // Get a reference to the mutation target Dynamic let (obj, is_ref) = match target { Target::Ref(r) => (r, true), Target::Value(ref mut r) => (r.as_mut(), false), Target::StringChar(ref mut x) => (&mut x.2, false), }; // Pop the last index value let mut idx_val = idx_values.pop(); if is_index { match rhs { // xxx[idx].dot_rhs... | xxx[idx][dot_rhs]... Expr::Dot(x) | Expr::Index(x) => { let is_idx = matches!(rhs, Expr::Index(_)); let pos = x.0.position(); let val = self.get_indexed_mut(state, obj, is_ref, idx_val, pos, op_pos, false)?; self.eval_dot_index_chain_helper( state, val, &x.1, idx_values, is_idx, x.2, level, new_val, ) } // xxx[rhs] = new_val _ if new_val.is_some() => { let pos = rhs.position(); let mut val = self.get_indexed_mut(state, obj, is_ref, idx_val, pos, op_pos, true)?; val.set_value(new_val.unwrap(), rhs.position())?; Ok((Default::default(), true)) } // xxx[rhs] _ => self .get_indexed_mut(state, obj, is_ref, idx_val, rhs.position(), op_pos, false) .map(|v| (v.clone_into_dynamic(), false)), } } else { match rhs { // xxx.fn_name(arg_expr_list) Expr::FnCall(x) if x.1.is_none() => { let ((name, pos), _, hash_fn_def, _, def_val) = x.as_ref(); let def_val = def_val.as_ref(); let mut arg_values: StaticVec<_> = once(obj) .chain( idx_val .downcast_mut::>() .unwrap() .iter_mut(), ) .collect(); let args = arg_values.as_mut(); self.exec_fn_call(state, name, *hash_fn_def, args, is_ref, def_val, *pos, 0) } // xxx.module::fn_name(...) - syntax error Expr::FnCall(_) => unreachable!(), // {xxx:map}.id = ??? #[cfg(not(feature = "no_object"))] Expr::Property(x) if obj.is::() && new_val.is_some() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let mut val = self.get_indexed_mut(state, obj, is_ref, index, *pos, op_pos, true)?; val.set_value(new_val.unwrap(), rhs.position())?; Ok((Default::default(), true)) } // {xxx:map}.id #[cfg(not(feature = "no_object"))] Expr::Property(x) if obj.is::() => { let ((prop, _, _), pos) = x.as_ref(); let index = prop.clone().into(); let val = self.get_indexed_mut(state, obj, is_ref, index, *pos, op_pos, false)?; Ok((val.clone_into_dynamic(), false)) } // xxx.id = ??? Expr::Property(x) if new_val.is_some() => { let ((_, _, setter), pos) = x.as_ref(); let mut args = [obj, new_val.as_mut().unwrap()]; self.exec_fn_call(state, setter, 0, &mut args, is_ref, None, *pos, 0) .map(|(v, _)| (v, true)) } // xxx.id Expr::Property(x) => { let ((_, getter, _), pos) = x.as_ref(); let mut args = [obj]; self.exec_fn_call(state, getter, 0, &mut args, is_ref, None, *pos, 0) .map(|(v, _)| (v, false)) } #[cfg(not(feature = "no_object"))] // {xxx:map}.idx_lhs[idx_expr] | {xxx:map}.dot_lhs.rhs Expr::Index(x) | Expr::Dot(x) if obj.is::() => { let is_idx = matches!(rhs, Expr::Index(_)); let val = if let Expr::Property(p) = &x.0 { let ((prop, _, _), _) = p.as_ref(); let index = prop.clone().into(); self.get_indexed_mut(state, obj, is_ref, index, x.2, op_pos, false)? } else { // Syntax error return Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))); }; self.eval_dot_index_chain_helper( state, val, &x.1, idx_values, is_idx, x.2, level, new_val, ) } // xxx.idx_lhs[idx_expr] | xxx.dot_lhs.rhs Expr::Index(x) | Expr::Dot(x) => { let is_idx = matches!(rhs, Expr::Index(_)); let args = &mut [obj, &mut Default::default()]; let (mut val, updated) = if let Expr::Property(p) = &x.0 { let ((_, getter, _), _) = p.as_ref(); self.exec_fn_call(state, getter, 0, &mut args[..1], is_ref, None, x.2, 0)? } else { // Syntax error return Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))); }; let val = &mut val; let (result, may_be_changed) = self.eval_dot_index_chain_helper( state, val.into(), &x.1, idx_values, is_idx, x.2, level, new_val, )?; // Feed the value back via a setter just in case it has been updated if updated || may_be_changed { if let Expr::Property(p) = &x.0 { let ((_, _, setter), _) = p.as_ref(); // Re-use args because the first &mut parameter will not be consumed args[1] = val; self.exec_fn_call(state, setter, 0, args, is_ref, None, x.2, 0) .or_else(|err| match *err { // If there is no setter, no need to feed it back because the property is read-only EvalAltResult::ErrorDotExpr(_, _) => Ok(Default::default()), err => Err(Box::new(err)), })?; } } Ok((result, may_be_changed)) } // Syntax error _ => Err(Box::new(EvalAltResult::ErrorDotExpr( "".into(), rhs.position(), ))), } } } /// Evaluate a dot/index chain. fn eval_dot_index_chain( &self, scope: &mut Scope, state: &mut State, dot_lhs: &Expr, dot_rhs: &Expr, is_index: bool, op_pos: Position, level: usize, new_val: Option, ) -> Result> { let idx_values = &mut StaticVec::new(); self.eval_indexed_chain(scope, state, dot_rhs, idx_values, 0, level)?; match dot_lhs { // id.??? or id[???] Expr::Variable(x) => { let ((name, pos), modules, hash_var, index) = x.as_ref(); let index = if state.always_search { None } else { *index }; let mod_and_hash = modules.as_ref().map(|m| (m, *hash_var)); let (target, typ) = search_scope(scope, &name, mod_and_hash, index, *pos)?; // Constants cannot be modified match typ { ScopeEntryType::Module => unreachable!(), ScopeEntryType::Constant if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( name.clone(), *pos, ))); } ScopeEntryType::Constant | ScopeEntryType::Normal => (), } let this_ptr = target.into(); self.eval_dot_index_chain_helper( state, this_ptr, dot_rhs, idx_values, is_index, op_pos, level, new_val, ) .map(|(v, _)| v) } // {expr}.??? = ??? or {expr}[???] = ??? expr if new_val.is_some() => { return Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))); } // {expr}.??? or {expr}[???] expr => { let val = self.eval_expr(scope, state, expr, level)?; let this_ptr = val.into(); self.eval_dot_index_chain_helper( state, this_ptr, dot_rhs, idx_values, is_index, op_pos, level, new_val, ) .map(|(v, _)| v) } } } /// Evaluate a chain of indexes and store the results in a list. /// The first few results are stored in the array `list` which is of fixed length. /// Any spill-overs are stored in `more`, which is dynamic. /// The fixed length array is used to avoid an allocation in the overwhelming cases of just a few levels of indexing. /// The total number of values is returned. fn eval_indexed_chain( &self, scope: &mut Scope, state: &mut State, expr: &Expr, idx_values: &mut StaticVec, size: usize, level: usize, ) -> Result<(), Box> { match expr { Expr::FnCall(x) if x.1.is_none() => { let mut arg_values = StaticVec::::new(); for arg_expr in x.3.iter() { arg_values.push(self.eval_expr(scope, state, arg_expr, level)?); } idx_values.push(Dynamic::from(arg_values)); } Expr::FnCall(_) => unreachable!(), Expr::Property(_) => idx_values.push(()), // Store a placeholder - no need to copy the property name Expr::Index(x) | Expr::Dot(x) => { // Evaluate in left-to-right order let lhs_val = match x.0 { Expr::Property(_) => Default::default(), // Store a placeholder in case of a property _ => self.eval_expr(scope, state, &x.0, level)?, }; // Push in reverse order self.eval_indexed_chain(scope, state, &x.1, idx_values, size, level)?; idx_values.push(lhs_val); } _ => idx_values.push(self.eval_expr(scope, state, expr, level)?), } Ok(()) } /// Get the value at the indexed position of a base type fn get_indexed_mut<'a>( &self, state: &State, val: &'a mut Dynamic, is_ref: bool, mut idx: Dynamic, idx_pos: Position, op_pos: Position, create: bool, ) -> Result, Box> { match val { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(arr)) => { // val_array[idx] let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; let arr_len = arr.len(); if index >= 0 { arr.get_mut(index as usize) .map(Target::from) .ok_or_else(|| { Box::new(EvalAltResult::ErrorArrayBounds(arr_len, index, idx_pos)) }) } else { Err(Box::new(EvalAltResult::ErrorArrayBounds( arr_len, index, idx_pos, ))) } } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(map)) => { // val_map[idx] let index = idx .take_string() .map_err(|_| EvalAltResult::ErrorStringIndexExpr(idx_pos))?; Ok(if create { map.entry(index).or_insert(Default::default()).into() } else { map.get_mut(&index) .map(Target::from) .unwrap_or_else(|| Target::from(())) }) } #[cfg(not(feature = "no_index"))] Dynamic(Union::Str(s)) => { // val_string[idx] let chars_len = s.chars().count(); let index = idx .as_int() .map_err(|_| EvalAltResult::ErrorNumericIndexExpr(idx_pos))?; if index >= 0 { let offset = index as usize; let ch = s.chars().nth(offset).ok_or_else(|| { Box::new(EvalAltResult::ErrorStringBounds(chars_len, index, idx_pos)) })?; Ok(Target::StringChar(Box::new((val, offset, ch.into())))) } else { Err(Box::new(EvalAltResult::ErrorStringBounds( chars_len, index, idx_pos, ))) } } _ => { let type_name = self.map_type_name(val.type_name()); let args = &mut [val, &mut idx]; self.exec_fn_call(state, FUNC_INDEXER, 0, args, is_ref, None, op_pos, 0) .map(|(v, _)| v.into()) .map_err(|_| { Box::new(EvalAltResult::ErrorIndexingType(type_name.into(), op_pos)) }) } } } // Evaluate an 'in' expression fn eval_in_expr( &self, scope: &mut Scope, state: &mut State, lhs: &Expr, rhs: &Expr, level: usize, ) -> Result> { let mut lhs_value = self.eval_expr(scope, state, lhs, level)?; let rhs_value = self.eval_expr(scope, state, rhs, level)?; match rhs_value { #[cfg(not(feature = "no_index"))] Dynamic(Union::Array(mut rhs_value)) => { let op = "=="; let def_value = false.into(); let hash_fn_def = calc_fn_hash(empty(), op, repeat(EMPTY_TYPE_ID()).take(2)); // Call the `==` operator to compare each value for value in rhs_value.iter_mut() { let args = &mut [&mut lhs_value, value]; let def_value = Some(&def_value); let pos = rhs.position(); // Qualifiers (none) + function name + argument `TypeId`'s. let hash_fn = calc_fn_hash(empty(), op, args.iter().map(|a| a.type_id())); let hashes = (hash_fn, hash_fn_def); let (r, _) = self .call_fn_raw(None, state, op, hashes, args, true, def_value, pos, level)?; if r.as_bool().unwrap_or(false) { return Ok(true.into()); } } Ok(false.into()) } #[cfg(not(feature = "no_object"))] Dynamic(Union::Map(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains_key(s.as_ref()).into()), Dynamic(Union::Char(c)) => Ok(rhs_value.contains_key(&c.to_string()).into()), _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, Dynamic(Union::Str(rhs_value)) => match lhs_value { // Only allows String or char Dynamic(Union::Str(s)) => Ok(rhs_value.contains(s.as_ref()).into()), Dynamic(Union::Char(c)) => Ok(rhs_value.contains(c).into()), _ => Err(Box::new(EvalAltResult::ErrorInExpr(lhs.position()))), }, _ => Err(Box::new(EvalAltResult::ErrorInExpr(rhs.position()))), } } /// Evaluate an expression fn eval_expr( &self, scope: &mut Scope, state: &mut State, expr: &Expr, level: usize, ) -> Result> { match expr { Expr::IntegerConstant(x) => Ok(x.0.into()), #[cfg(not(feature = "no_float"))] Expr::FloatConstant(x) => Ok(x.0.into()), Expr::StringConstant(x) => Ok(x.0.to_string().into()), Expr::CharConstant(x) => Ok(x.0.into()), Expr::Variable(x) => { let ((name, pos), modules, hash_var, index) = x.as_ref(); let index = if state.always_search { None } else { *index }; let mod_and_hash = modules.as_ref().map(|m| (m, *hash_var)); let (val, _) = search_scope(scope, name, mod_and_hash, index, *pos)?; Ok(val.clone()) } Expr::Property(_) => unreachable!(), // Statement block Expr::Stmt(stmt) => self.eval_stmt(scope, state, &stmt.0, level), // lhs = rhs Expr::Assignment(x) => { let op_pos = x.2; let rhs_val = self.eval_expr(scope, state, &x.1, level)?; match &x.0 { // name = rhs Expr::Variable(x) => { let ((name, pos), modules, hash_var, index) = x.as_ref(); let index = if state.always_search { None } else { *index }; let mod_and_hash = modules.as_ref().map(|m| (m, *hash_var)); let (lhs_ptr, typ) = search_scope(scope, name, mod_and_hash, index, *pos)?; match typ { ScopeEntryType::Constant => Err(Box::new( EvalAltResult::ErrorAssignmentToConstant(name.clone(), *pos), )), ScopeEntryType::Normal => { *lhs_ptr = rhs_val; Ok(Default::default()) } // End variable cannot be a module ScopeEntryType::Module => unreachable!(), } } // idx_lhs[idx_expr] = rhs #[cfg(not(feature = "no_index"))] Expr::Index(x) => { let new_val = Some(rhs_val); self.eval_dot_index_chain( scope, state, &x.0, &x.1, true, x.2, level, new_val, ) } // dot_lhs.dot_rhs = rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x) => { let new_val = Some(rhs_val); self.eval_dot_index_chain( scope, state, &x.0, &x.1, false, op_pos, level, new_val, ) } // Error assignment to constant expr if expr.is_constant() => { Err(Box::new(EvalAltResult::ErrorAssignmentToConstant( expr.get_constant_str(), expr.position(), ))) } // Syntax error expr => Err(Box::new(EvalAltResult::ErrorAssignmentToUnknownLHS( expr.position(), ))), } } // lhs[idx_expr] #[cfg(not(feature = "no_index"))] Expr::Index(x) => { self.eval_dot_index_chain(scope, state, &x.0, &x.1, true, x.2, level, None) } // lhs.dot_rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x) => { self.eval_dot_index_chain(scope, state, &x.0, &x.1, false, x.2, level, None) } #[cfg(not(feature = "no_index"))] Expr::Array(x) => Ok(Dynamic(Union::Array(Box::new( x.0.iter() .map(|item| self.eval_expr(scope, state, item, level)) .collect::, _>>()?, )))), #[cfg(not(feature = "no_object"))] Expr::Map(x) => Ok(Dynamic(Union::Map(Box::new( x.0.iter() .map(|((key, _), expr)| { self.eval_expr(scope, state, expr, level) .map(|val| (key.clone(), val)) }) .collect::, _>>()?, )))), // Normal function call Expr::FnCall(x) if x.1.is_none() => { let ((name, pos), _, hash_fn_def, args_expr, def_val) = x.as_ref(); let def_val = def_val.as_ref(); let mut arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, state, expr, level)) .collect::, _>>()?; let mut args: StaticVec<_> = arg_values.iter_mut().collect(); if name == KEYWORD_EVAL && args.len() == 1 && args.get_ref(0).is::() { let hash_fn = calc_fn_hash(empty(), name, once(TypeId::of::())); if !self.has_override(state, (hash_fn, *hash_fn_def)) { // eval - only in function call style let prev_len = scope.len(); // Evaluate the text string as a script let result = self.eval_script_expr( scope, state, args.pop(), args_expr[0].position(), ); if scope.len() != prev_len { // IMPORTANT! If the eval defines new variables in the current scope, // all variable offsets from this point on will be mis-aligned. state.always_search = true; } return result; } } // Normal function call - except for eval (handled above) let args = args.as_mut(); self.exec_fn_call(state, name, *hash_fn_def, args, false, def_val, *pos, level) .map(|(v, _)| v) } // Module-qualified function call #[cfg(not(feature = "no_module"))] Expr::FnCall(x) if x.1.is_some() => { let ((name, pos), modules, hash_fn_def, args_expr, def_val) = x.as_ref(); let modules = modules.as_ref().unwrap(); let mut arg_values = args_expr .iter() .map(|expr| self.eval_expr(scope, state, expr, level)) .collect::, _>>()?; let mut args: StaticVec<_> = arg_values.iter_mut().collect(); let (id, root_pos) = modules.get_ref(0); // First module let module = if let Some(index) = modules.index() { scope .get_mut(scope.len() - index.get()) .0 .downcast_mut::() .unwrap() } else { scope.find_module(id).ok_or_else(|| { Box::new(EvalAltResult::ErrorModuleNotFound(id.into(), *root_pos)) })? }; // First search in script-defined functions (can override built-in) if let Some(fn_def) = module.get_qualified_scripted_fn(*hash_fn_def) { self.call_script_fn(None, state, name, fn_def, args.as_mut(), *pos, level) } else { // Then search in Rust functions // Rust functions are indexed in two steps: // 1) Calculate a hash in a similar manner to script-defined functions, // i.e. qualifiers + function name + dummy parameter types (one for each parameter). // 2) Calculate a second hash with no qualifiers, empty function name, and // the actual list of parameter `TypeId`'.s let hash_fn_args = calc_fn_hash(empty(), "", args.iter().map(|a| a.type_id())); // 3) The final hash is the XOR of the two hashes. let hash_fn_native = *hash_fn_def ^ hash_fn_args; match module.get_qualified_fn(name, hash_fn_native) { Ok(func) => func .call(args.as_mut()) .map_err(|err| err.new_position(*pos)), Err(_) if def_val.is_some() => Ok(def_val.clone().unwrap()), Err(err) => Err(err), } } } Expr::In(x) => self.eval_in_expr(scope, state, &x.0, &x.1, level), Expr::And(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, state, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), lhs.position()) })? && // Short-circuit using && self .eval_expr(scope, state, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("AND".into(), rhs.position()) })?) .into()) } Expr::Or(x) => { let (lhs, rhs, _) = x.as_ref(); Ok((self .eval_expr(scope, state, lhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), lhs.position()) })? || // Short-circuit using || self .eval_expr(scope, state, rhs, level)? .as_bool() .map_err(|_| { EvalAltResult::ErrorBooleanArgMismatch("OR".into(), rhs.position()) })?) .into()) } Expr::True(_) => Ok(true.into()), Expr::False(_) => Ok(false.into()), Expr::Unit(_) => Ok(().into()), _ => unreachable!(), } } /// Evaluate a statement pub(crate) fn eval_stmt<'s>( &self, scope: &mut Scope<'s>, state: &mut State, stmt: &Stmt, level: usize, ) -> Result> { match stmt { // No-op Stmt::Noop(_) => Ok(Default::default()), // Expression as statement Stmt::Expr(expr) => { let result = self.eval_expr(scope, state, expr, level)?; Ok(if let Expr::Assignment(_) = *expr.as_ref() { // If it is an assignment, erase the result at the root Default::default() } else { result }) } // Block scope Stmt::Block(x) => { let prev_len = scope.len(); state.scope_level += 1; let result = x.0.iter().try_fold(Default::default(), |_, stmt| { self.eval_stmt(scope, state, stmt, level) }); scope.rewind(prev_len); state.scope_level -= 1; // The impact of an eval statement goes away at the end of a block // because any new variables introduced will go out of scope state.always_search = false; result } // If-else statement Stmt::IfThenElse(x) => self .eval_expr(scope, state, &x.0, level)? .as_bool() .map_err(|_| Box::new(EvalAltResult::ErrorLogicGuard(x.0.position()))) .and_then(|guard_val| { if guard_val { self.eval_stmt(scope, state, &x.1, level) } else if let Some(stmt) = &x.2 { self.eval_stmt(scope, state, stmt, level) } else { Ok(Default::default()) } }), // While loop Stmt::While(x) => loop { match self.eval_expr(scope, state, &x.0, level)?.as_bool() { Ok(true) => match self.eval_stmt(scope, state, &x.1, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()), _ => return Err(err), }, }, Ok(false) => return Ok(Default::default()), Err(_) => return Err(Box::new(EvalAltResult::ErrorLogicGuard(x.0.position()))), } }, // Loop statement Stmt::Loop(body) => loop { match self.eval_stmt(scope, state, body, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => return Ok(Default::default()), _ => return Err(err), }, } }, // For loop Stmt::For(x) => { let iter_type = self.eval_expr(scope, state, &x.1, level)?; let tid = iter_type.type_id(); if let Some(iter_fn) = self .global_module .get_iter(tid) .or_else(|| self.packages.get_iter(tid)) { // Add the loop variable let var_name = unsafe_cast_var_name(&x.0, &state); scope.push(var_name, ()); let index = scope.len() - 1; state.scope_level += 1; for loop_var in iter_fn(iter_type) { *scope.get_mut(index).0 = loop_var; match self.eval_stmt(scope, state, &x.2, level) { Ok(_) => (), Err(err) => match *err { EvalAltResult::ErrorLoopBreak(false, _) => (), EvalAltResult::ErrorLoopBreak(true, _) => break, _ => return Err(err), }, } } scope.rewind(scope.len() - 1); state.scope_level -= 1; Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorFor(x.1.position()))) } } // Continue statement Stmt::Continue(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(false, *pos))), // Break statement Stmt::Break(pos) => Err(Box::new(EvalAltResult::ErrorLoopBreak(true, *pos))), // Return value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return( self.eval_expr(scope, state, x.1.as_ref().unwrap(), level)?, (x.0).1, ))) } // Empty return Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Return => { Err(Box::new(EvalAltResult::Return(Default::default(), (x.0).1))) } // Throw value Stmt::ReturnWithVal(x) if x.1.is_some() && (x.0).0 == ReturnType::Exception => { let val = self.eval_expr(scope, state, x.1.as_ref().unwrap(), level)?; Err(Box::new(EvalAltResult::ErrorRuntime( val.take_string().unwrap_or_else(|_| "".into()), (x.0).1, ))) } // Empty throw Stmt::ReturnWithVal(x) if (x.0).0 == ReturnType::Exception => { Err(Box::new(EvalAltResult::ErrorRuntime("".into(), (x.0).1))) } Stmt::ReturnWithVal(_) => unreachable!(), // Let statement Stmt::Let(x) if x.1.is_some() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr(scope, state, expr.as_ref().unwrap(), level)?; let var_name = unsafe_cast_var_name(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Normal, val, false); Ok(Default::default()) } Stmt::Let(x) => { let ((var_name, _), _) = x.as_ref(); let var_name = unsafe_cast_var_name(var_name, &state); scope.push(var_name, ()); Ok(Default::default()) } // Const statement Stmt::Const(x) if x.1.is_constant() => { let ((var_name, _), expr) = x.as_ref(); let val = self.eval_expr(scope, state, &expr, level)?; let var_name = unsafe_cast_var_name(var_name, &state); scope.push_dynamic_value(var_name, ScopeEntryType::Constant, val, true); Ok(Default::default()) } // Const expression not constant Stmt::Const(_) => unreachable!(), // Import statement Stmt::Import(x) => { let (expr, (name, _)) = x.as_ref(); #[cfg(feature = "no_module")] unreachable!(); #[cfg(not(feature = "no_module"))] { if let Some(path) = self .eval_expr(scope, state, &expr, level)? .try_cast::() { if let Some(resolver) = self.module_resolver.as_ref() { // Use an empty scope to create a module let module = resolver.resolve(self, Scope::new(), &path, expr.position())?; let mod_name = unsafe_cast_var_name(name, &state); scope.push_module(mod_name, module); Ok(Default::default()) } else { Err(Box::new(EvalAltResult::ErrorModuleNotFound( path, expr.position(), ))) } } else { Err(Box::new(EvalAltResult::ErrorImportExpr(expr.position()))) } } } // Export statement Stmt::Export(list) => { for ((id, id_pos), rename) in list.as_ref() { // Mark scope variables as public if let Some(index) = scope .get_index(id) .map(|(i, _)| i) .or_else(|| scope.get_module_index(id)) { let alias = rename .as_ref() .map(|(n, _)| n.clone()) .unwrap_or_else(|| id.clone()); scope.set_entry_alias(index, alias); } else { return Err(Box::new(EvalAltResult::ErrorVariableNotFound( id.into(), *id_pos, ))); } } Ok(Default::default()) } } } /// Map a type_name into a pretty-print name pub(crate) fn map_type_name<'a>(&'a self, name: &'a str) -> &'a str { self.type_names .get(name) .map(String::as_str) .unwrap_or(name) } }