//! Main module defining the lexer and parser. use crate::any::{Dynamic, Union}; use crate::engine::{calc_fn_def, Engine, FunctionsLib}; use crate::error::{LexError, ParseError, ParseErrorType}; use crate::optimize::{optimize_into_ast, OptimizationLevel}; use crate::scope::{EntryType as ScopeEntryType, Scope}; use crate::token::{Position, Token, TokenIterator}; use crate::stdlib::{ borrow::Cow, boxed::Box, char, collections::HashMap, format, iter::Peekable, num::NonZeroUsize, ops::{Add, Deref, DerefMut}, rc::Rc, string::{String, ToString}, sync::Arc, vec, vec::Vec, }; /// The system integer type. /// /// If the `only_i32` feature is enabled, this will be `i32` instead. #[cfg(not(feature = "only_i32"))] pub type INT = i64; /// The system integer type. /// /// If the `only_i32` feature is not enabled, this will be `i64` instead. #[cfg(feature = "only_i32")] pub type INT = i32; /// The system floating-point type. /// /// Not available under the `no_float` feature. pub type FLOAT = f64; type PERR = ParseErrorType; /// Compiled AST (abstract syntax tree) of a Rhai script. /// /// Currently, `AST` is neither `Send` nor `Sync`. Turn on the `sync` feature to make it `Send + Sync`. #[derive(Debug, Clone)] pub struct AST( pub(crate) Vec, #[cfg(feature = "sync")] pub(crate) Arc, #[cfg(not(feature = "sync"))] pub(crate) Rc, ); impl AST { /// Create a new `AST`. pub fn new() -> Self { Default::default() } /// Merge two `AST` into one. Both `AST`'s are untouched and a new, merged, version /// is returned. /// /// The second `AST` is simply appended to the end of the first _without any processing_. /// Thus, the return value of the first `AST` (if using expression-statement syntax) is buried. /// Of course, if the first `AST` uses a `return` statement at the end, then /// the second `AST` will essentially be dead code. /// /// All script-defined functions in the second `AST` overwrite similarly-named functions /// in the first `AST` with the same number of parameters. /// /// # Example /// /// ``` /// # fn main() -> Result<(), Box> { /// # #[cfg(not(feature = "no_function"))] /// # { /// use rhai::Engine; /// /// let engine = Engine::new(); /// /// let ast1 = engine.compile(r#"fn foo(x) { 42 + x } foo(1)"#)?; /// let ast2 = engine.compile(r#"fn foo(n) { "hello" + n } foo("!")"#)?; /// /// let ast = ast1.merge(&ast2); // Merge 'ast2' into 'ast1' /// /// // Notice that using the '+' operator also works: /// // let ast = &ast1 + &ast2; /// /// // 'ast' is essentially: /// // /// // fn foo(n) { "hello" + n } // <- definition of first 'foo' is overwritten /// // foo(1) // <- notice this will be "hello1" instead of 43, /// // // but it is no longer the return value /// // foo("!") // returns "hello!" /// /// // Evaluate it /// assert_eq!(engine.eval_ast::(&ast)?, "hello!"); /// # } /// # Ok(()) /// # } /// ``` pub fn merge(&self, other: &Self) -> Self { let Self(statements, functions) = self; let ast = match (statements.is_empty(), other.0.is_empty()) { (false, false) => { let mut statements = statements.clone(); statements.extend(other.0.iter().cloned()); statements } (false, true) => statements.clone(), (true, false) => other.0.clone(), (true, true) => vec![], }; #[cfg(feature = "sync")] { Self(ast, Arc::new(functions.merge(other.1.as_ref()))) } #[cfg(not(feature = "sync"))] { Self(ast, Rc::new(functions.merge(other.1.as_ref()))) } } /// Clear all function definitions in the `AST`. pub fn clear_functions(&mut self) { #[cfg(feature = "sync")] { self.1 = Arc::new(FunctionsLib::new()); } #[cfg(not(feature = "sync"))] { self.1 = Rc::new(FunctionsLib::new()); } } /// Clear all statements in the `AST`, leaving only function definitions. pub fn retain_functions(&mut self) { self.0 = vec![]; } } impl Default for AST { fn default() -> Self { #[cfg(feature = "sync")] { Self(vec![], Arc::new(FunctionsLib::new())) } #[cfg(not(feature = "sync"))] { Self(vec![], Rc::new(FunctionsLib::new())) } } } impl Add for &AST { type Output = AST; fn add(self, rhs: Self) -> Self::Output { self.merge(rhs) } } /// A script-function definition. #[derive(Debug, Clone)] pub struct FnDef { /// Function name. pub name: String, /// Names of function parameters. pub params: Vec, /// Function body. pub body: Box, /// Position of the function definition. pub pos: Position, } /// `return`/`throw` statement. #[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)] pub enum ReturnType { /// `return` statement. Return, /// `throw` statement. Exception, } /// A type that encapsulates a local stack with variable names to simulate an actual runtime scope. #[derive(Debug, Clone)] struct Stack(Vec); impl Stack { /// Create a new `Stack`. pub fn new() -> Self { Self(Vec::new()) } /// Find a variable by name in the `Stack`, searching in reverse. /// The return value is the offset to be deducted from `Stack::len`, /// i.e. the top element of the `Stack` is offset 1. /// Return zero when the variable name is not found in the `Stack`. pub fn find(&self, name: &str) -> Option { self.0 .iter() .rev() .enumerate() .find(|(_, n)| *n == name) .and_then(|(i, _)| NonZeroUsize::new(i + 1)) } } impl Deref for Stack { type Target = Vec; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Stack { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } /// A statement. #[derive(Debug, Clone)] pub enum Stmt { /// No-op. Noop(Position), /// if expr { stmt } else { stmt } IfThenElse(Box, Box, Option>), /// while expr { stmt } While(Box, Box), /// loop { stmt } Loop(Box), /// for id in expr { stmt } For(Box, Box, Box), /// let id = expr Let(Box, Option>, Position), /// const id = expr Const(Box, Box, Position), /// { stmt; ... } Block(Vec, Position), /// { stmt } Expr(Box), /// continue Continue(Position), /// break Break(Position), /// `return`/`throw` ReturnWithVal(Option>, ReturnType, Position), /// import expr Import(Box, Option) } impl Stmt { /// Get the `Position` of this statement. pub fn position(&self) -> Position { match self { Stmt::Noop(pos) | Stmt::Let(_, _, pos) | Stmt::Const(_, _, pos) | Stmt::Block(_, pos) | Stmt::Continue(pos) | Stmt::Break(pos) | Stmt::ReturnWithVal(_, _, pos) => *pos, Stmt::IfThenElse(expr, _, _) | Stmt::Expr(expr) | Stmt::Import(expr, _) => expr.position(), Stmt::While(_, stmt) | Stmt::Loop(stmt) | Stmt::For(_, _, stmt) => stmt.position(), } } /// Is this statement self-terminated (i.e. no need for a semicolon terminator)? pub fn is_self_terminated(&self) -> bool { match self { Stmt::IfThenElse(_, _, _) | Stmt::While(_, _) | Stmt::Loop(_) | Stmt::For(_, _, _) | Stmt::Block(_, _) | Stmt::Import(_, _) => true, // A No-op requires a semicolon in order to know it is an empty statement! Stmt::Noop(_) => false, Stmt::Let(_, _, _) | Stmt::Const(_, _, _) | Stmt::Expr(_) | Stmt::Continue(_) | Stmt::Break(_) | Stmt::ReturnWithVal(_, _, _) => false, } } /// Is this statement _pure_? pub fn is_pure(&self) -> bool { match self { Stmt::Noop(_) => true, Stmt::Expr(expr) => expr.is_pure(), Stmt::IfThenElse(guard, if_block, Some(else_block)) => { guard.is_pure() && if_block.is_pure() && else_block.is_pure() } Stmt::IfThenElse(guard, block, None) | Stmt::While(guard, block) => { guard.is_pure() && block.is_pure() } Stmt::Loop(block) => block.is_pure(), Stmt::For(_, range, block) => range.is_pure() && block.is_pure(), Stmt::Let(_, _, _) | Stmt::Const(_, _, _) => false, Stmt::Block(statements, _) => statements.iter().all(Stmt::is_pure), Stmt::Continue(_) | Stmt::Break(_) | Stmt::ReturnWithVal(_, _, _) => false, Stmt::Import(_, _) => false, } } } /// An expression. #[derive(Debug, Clone)] pub enum Expr { /// Integer constant. IntegerConstant(INT, Position), /// Floating-point constant. FloatConstant(FLOAT, Position), /// Character constant. CharConstant(char, Position), /// String constant. StringConstant(String, Position), /// Variable access. Variable(Box, Option, Position), /// Property access. Property(String, Position), /// { stmt } Stmt(Box, Position), /// func(expr, ... ) /// Use `Cow<'static, str>` because a lot of operators (e.g. `==`, `>=`) are implemented as function calls /// and the function names are predictable, so no need to allocate a new `String`. FnCall( Box>, Box>, Option>, Position, ), /// subscope::func(expr, ... ) /// Use `Cow<'static, str>` because a lot of operators (e.g. `==`, `>=`) are implemented as function calls /// and the function names are predictable, so no need to allocate a new `String`. SubscopeFnCall( String, Box>, Box>, Option>, Position, ), /// expr = expr Assignment(Box, Box, Position), /// lhs.rhs Dot(Box, Box, Position), /// expr[expr] Index(Box, Box, Position), /// [ expr, ... ] Array(Vec, Position), /// #{ name:expr, ... } Map(Vec<(String, Expr, Position)>, Position), /// lhs in rhs In(Box, Box, Position), /// lhs && rhs And(Box, Box, Position), /// lhs || rhs Or(Box, Box, Position), /// true True(Position), /// false False(Position), /// () Unit(Position), } impl Expr { /// Get the `Dynamic` value of a constant expression. /// /// # Panics /// /// Panics when the expression is not constant. pub fn get_constant_value(&self) -> Dynamic { match self { Self::IntegerConstant(i, _) => (*i).into(), #[cfg(not(feature = "no_float"))] Self::FloatConstant(f, _) => (*f).into(), Self::CharConstant(c, _) => (*c).into(), Self::StringConstant(s, _) => s.clone().into(), Self::True(_) => true.into(), Self::False(_) => false.into(), Self::Unit(_) => ().into(), Self::Array(items, _) if items.iter().all(Self::is_constant) => { Dynamic(Union::Array(Box::new( items .iter() .map(Self::get_constant_value) .collect::>(), ))) } Self::Map(items, _) if items.iter().all(|(_, v, _)| v.is_constant()) => { Dynamic(Union::Map(Box::new( items .iter() .map(|(k, v, _)| (k.clone(), v.get_constant_value())) .collect::>(), ))) } _ => panic!("cannot get value of non-constant expression"), } } /// Get the display value of a constant expression. /// /// # Panics /// /// Panics when the expression is not constant. pub fn get_constant_str(&self) -> String { match self { Self::IntegerConstant(i, _) => i.to_string(), Self::FloatConstant(f, _) => f.to_string(), Self::CharConstant(c, _) => c.to_string(), Self::StringConstant(_, _) => "string".to_string(), Self::True(_) => "true".to_string(), Self::False(_) => "false".to_string(), Self::Unit(_) => "()".to_string(), Self::Array(items, _) if items.iter().all(Self::is_constant) => "array".to_string(), _ => panic!("cannot get value of non-constant expression"), } } /// Get the `Position` of the expression. pub fn position(&self) -> Position { match self { Self::IntegerConstant(_, pos) | Self::FloatConstant(_, pos) | Self::CharConstant(_, pos) | Self::StringConstant(_, pos) | Self::Array(_, pos) | Self::Map(_, pos) | Self::Variable(_, _, pos) | Self::Property(_, pos) | Self::Stmt(_, pos) | Self::FnCall(_, _, _, pos) | Self::SubscopeFnCall(_, _, _, _, pos) | Self::And(_, _, pos) | Self::Or(_, _, pos) | Self::In(_, _, pos) | Self::True(pos) | Self::False(pos) | Self::Unit(pos) => *pos, Self::Assignment(expr, _, _) | Self::Dot(expr, _, _) | Self::Index(expr, _, _) => { expr.position() } } } /// Get the `Position` of the expression. pub(crate) fn set_position(mut self, new_pos: Position) -> Self { match &mut self { Self::IntegerConstant(_, pos) | Self::FloatConstant(_, pos) | Self::CharConstant(_, pos) | Self::StringConstant(_, pos) | Self::Array(_, pos) | Self::Map(_, pos) | Self::Variable(_, _, pos) | Self::Property(_, pos) | Self::Stmt(_, pos) | Self::FnCall(_, _, _, pos) | Self::SubscopeFnCall(_, _, _, _, pos) | Self::And(_, _, pos) | Self::Or(_, _, pos) | Self::In(_, _, pos) | Self::True(pos) | Self::False(pos) | Self::Unit(pos) | Self::Assignment(_, _, pos) | Self::Dot(_, _, pos) | Self::Index(_, _, pos) => *pos = new_pos, } self } /// Is the expression pure? /// /// A pure expression has no side effects. pub fn is_pure(&self) -> bool { match self { Self::Array(expressions, _) => expressions.iter().all(Self::is_pure), Self::Index(x, y, _) | Self::And(x, y, _) | Self::Or(x, y, _) | Self::In(x, y, _) => { x.is_pure() && y.is_pure() } Self::Stmt(stmt, _) => stmt.is_pure(), Self::Variable(_, _, _) => true, expr => expr.is_constant(), } } /// Is the expression a constant? pub fn is_constant(&self) -> bool { match self { Self::IntegerConstant(_, _) | Self::FloatConstant(_, _) | Self::CharConstant(_, _) | Self::StringConstant(_, _) | Self::True(_) | Self::False(_) | Self::Unit(_) => true, // An array literal is constant if all items are constant Self::Array(expressions, _) => expressions.iter().all(Self::is_constant), // An map literal is constant if all items are constant Self::Map(items, _) => items.iter().map(|(_, expr, _)| expr).all(Self::is_constant), // Check in expression Self::In(lhs, rhs, _) => match (lhs.as_ref(), rhs.as_ref()) { (Self::StringConstant(_, _), Self::StringConstant(_, _)) | (Self::CharConstant(_, _), Self::StringConstant(_, _)) => true, _ => false, }, _ => false, } } /// Is a particular token allowed as a postfix operator to this expression? pub fn is_valid_postfix(&self, token: &Token) -> bool { match self { Self::IntegerConstant(_, _) | Self::FloatConstant(_, _) | Self::CharConstant(_, _) | Self::In(_, _, _) | Self::And(_, _, _) | Self::Or(_, _, _) | Self::True(_) | Self::False(_) | Self::Unit(_) => false, Self::StringConstant(_, _) | Self::Stmt(_, _) | Self::FnCall(_, _, _, _) | Self::SubscopeFnCall(_, _, _, _, _) | Self::Assignment(_, _, _) | Self::Dot(_, _, _) | Self::Index(_, _, _) | Self::Array(_, _) | Self::Map(_, _) => match token { Token::LeftBracket => true, _ => false, }, Self::Variable(_, _, _) | Self::Property(_, _) => match token { Token::LeftBracket | Token::LeftParen => true, _ => false, }, } } /// Convert a `Variable` into a `Property`. All other variants are untouched. pub(crate) fn into_property(self) -> Self { match self { Self::Variable(id, _, pos) => Self::Property(*id, pos), _ => self, } } } /// Consume a particular token, checking that it is the expected one. fn eat_token(input: &mut Peekable, token: Token) -> Position { let (t, pos) = input.next().unwrap(); if t != token { panic!( "expecting {} (found {}) at {}", token.syntax(), t.syntax(), pos ); } pos } /// Match a particular token, consuming it if matched. fn match_token(input: &mut Peekable, token: Token) -> Result> { let (t, _) = input.peek().unwrap(); if *t == token { eat_token(input, token); Ok(true) } else { Ok(false) } } /// Parse ( expr ) fn parse_paren_expr<'a>( input: &mut Peekable>, stack: &mut Stack, begin: Position, allow_stmt_expr: bool, ) -> Result> { if match_token(input, Token::RightParen)? { return Ok(Expr::Unit(begin)); } let expr = parse_expr(input, stack, allow_stmt_expr)?; match input.next().unwrap() { // ( xxx ) (Token::RightParen, _) => Ok(expr), // ( (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), // ( xxx ??? (_, pos) => Err(PERR::MissingToken( ")".into(), "for a matching ( in this expression".into(), ) .into_err(pos)), } } /// Parse a function call. fn parse_call_expr<'a>( input: &mut Peekable>, stack: &mut Stack, id: String, begin: Position, allow_stmt_expr: bool, ) -> Result> { let mut args = Vec::new(); match input.peek().unwrap() { // id (Token::EOF, pos) => { return Err(PERR::MissingToken( ")".into(), format!("to close the arguments list of this function call '{}'", id), ) .into_err(*pos)) } // id (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(*pos)), // id() (Token::RightParen, _) => { eat_token(input, Token::RightParen); return Ok(Expr::FnCall( Box::new(id.into()), Box::new(args), None, begin, )); } // id... _ => (), } loop { args.push(parse_expr(input, stack, allow_stmt_expr)?); match input.peek().unwrap() { (Token::RightParen, _) => { eat_token(input, Token::RightParen); return Ok(Expr::FnCall( Box::new(id.into()), Box::new(args), None, begin, )); } (Token::Comma, _) => { eat_token(input, Token::Comma); } (Token::EOF, pos) => { return Err(PERR::MissingToken( ")".into(), format!("to close the arguments list of this function call '{}'", id), ) .into_err(*pos)) } (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(*pos)) } (_, pos) => { return Err(PERR::MissingToken( ",".into(), format!("to separate the arguments to function call '{}'", id), ) .into_err(*pos)) } } } } /// Parse an indexing chain. /// Indexing binds to the right, so this call parses all possible levels of indexing following in the input. fn parse_index_chain<'a>( input: &mut Peekable>, stack: &mut Stack, lhs: Expr, pos: Position, allow_stmt_expr: bool, ) -> Result> { let idx_expr = parse_expr(input, stack, allow_stmt_expr)?; // Check type of indexing - must be integer or string match &idx_expr { // lhs[int] Expr::IntegerConstant(i, pos) if *i < 0 => { return Err(PERR::MalformedIndexExpr(format!( "Array access expects non-negative index: {} < 0", i )) .into_err(*pos)) } Expr::IntegerConstant(_, pos) => match lhs { Expr::Array(_, _) | Expr::StringConstant(_, _) => (), Expr::Map(_, _) => { return Err(PERR::MalformedIndexExpr( "Object map access expects string index, not a number".into(), ) .into_err(*pos)) } Expr::FloatConstant(_, pos) | Expr::CharConstant(_, pos) | Expr::Assignment(_, _, pos) | Expr::And(_, _, pos) | Expr::Or(_, _, pos) | Expr::In(_, _, pos) | Expr::True(pos) | Expr::False(pos) | Expr::Unit(pos) => { return Err(PERR::MalformedIndexExpr( "Only arrays, object maps and strings can be indexed".into(), ) .into_err(pos)) } _ => (), }, // lhs[string] Expr::StringConstant(_, pos) => match lhs { Expr::Map(_, _) => (), Expr::Array(_, _) | Expr::StringConstant(_, _) => { return Err(PERR::MalformedIndexExpr( "Array or string expects numeric index, not a string".into(), ) .into_err(*pos)) } Expr::FloatConstant(_, pos) | Expr::CharConstant(_, pos) | Expr::Assignment(_, _, pos) | Expr::And(_, _, pos) | Expr::Or(_, _, pos) | Expr::In(_, _, pos) | Expr::True(pos) | Expr::False(pos) | Expr::Unit(pos) => { return Err(PERR::MalformedIndexExpr( "Only arrays, object maps and strings can be indexed".into(), ) .into_err(pos)) } _ => (), }, // lhs[float] Expr::FloatConstant(_, pos) => { return Err(PERR::MalformedIndexExpr( "Array access expects integer index, not a float".into(), ) .into_err(*pos)) } // lhs[char] Expr::CharConstant(_, pos) => { return Err(PERR::MalformedIndexExpr( "Array access expects integer index, not a character".into(), ) .into_err(*pos)) } // lhs[??? = ??? ], lhs[()] Expr::Assignment(_, _, pos) | Expr::Unit(pos) => { return Err(PERR::MalformedIndexExpr( "Array access expects integer index, not ()".into(), ) .into_err(*pos)) } // lhs[??? && ???], lhs[??? || ???], lhs[??? in ???], lhs[true], lhs[false] Expr::And(_, _, pos) | Expr::Or(_, _, pos) | Expr::In(_, _, pos) | Expr::True(pos) | Expr::False(pos) => { return Err(PERR::MalformedIndexExpr( "Array access expects integer index, not a boolean".into(), ) .into_err(*pos)) } // All other expressions _ => (), } // Check if there is a closing bracket match input.peek().unwrap() { (Token::RightBracket, _) => { eat_token(input, Token::RightBracket); // Any more indexing following? match input.peek().unwrap() { // If another indexing level, right-bind it (Token::LeftBracket, _) => { let follow_pos = eat_token(input, Token::LeftBracket); // Recursively parse the indexing chain, right-binding each let follow = parse_index_chain(input, stack, idx_expr, follow_pos, allow_stmt_expr)?; // Indexing binds to right Ok(Expr::Index(Box::new(lhs), Box::new(follow), pos)) } // Otherwise terminate the indexing chain _ => Ok(Expr::Index(Box::new(lhs), Box::new(idx_expr), pos)), } } (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(*pos)), (_, pos) => Err(PERR::MissingToken( "]".into(), "for a matching [ in this index expression".into(), ) .into_err(*pos)), } } /// Parse an array literal. fn parse_array_literal<'a>( input: &mut Peekable>, stack: &mut Stack, begin: Position, allow_stmt_expr: bool, ) -> Result> { let mut arr = Vec::new(); if !match_token(input, Token::RightBracket)? { while !input.peek().unwrap().0.is_eof() { arr.push(parse_expr(input, stack, allow_stmt_expr)?); match input.peek().unwrap() { (Token::Comma, _) => eat_token(input, Token::Comma), (Token::RightBracket, _) => { eat_token(input, Token::RightBracket); break; } (Token::EOF, pos) => { return Err( PERR::MissingToken("]".into(), "to end this array literal".into()) .into_err(*pos), ) } (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(*pos)) } (_, pos) => { return Err(PERR::MissingToken( ",".into(), "to separate the items of this array literal".into(), ) .into_err(*pos)) } }; } } Ok(Expr::Array(arr, begin)) } /// Parse a map literal. fn parse_map_literal<'a>( input: &mut Peekable>, stack: &mut Stack, begin: Position, allow_stmt_expr: bool, ) -> Result> { let mut map = Vec::new(); if !match_token(input, Token::RightBrace)? { while !input.peek().unwrap().0.is_eof() { const MISSING_RBRACE: &str = "to end this object map literal"; let (name, pos) = match input.next().unwrap() { (Token::Identifier(s), pos) => (s, pos), (Token::StringConst(s), pos) => (s, pos), (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(pos)) } (_, pos) if map.is_empty() => { return Err(PERR::MissingToken("}".into(), MISSING_RBRACE.into()).into_err(pos)) } (Token::EOF, pos) => { return Err(PERR::MissingToken("}".into(), MISSING_RBRACE.into()).into_err(pos)) } (_, pos) => return Err(PERR::PropertyExpected.into_err(pos)), }; match input.next().unwrap() { (Token::Colon, _) => (), (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(pos)) } (_, pos) => { return Err(PERR::MissingToken( ":".into(), format!( "to follow the property '{}' in this object map literal", name ), ) .into_err(pos)) } }; let expr = parse_expr(input, stack, allow_stmt_expr)?; map.push((name, expr, pos)); match input.peek().unwrap() { (Token::Comma, _) => { eat_token(input, Token::Comma); } (Token::RightBrace, _) => { eat_token(input, Token::RightBrace); break; } (Token::Identifier(_), pos) => { return Err(PERR::MissingToken( ",".into(), "to separate the items of this object map literal".into(), ) .into_err(*pos)) } (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(*pos)) } (_, pos) => { return Err(PERR::MissingToken("}".into(), MISSING_RBRACE.into()).into_err(*pos)) } } } } // Check for duplicating properties map.iter() .enumerate() .try_for_each(|(i, (k1, _, _))| { map.iter() .skip(i + 1) .find(|(k2, _, _)| k2 == k1) .map_or_else(|| Ok(()), |(k2, _, pos)| Err((k2, *pos))) }) .map_err(|(key, pos)| PERR::DuplicatedProperty(key.to_string()).into_err(pos))?; Ok(Expr::Map(map, begin)) } /// Parse a primary expression. fn parse_primary<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { let (token, pos) = match input.peek().unwrap() { // { - block statement as expression (Token::LeftBrace, pos) if allow_stmt_expr => { let pos = *pos; return parse_block(input, stack, false, allow_stmt_expr) .map(|block| Expr::Stmt(Box::new(block), pos)); } (Token::EOF, pos) => return Err(PERR::UnexpectedEOF.into_err(*pos)), _ => input.next().unwrap(), }; let mut root_expr = match token { Token::IntegerConstant(x) => Expr::IntegerConstant(x, pos), #[cfg(not(feature = "no_float"))] Token::FloatConstant(x) => Expr::FloatConstant(x, pos), Token::CharConstant(c) => Expr::CharConstant(c, pos), Token::StringConst(s) => Expr::StringConstant(s, pos), Token::Identifier(s) => { let index = stack.find(&s); Expr::Variable(Box::new(s), index, pos) } Token::LeftParen => parse_paren_expr(input, stack, pos, allow_stmt_expr)?, #[cfg(not(feature = "no_index"))] Token::LeftBracket => parse_array_literal(input, stack, pos, allow_stmt_expr)?, #[cfg(not(feature = "no_object"))] Token::MapStart => parse_map_literal(input, stack, pos, allow_stmt_expr)?, Token::True => Expr::True(pos), Token::False => Expr::False(pos), Token::LexError(err) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), token => { return Err(PERR::BadInput(format!("Unexpected '{}'", token.syntax())).into_err(pos)) } }; // Tail processing all possible postfix operators loop { let (token, _) = input.peek().unwrap(); if !root_expr.is_valid_postfix(token) { break; } let (token, pos) = input.next().unwrap(); root_expr = match (root_expr, token) { // Function call (Expr::Variable(id, _, pos), Token::LeftParen) => { parse_call_expr(input, stack, *id, pos, allow_stmt_expr)? } (Expr::Property(id, pos), Token::LeftParen) => { parse_call_expr(input, stack, id, pos, allow_stmt_expr)? } // Indexing (expr, Token::LeftBracket) => { parse_index_chain(input, stack, expr, pos, allow_stmt_expr)? } // Unknown postfix operator (expr, token) => panic!("unknown postfix operator {:?} for {:?}", token, expr), } } Ok(root_expr) } /// Parse a potential unary operator. fn parse_unary<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { match input.peek().unwrap() { // If statement is allowed to act as expressions (Token::If, pos) => { let pos = *pos; Ok(Expr::Stmt( Box::new(parse_if(input, stack, false, allow_stmt_expr)?), pos, )) } // -expr (Token::UnaryMinus, _) => { let pos = eat_token(input, Token::UnaryMinus); match parse_unary(input, stack, allow_stmt_expr)? { // Negative integer Expr::IntegerConstant(i, _) => i .checked_neg() .map(|x| Expr::IntegerConstant(x, pos)) .or_else(|| { #[cfg(not(feature = "no_float"))] { Some(Expr::FloatConstant(-(i as FLOAT), pos)) } #[cfg(feature = "no_float")] { None } }) .ok_or_else(|| { PERR::BadInput(LexError::MalformedNumber(format!("-{}", i)).to_string()) .into_err(pos) }), // Negative float #[cfg(not(feature = "no_float"))] Expr::FloatConstant(f, pos) => Ok(Expr::FloatConstant(-f, pos)), // Call negative function e => Ok(Expr::FnCall( Box::new("-".into()), Box::new(vec![e]), None, pos, )), } } // +expr (Token::UnaryPlus, _) => { eat_token(input, Token::UnaryPlus); parse_unary(input, stack, allow_stmt_expr) } // !expr (Token::Bang, _) => { let pos = eat_token(input, Token::Bang); Ok(Expr::FnCall( Box::new("!".into()), Box::new(vec![parse_primary(input, stack, allow_stmt_expr)?]), Some(Box::new(false.into())), // NOT operator, when operating on invalid operand, defaults to false pos, )) } // (Token::EOF, pos) => Err(PERR::UnexpectedEOF.into_err(*pos)), // All other tokens _ => parse_primary(input, stack, allow_stmt_expr), } } fn parse_assignment_stmt<'a>( input: &mut Peekable>, stack: &mut Stack, lhs: Expr, allow_stmt_expr: bool, ) -> Result> { let pos = eat_token(input, Token::Equals); let rhs = parse_expr(input, stack, allow_stmt_expr)?; Ok(Expr::Assignment(Box::new(lhs), Box::new(rhs), pos)) } /// Parse an operator-assignment expression. fn parse_op_assignment_stmt<'a>( input: &mut Peekable>, stack: &mut Stack, lhs: Expr, allow_stmt_expr: bool, ) -> Result> { let (op, pos) = match *input.peek().unwrap() { (Token::Equals, _) => return parse_assignment_stmt(input, stack, lhs, allow_stmt_expr), (Token::PlusAssign, pos) => ("+", pos), (Token::MinusAssign, pos) => ("-", pos), (Token::MultiplyAssign, pos) => ("*", pos), (Token::DivideAssign, pos) => ("/", pos), (Token::LeftShiftAssign, pos) => ("<<", pos), (Token::RightShiftAssign, pos) => (">>", pos), (Token::ModuloAssign, pos) => ("%", pos), (Token::PowerOfAssign, pos) => ("~", pos), (Token::AndAssign, pos) => ("&", pos), (Token::OrAssign, pos) => ("|", pos), (Token::XOrAssign, pos) => ("^", pos), (_, _) => return Ok(lhs), }; input.next(); let lhs_copy = lhs.clone(); let rhs = parse_expr(input, stack, allow_stmt_expr)?; // lhs op= rhs -> lhs = op(lhs, rhs) let args = vec![lhs_copy, rhs]; let rhs_expr = Expr::FnCall(Box::new(op.into()), Box::new(args), None, pos); Ok(Expr::Assignment(Box::new(lhs), Box::new(rhs_expr), pos)) } /// Make a dot expression. fn make_dot_expr(lhs: Expr, rhs: Expr, op_pos: Position, is_index: bool) -> Expr { match (lhs, rhs) { // idx_lhs[idx_rhs].rhs // Attach dot chain to the bottom level of indexing chain (Expr::Index(idx_lhs, idx_rhs, idx_pos), rhs) => Expr::Index( idx_lhs, Box::new(make_dot_expr(*idx_rhs, rhs, op_pos, true)), idx_pos, ), // lhs.id (lhs, rhs @ Expr::Variable(_, _, _)) | (lhs, rhs @ Expr::Property(_, _)) => { let lhs = if is_index { lhs.into_property() } else { lhs }; Expr::Dot(Box::new(lhs), Box::new(rhs.into_property()), op_pos) } // lhs.dot_lhs.dot_rhs (lhs, Expr::Dot(dot_lhs, dot_rhs, dot_pos)) => Expr::Dot( Box::new(lhs), Box::new(Expr::Dot( Box::new(dot_lhs.into_property()), Box::new(dot_rhs.into_property()), dot_pos, )), op_pos, ), // lhs.idx_lhs[idx_rhs] (lhs, Expr::Index(idx_lhs, idx_rhs, idx_pos)) => Expr::Dot( Box::new(lhs), Box::new(Expr::Index( Box::new(idx_lhs.into_property()), Box::new(idx_rhs.into_property()), idx_pos, )), op_pos, ), // lhs.rhs (lhs, rhs) => Expr::Dot(Box::new(lhs), Box::new(rhs.into_property()), op_pos), } } /// Make an 'in' expression. fn make_in_expr(lhs: Expr, rhs: Expr, op_pos: Position) -> Result> { match (&lhs, &rhs) { (_, Expr::IntegerConstant(_, pos)) | (_, Expr::FloatConstant(_, pos)) | (_, Expr::And(_, _, pos)) | (_, Expr::Or(_, _, pos)) | (_, Expr::In(_, _, pos)) | (_, Expr::True(pos)) | (_, Expr::False(pos)) | (_, Expr::Assignment(_, _, pos)) | (_, Expr::Unit(pos)) => { return Err(PERR::MalformedInExpr( "'in' expression expects a string, array or object map".into(), ) .into_err(*pos)) } // "xxx" in "xxxx", 'x' in "xxxx" - OK! (Expr::StringConstant(_, _), Expr::StringConstant(_, _)) | (Expr::CharConstant(_, _), Expr::StringConstant(_, _)) => (), // 123.456 in "xxxx" (Expr::FloatConstant(_, pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not a float".into(), ) .into_err(*pos)) } // 123 in "xxxx" (Expr::IntegerConstant(_, pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not a number".into(), ) .into_err(*pos)) } // (??? && ???) in "xxxx", (??? || ???) in "xxxx", (??? in ???) in "xxxx", // true in "xxxx", false in "xxxx" (Expr::And(_, _, pos), Expr::StringConstant(_, _)) | (Expr::Or(_, _, pos), Expr::StringConstant(_, _)) | (Expr::In(_, _, pos), Expr::StringConstant(_, _)) | (Expr::True(pos), Expr::StringConstant(_, _)) | (Expr::False(pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not a boolean".into(), ) .into_err(*pos)) } // [???, ???, ???] in "xxxx" (Expr::Array(_, pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not an array".into(), ) .into_err(*pos)) } // #{...} in "xxxx" (Expr::Map(_, pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not an object map".into(), ) .into_err(*pos)) } // (??? = ???) in "xxxx", () in "xxxx" (Expr::Assignment(_, _, pos), Expr::StringConstant(_, _)) | (Expr::Unit(pos), Expr::StringConstant(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for a string expects a string, not ()".into(), ) .into_err(*pos)) } // "xxx" in #{...}, 'x' in #{...} - OK! (Expr::StringConstant(_, _), Expr::Map(_, _)) | (Expr::CharConstant(_, _), Expr::Map(_, _)) => (), // 123.456 in #{...} (Expr::FloatConstant(_, pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not a float".into(), ) .into_err(*pos)) } // 123 in #{...} (Expr::IntegerConstant(_, pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not a number".into(), ) .into_err(*pos)) } // (??? && ???) in #{...}, (??? || ???) in #{...}, (??? in ???) in #{...}, // true in #{...}, false in #{...} (Expr::And(_, _, pos), Expr::Map(_, _)) | (Expr::Or(_, _, pos), Expr::Map(_, _)) | (Expr::In(_, _, pos), Expr::Map(_, _)) | (Expr::True(pos), Expr::Map(_, _)) | (Expr::False(pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not a boolean".into(), ) .into_err(*pos)) } // [???, ???, ???] in #{..} (Expr::Array(_, pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not an array".into(), ) .into_err(*pos)) } // #{...} in #{..} (Expr::Map(_, pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not an object map".into(), ) .into_err(*pos)) } // (??? = ???) in #{...}, () in #{...} (Expr::Assignment(_, _, pos), Expr::Map(_, _)) | (Expr::Unit(pos), Expr::Map(_, _)) => { return Err(PERR::MalformedInExpr( "'in' expression for an object map expects a string, not ()".into(), ) .into_err(*pos)) } _ => (), } Ok(Expr::In(Box::new(lhs), Box::new(rhs), op_pos)) } /// Parse a binary expression. fn parse_binary_op<'a>( input: &mut Peekable>, stack: &mut Stack, parent_precedence: u8, lhs: Expr, allow_stmt_expr: bool, ) -> Result> { let mut current_lhs = lhs; loop { let (current_precedence, bind_right) = input.peek().map_or_else( || (0, false), |(current_op, _)| (current_op.precedence(), current_op.is_bind_right()), ); // Bind left to the parent lhs expression if precedence is higher // If same precedence, then check if the operator binds right if current_precedence < parent_precedence || (current_precedence == parent_precedence && !bind_right) { return Ok(current_lhs); } let (op_token, pos) = input.next().unwrap(); let rhs = parse_unary(input, stack, allow_stmt_expr)?; let next_precedence = input.peek().unwrap().0.precedence(); // Bind to right if the next operator has higher precedence // If same precedence, then check if the operator binds right let rhs = if (current_precedence == next_precedence && bind_right) || current_precedence < next_precedence { parse_binary_op(input, stack, current_precedence, rhs, allow_stmt_expr)? } else { // Otherwise bind to left (even if next operator has the same precedence) rhs }; let cmp_default = Some(Box::new(false.into())); current_lhs = match op_token { Token::Plus => Expr::FnCall( Box::new("+".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::Minus => Expr::FnCall( Box::new("-".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::Multiply => Expr::FnCall( Box::new("*".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::Divide => Expr::FnCall( Box::new("/".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::LeftShift => Expr::FnCall( Box::new("<<".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::RightShift => Expr::FnCall( Box::new(">>".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::Modulo => Expr::FnCall( Box::new("%".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::PowerOf => Expr::FnCall( Box::new("~".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), // Comparison operators default to false when passed invalid operands Token::EqualsTo => Expr::FnCall( Box::new("==".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::NotEqualsTo => Expr::FnCall( Box::new("!=".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::LessThan => Expr::FnCall( Box::new("<".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::LessThanEqualsTo => Expr::FnCall( Box::new("<=".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::GreaterThan => Expr::FnCall( Box::new(">".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::GreaterThanEqualsTo => Expr::FnCall( Box::new(">=".into()), Box::new(vec![current_lhs, rhs]), cmp_default, pos, ), Token::Or => Expr::Or(Box::new(current_lhs), Box::new(rhs), pos), Token::And => Expr::And(Box::new(current_lhs), Box::new(rhs), pos), Token::Ampersand => Expr::FnCall( Box::new("&".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::Pipe => Expr::FnCall( Box::new("|".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::XOr => Expr::FnCall( Box::new("^".into()), Box::new(vec![current_lhs, rhs]), None, pos, ), Token::In => make_in_expr(current_lhs, rhs, pos)?, #[cfg(not(feature = "no_object"))] Token::Period => make_dot_expr(current_lhs, rhs, pos, false), token => return Err(PERR::UnknownOperator(token.syntax().into()).into_err(pos)), }; } } /// Parse an expression. fn parse_expr<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { let lhs = parse_unary(input, stack, allow_stmt_expr)?; parse_binary_op(input, stack, 1, lhs, allow_stmt_expr) } /// Make sure that the expression is not a statement expression (i.e. wrapped in `{}`). fn ensure_not_statement_expr<'a>( input: &mut Peekable>, type_name: &str, ) -> Result<(), Box> { match input.peek().unwrap() { // Disallow statement expressions (Token::LeftBrace, pos) | (Token::EOF, pos) => { Err(PERR::ExprExpected(type_name.to_string()).into_err(*pos)) } // No need to check for others at this time - leave it for the expr parser _ => Ok(()), } } /// Make sure that the expression is not a mis-typed assignment (i.e. `a = b` instead of `a == b`). fn ensure_not_assignment<'a>( input: &mut Peekable>, ) -> Result<(), Box> { match input.peek().unwrap() { (Token::Equals, pos) => { return Err(PERR::BadInput("Possibly a typo of '=='?".to_string()).into_err(*pos)) } (Token::PlusAssign, pos) | (Token::MinusAssign, pos) | (Token::MultiplyAssign, pos) | (Token::DivideAssign, pos) | (Token::LeftShiftAssign, pos) | (Token::RightShiftAssign, pos) | (Token::ModuloAssign, pos) | (Token::PowerOfAssign, pos) | (Token::AndAssign, pos) | (Token::OrAssign, pos) | (Token::XOrAssign, pos) => { return Err(PERR::BadInput( "Expecting a boolean expression, not an assignment".to_string(), ) .into_err(*pos)) } _ => Ok(()), } } /// Parse an if statement. fn parse_if<'a>( input: &mut Peekable>, stack: &mut Stack, breakable: bool, allow_stmt_expr: bool, ) -> Result> { // if ... eat_token(input, Token::If); // if guard { if_body } ensure_not_statement_expr(input, "a boolean")?; let guard = parse_expr(input, stack, allow_stmt_expr)?; ensure_not_assignment(input)?; let if_body = parse_block(input, stack, breakable, allow_stmt_expr)?; // if guard { if_body } else ... let else_body = if match_token(input, Token::Else).unwrap_or(false) { Some(Box::new(if let (Token::If, _) = input.peek().unwrap() { // if guard { if_body } else if ... parse_if(input, stack, breakable, allow_stmt_expr)? } else { // if guard { if_body } else { else-body } parse_block(input, stack, breakable, allow_stmt_expr)? })) } else { None }; Ok(Stmt::IfThenElse( Box::new(guard), Box::new(if_body), else_body, )) } /// Parse a while loop. fn parse_while<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { // while ... eat_token(input, Token::While); // while guard { body } ensure_not_statement_expr(input, "a boolean")?; let guard = parse_expr(input, stack, allow_stmt_expr)?; ensure_not_assignment(input)?; let body = parse_block(input, stack, true, allow_stmt_expr)?; Ok(Stmt::While(Box::new(guard), Box::new(body))) } /// Parse a loop statement. fn parse_loop<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { // loop ... eat_token(input, Token::Loop); // loop { body } let body = parse_block(input, stack, true, allow_stmt_expr)?; Ok(Stmt::Loop(Box::new(body))) } /// Parse a for loop. fn parse_for<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { // for ... eat_token(input, Token::For); // for name ... let name = match input.next().unwrap() { // Variable name (Token::Identifier(s), _) => s, // Bad identifier (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), // EOF (Token::EOF, pos) => return Err(PERR::VariableExpected.into_err(pos)), // Not a variable name (_, pos) => return Err(PERR::VariableExpected.into_err(pos)), }; // for name in ... match input.next().unwrap() { (Token::In, _) => (), (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), (_, pos) => { return Err( PERR::MissingToken("in".into(), "after the iteration variable".into()) .into_err(pos), ) } } // for name in expr { body } ensure_not_statement_expr(input, "a boolean")?; let expr = parse_expr(input, stack, allow_stmt_expr)?; let prev_len = stack.len(); stack.push(name.clone()); let body = parse_block(input, stack, true, allow_stmt_expr)?; stack.truncate(prev_len); Ok(Stmt::For(Box::new(name), Box::new(expr), Box::new(body))) } /// Parse a variable definition statement. fn parse_let<'a>( input: &mut Peekable>, stack: &mut Stack, var_type: ScopeEntryType, allow_stmt_expr: bool, ) -> Result> { // let/const... (specified in `var_type`) input.next(); // let name ... let (name, pos) = match input.next().unwrap() { (Token::Identifier(s), pos) => (s, pos), (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), (_, pos) => return Err(PERR::VariableExpected.into_err(pos)), }; // let name = ... if match_token(input, Token::Equals)? { // let name = expr let init_value = parse_expr(input, stack, allow_stmt_expr)?; match var_type { // let name = expr ScopeEntryType::Normal => { stack.push(name.clone()); Ok(Stmt::Let(Box::new(name), Some(Box::new(init_value)), pos)) } // const name = { expr:constant } ScopeEntryType::Constant if init_value.is_constant() => { stack.push(name.clone()); Ok(Stmt::Const(Box::new(name), Box::new(init_value), pos)) } // const name = expr - error ScopeEntryType::Constant => { Err(PERR::ForbiddenConstantExpr(name).into_err(init_value.position())) } ScopeEntryType::Subscope => unreachable!(), } } else { // let name Ok(Stmt::Let(Box::new(name), None, pos)) } } /// Parse a statement block. fn parse_block<'a>( input: &mut Peekable>, stack: &mut Stack, breakable: bool, allow_stmt_expr: bool, ) -> Result> { // Must start with { let pos = match input.next().unwrap() { (Token::LeftBrace, pos) => pos, (Token::LexError(err), pos) => return Err(PERR::BadInput(err.to_string()).into_err(pos)), (_, pos) => { return Err( PERR::MissingToken("{".into(), "to start a statement block".into()).into_err(pos), ) } }; let mut statements = Vec::new(); let prev_len = stack.len(); while !match_token(input, Token::RightBrace)? { // Parse statements inside the block let stmt = parse_stmt(input, stack, breakable, allow_stmt_expr)?; // See if it needs a terminating semicolon let need_semicolon = !stmt.is_self_terminated(); statements.push(stmt); match input.peek().unwrap() { // { ... stmt } (Token::RightBrace, _) => { eat_token(input, Token::RightBrace); break; } // { ... stmt; (Token::SemiColon, _) if need_semicolon => { eat_token(input, Token::SemiColon); } // { ... { stmt } ; (Token::SemiColon, _) if !need_semicolon => (), // { ... { stmt } ??? (_, _) if !need_semicolon => (), // { ... stmt (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(*pos)) } // { ... stmt ??? (_, pos) => { // Semicolons are not optional between statements return Err( PERR::MissingToken(";".into(), "to terminate this statement".into()) .into_err(*pos), ); } } } stack.truncate(prev_len); Ok(Stmt::Block(statements, pos)) } /// Parse an expression as a statement. fn parse_expr_stmt<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { let expr = parse_expr(input, stack, allow_stmt_expr)?; let expr = parse_op_assignment_stmt(input, stack, expr, allow_stmt_expr)?; Ok(Stmt::Expr(Box::new(expr))) } /// Parse a single statement. fn parse_stmt<'a>( input: &mut Peekable>, stack: &mut Stack, breakable: bool, allow_stmt_expr: bool, ) -> Result> { let (token, pos) = match input.peek().unwrap() { (Token::EOF, pos) => return Ok(Stmt::Noop(*pos)), x => x, }; match token { // Semicolon - empty statement Token::SemiColon => Ok(Stmt::Noop(*pos)), Token::LeftBrace => parse_block(input, stack, breakable, allow_stmt_expr), // fn ... #[cfg(not(feature = "no_function"))] Token::Fn => Err(PERR::WrongFnDefinition.into_err(*pos)), Token::If => parse_if(input, stack, breakable, allow_stmt_expr), Token::While => parse_while(input, stack, allow_stmt_expr), Token::Loop => parse_loop(input, stack, allow_stmt_expr), Token::For => parse_for(input, stack, allow_stmt_expr), Token::Continue if breakable => { let pos = eat_token(input, Token::Continue); Ok(Stmt::Continue(pos)) } Token::Break if breakable => { let pos = eat_token(input, Token::Break); Ok(Stmt::Break(pos)) } Token::Continue | Token::Break => Err(PERR::LoopBreak.into_err(*pos)), Token::Return | Token::Throw => { let pos = *pos; let return_type = match input.next().unwrap() { (Token::Return, _) => ReturnType::Return, (Token::Throw, _) => ReturnType::Exception, _ => panic!("token should be return or throw"), }; match input.peek().unwrap() { // `return`/`throw` at (Token::EOF, pos) => Ok(Stmt::ReturnWithVal(None, return_type, *pos)), // `return;` or `throw;` (Token::SemiColon, _) => Ok(Stmt::ReturnWithVal(None, return_type, pos)), // `return` or `throw` with expression (_, _) => { let expr = parse_expr(input, stack, allow_stmt_expr)?; let pos = expr.position(); Ok(Stmt::ReturnWithVal(Some(Box::new(expr)), return_type, pos)) } } } Token::Let => parse_let(input, stack, ScopeEntryType::Normal, allow_stmt_expr), Token::Const => parse_let(input, stack, ScopeEntryType::Constant, allow_stmt_expr), _ => parse_expr_stmt(input, stack, allow_stmt_expr), } } /// Parse a function definition. fn parse_fn<'a>( input: &mut Peekable>, stack: &mut Stack, allow_stmt_expr: bool, ) -> Result> { let pos = input.next().expect("should be fn").1; let name = match input.next().unwrap() { (Token::Identifier(s), _) => s, (_, pos) => return Err(PERR::FnMissingName.into_err(pos)), }; match input.peek().unwrap() { (Token::LeftParen, _) => eat_token(input, Token::LeftParen), (_, pos) => return Err(PERR::FnMissingParams(name).into_err(*pos)), }; let mut params = Vec::new(); if !match_token(input, Token::RightParen)? { let end_err = format!("to close the parameters list of function '{}'", name); let sep_err = format!("to separate the parameters of function '{}'", name); loop { match input.next().unwrap() { (Token::Identifier(s), pos) => { stack.push(s.clone()); params.push((s, pos)) } (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(pos)) } (_, pos) => return Err(PERR::MissingToken(")".into(), end_err).into_err(pos)), } match input.next().unwrap() { (Token::RightParen, _) => break, (Token::Comma, _) => (), (Token::Identifier(_), pos) => { return Err(PERR::MissingToken(",".into(), sep_err).into_err(pos)) } (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(pos)) } (_, pos) => return Err(PERR::MissingToken(",".into(), sep_err).into_err(pos)), } } } // Check for duplicating parameters params .iter() .enumerate() .try_for_each(|(i, (p1, _))| { params .iter() .skip(i + 1) .find(|(p2, _)| p2 == p1) .map_or_else(|| Ok(()), |(p2, pos)| Err((p2, *pos))) }) .map_err(|(p, pos)| { PERR::FnDuplicatedParam(name.to_string(), p.to_string()).into_err(pos) })?; // Parse function body let body = Box::new(match input.peek().unwrap() { (Token::LeftBrace, _) => parse_block(input, stack, false, allow_stmt_expr)?, (_, pos) => return Err(PERR::FnMissingBody(name).into_err(*pos)), }); let params = params.into_iter().map(|(p, _)| p).collect(); Ok(FnDef { name, params, body, pos, }) } pub fn parse_global_expr<'a>( input: &mut Peekable>, engine: &Engine, scope: &Scope, optimization_level: OptimizationLevel, ) -> Result> { let mut stack = Stack::new(); let expr = parse_expr(input, &mut stack, false)?; match input.peek().unwrap() { (Token::EOF, _) => (), // Return error if the expression doesn't end (token, pos) => { return Err(PERR::BadInput(format!("Unexpected '{}'", token.syntax())).into_err(*pos)) } } Ok( // Optimize AST optimize_into_ast( engine, scope, vec![Stmt::Expr(Box::new(expr))], vec![], optimization_level, ), ) } /// Parse the global level statements. fn parse_global_level<'a>( input: &mut Peekable>, ) -> Result<(Vec, HashMap), Box> { let mut statements = Vec::::new(); let mut functions = HashMap::::new(); let mut stack = Stack::new(); while !input.peek().unwrap().0.is_eof() { // Collect all the function definitions #[cfg(not(feature = "no_function"))] { if let (Token::Fn, _) = input.peek().unwrap() { let mut stack = Stack::new(); let f = parse_fn(input, &mut stack, true)?; functions.insert(calc_fn_def(&f.name, f.params.len()), f); continue; } } // Actual statement let stmt = parse_stmt(input, &mut stack, false, true)?; let need_semicolon = !stmt.is_self_terminated(); statements.push(stmt); match input.peek().unwrap() { // EOF (Token::EOF, _) => break, // stmt ; (Token::SemiColon, _) if need_semicolon => { eat_token(input, Token::SemiColon); } // stmt ; (Token::SemiColon, _) if !need_semicolon => (), // { stmt } ??? (_, _) if !need_semicolon => (), // stmt (Token::LexError(err), pos) => { return Err(PERR::BadInput(err.to_string()).into_err(*pos)) } // stmt ??? (_, pos) => { // Semicolons are not optional between statements return Err( PERR::MissingToken(";".into(), "to terminate this statement".into()) .into_err(*pos), ); } } } Ok((statements, functions)) } /// Run the parser on an input stream, returning an AST. pub fn parse<'a>( input: &mut Peekable>, engine: &Engine, scope: &Scope, optimization_level: OptimizationLevel, ) -> Result> { let (statements, functions) = parse_global_level(input)?; let fn_lib = functions.into_iter().map(|(_, v)| v).collect(); Ok( // Optimize AST optimize_into_ast(engine, scope, statements, fn_lib, optimization_level), ) } /// Map a `Dynamic` value to an expression. /// /// Returns Some(expression) if conversion is successful. Otherwise None. pub fn map_dynamic_to_expr(value: Dynamic, pos: Position) -> Option { match value.0 { Union::Unit(_) => Some(Expr::Unit(pos)), Union::Int(value) => Some(Expr::IntegerConstant(value, pos)), Union::Char(value) => Some(Expr::CharConstant(value, pos)), Union::Str(value) => Some(Expr::StringConstant((*value).clone(), pos)), Union::Bool(true) => Some(Expr::True(pos)), Union::Bool(false) => Some(Expr::False(pos)), #[cfg(not(feature = "no_index"))] Union::Array(array) => { let items: Vec<_> = array .into_iter() .map(|x| map_dynamic_to_expr(x, pos)) .collect(); if items.iter().all(Option::is_some) { Some(Expr::Array( items.into_iter().map(Option::unwrap).collect(), pos, )) } else { None } } #[cfg(not(feature = "no_object"))] Union::Map(map) => { let items: Vec<_> = map .into_iter() .map(|(k, v)| (k, map_dynamic_to_expr(v, pos), pos)) .collect(); if items.iter().all(|(_, expr, _)| expr.is_some()) { Some(Expr::Map( items .into_iter() .map(|(k, expr, pos)| (k, expr.unwrap(), pos)) .collect(), pos, )) } else { None } } #[cfg(not(feature = "no_float"))] Union::Float(value) => Some(Expr::FloatConstant(value, pos)), _ => None, } }