Arrays ====== {{#include ../links.md}} Arrays are first-class citizens in Rhai. Like C, arrays are accessed with zero-based, non-negative integer indices: > _array_ `[` _index_ `]` Array literals are built within square brackets '`[`' ... '`]`' and separated by commas '`,`': > `[` _value_ `,` _value_ `,` `...` `,` _value_ `]` > > `[` _value_ `,` _value_ `,` `...` `,` _value_ `,` `]` `// trailing comma is OK` All elements stored in an array are [`Dynamic`], and the array can freely grow or shrink with elements added or removed. The Rust type of a Rhai array is `rhai::Array`. [`type_of()`] an array returns `"array"`. Arrays are disabled via the [`no_index`] feature. The maximum allowed size of an array can be controlled via `Engine::set_max_array_size` (see [maximum size of arrays]. Built-in Functions ----------------- The following methods (mostly defined in the [`BasicArrayPackage`][packages] but excluded if using a [raw `Engine`]) operate on arrays: | Function | Parameter(s) | Description | | ------------------------- | --------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `push` | element to insert | inserts an element at the end | | `append` | array to append | concatenates the second array to the end of the first | | `+=` operator | 1) array
2) element to insert (not another array) | inserts an element at the end | | `+=` operator | 1) array
2) array to append | concatenates the second array to the end of the first | | `+` operator | 1) first array
2) second array | concatenates the first array with the second | | `insert` | 1) element to insert
2) position, beginning if < 0, end if > length | inserts an element at a certain index | | `pop` | _none_ | removes the last element and returns it ([`()`] if empty) | | `shift` | _none_ | removes the first element and returns it ([`()`] if empty) | | `extract` | 1) start position, beginning if < 0, end if > length,
2) number of items to extract, none if < 0 _(optional)_ | extracts a portion of the array into a new array | | `remove` | index | removes an element at a particular index and returns it ([`()`] if the index is not valid) | | `reverse` | _none_ | reverses the array | | `len` method and property | _none_ | returns the number of elements | | `pad` | 1) target length
2) element to pad | pads the array with an element to at least a specified length | | `clear` | _none_ | empties the array | | `truncate` | target length | cuts off the array at exactly a specified length (discarding all subsequent elements) | | `chop` | target length | cuts off the head of the array, leaving the tail at exactly a specified length | | `splice` | 1) start position, beginning if < 0, end if > length,
2) number of items to remove, none if < 0,
3) array to insert | replaces a portion of the array with another (not necessarily of the same length as the replaced portion) | | `filter` | [function pointer] to predicate (can be a [closure]) | constructs a new array with all items that returns `true` when called with the predicate function:
1st parameter: array item,
2nd parameter: offset index _(optional)_ | | `map` | [function pointer] to conversion function (can be a [closure]) | constructs a new array with all items mapped to the result of applying the conversion function:
1st parameter: array item,
2nd parameter: offset index _(optional)_ | | `reduce` | [function pointer] to accumulator function (can be a [closure]) | reduces the array into a single value via the accumulator function:
1st parameter: accumulated value ([`()`] initially),
2nd parameter: array item,
3rd parameter: offset index _(optional)_ | | `reduce_rev` | [function pointer] to accumulator function (can be a [closure]) | reduces the array (in reverse order) into a single value via the accumulator function:
1st parameter: accumulated value ([`()`] initially),
2nd parameter: array item,
3rd parameter: offset index _(optional)_ | | `some` | [function pointer] to predicate (can be a [closure]) | returns `true` if any item returns `true` when called with the predicate function:
1st parameter: array item,
2nd parameter: offset index _(optional)_ | | `all` | [function pointer] to predicate (can be a [closure]) | returns `true` if all item returns `true` when called with the predicate function:
1st parameter: array item,
2nd parameter: offset index _(optional)_ | | `sort` | [function pointer] to a comparison function (can be a [closure]) | sorts the array with a comparison function:
1st parameter: first item,
2nd parameter: second item,
return value: `INT` < 0 if first < second, > 0 if first > second, 0 if first == second | Use Custom Types With Arrays --------------------------- To use a [custom type] with arrays, a number of array functions need to be manually implemented, in particular `push`, `insert`, `pad` and the `+=` operator. In addition, the `==` operator must be implemented for the [custom type] in order to support the `in` operator which uses `==` to compare elements. See the section on [custom types] for more details. Examples -------- ```rust let y = [2, 3]; // y == [2, 3] let y = [2, 3,]; // y == [2, 3] y.insert(0, 1); // y == [1, 2, 3] y.insert(999, 4); // y == [1, 2, 3, 4] y.len == 4; y[0] == 1; y[1] == 2; y[2] == 3; y[3] == 4; (1 in y) == true; // use 'in' to test if an item exists in the array (42 in y) == false; // 'in' uses the '==' operator (which users can override) // to check if the target item exists in the array y[1] = 42; // y == [1, 42, 3, 4] (42 in y) == true; y.remove(2) == 3; // y == [1, 42, 4] y.len == 3; y[2] == 4; // elements after the removed element are shifted ts.list = y; // arrays can be assigned completely (by value copy) ts.list[1] == 42; [1, 2, 3][0] == 1; // indexing on array literal fn abc() { [42, 43, 44] // a function returning an array } abc()[0] == 42; y.push(4); // y == [1, 42, 4, 4] y += 5; // y == [1, 42, 4, 4, 5] y.len == 5; y.shift() == 1; // y == [42, 4, 4, 5] y.chop(3); // y == [4, 4, 5] y.len == 3; y.pop() == 5; // y == [4, 4] y.len == 2; for item in y { // arrays can be iterated with a 'for' statement print(item); } y.pad(6, "hello"); // y == [4, 4, "hello", "hello", "hello", "hello"] y.len == 6; y.truncate(4); // y == [4, 4, "hello", "hello"] y.len == 4; y.clear(); // y == [] y.len == 0; let a = [42, 123, 99]; a.map(|v| v + 1); // returns [43, 124, 100] a.map(|v, i| v + i); // returns [42, 124, 101] a.filter(|v| v > 50); // returns [123, 99] a.filter(|v, i| i == 1); // returns [123] a.reduce(|sum, v| { // Detect the initial value of '()' if sum.type_of() == "()" { v } else { sum + v } ) == 264; a.reduce(|sum, v, i| { if i == 0 { v } else { sum + v } ) == 264; a.reduce_rev(|sum, v| { // Detect the initial value of '()' if sum.type_of() == "()" { v } else { sum + v } ) == 264; a.reduce_rev(|sum, v, i| { if i == 2 { v } else { sum + v } ) == 264; a.some(|v| v > 50); // returns true a.some(|v, i| v < i); // returns false a.all(|v| v > 50); // returns false a.all(|v, i| v > i); // returns true a.splice(1, 1, [1, 3, 2]); // a == [42, 1, 3, 2, 99] a.extract(1, 3); // returns [1, 3, 2] a.sort(|x, y| x - y); // a == [1, 2, 3, 42, 99] ```