//! Module implementing the [`AST`] optimizer. #![cfg(not(feature = "no_optimize"))] use crate::ast::{ ASTFlags, Expr, FlowControl, OpAssignment, Stmt, StmtBlock, StmtBlockContainer, SwitchCasesCollection, }; use crate::engine::{ KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF, OP_NOT, }; use crate::eval::{Caches, GlobalRuntimeState}; use crate::func::builtin::get_builtin_binary_op_fn; use crate::func::hashing::get_hasher; use crate::module::ModuleFlags; use crate::tokenizer::Token; use crate::types::dynamic::AccessMode; use crate::{ calc_fn_hash, calc_fn_hash_full, Dynamic, Engine, FnPtr, Identifier, ImmutableString, Position, Scope, StaticVec, AST, }; #[cfg(feature = "no_std")] use std::prelude::v1::*; use std::{ any::TypeId, convert::TryFrom, hash::{Hash, Hasher}, mem, }; /// Level of optimization performed. #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] #[non_exhaustive] pub enum OptimizationLevel { /// No optimization performed. None, /// Only perform simple optimizations without evaluating functions. Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects as it essentially assumes that all functions are pure. Full, } impl Default for OptimizationLevel { #[inline(always)] #[must_use] fn default() -> Self { Self::Simple } } /// Mutable state throughout an optimization pass. #[derive(Debug, Clone)] struct OptimizerState<'a> { /// Has the [`AST`] been changed during this pass? changed: bool, /// Collection of constants to use for eager function evaluations. variables: StaticVec<(Identifier, AccessMode, Option)>, /// Activate constants propagation? propagate_constants: bool, /// An [`Engine`] instance for eager function evaluation. engine: &'a Engine, /// The global runtime state. global: GlobalRuntimeState, /// Function resolution caches. caches: Caches, /// Optimization level. optimization_level: OptimizationLevel, } impl<'a> OptimizerState<'a> { /// Create a new [`OptimizerState`]. #[inline(always)] pub fn new( engine: &'a Engine, lib: &'a [crate::SharedModule], optimization_level: OptimizationLevel, ) -> Self { let mut _global = GlobalRuntimeState::new(engine); let _lib = lib; #[cfg(not(feature = "no_function"))] { _global.lib = _lib.iter().cloned().collect(); } Self { changed: false, variables: StaticVec::new_const(), propagate_constants: true, engine, global: _global, caches: Caches::new(), optimization_level, } } /// Set the [`AST`] state to be dirty (i.e. changed). #[inline(always)] pub fn set_dirty(&mut self) { self.changed = true; } /// Set the [`AST`] state to be not dirty (i.e. unchanged). #[inline(always)] pub fn clear_dirty(&mut self) { self.changed = false; } /// Is the [`AST`] dirty (i.e. changed)? #[inline(always)] pub const fn is_dirty(&self) -> bool { self.changed } /// Prune the list of constants back to a specified size. #[inline(always)] pub fn restore_var(&mut self, len: usize) { self.variables.truncate(len); } /// Add a new variable to the list. #[inline(always)] pub fn push_var( &mut self, name: impl Into, access: AccessMode, value: Option, ) { self.variables.push((name.into(), access, value)); } /// Look up a constant from the list. #[inline] pub fn find_constant(&self, name: &str) -> Option<&Dynamic> { if !self.propagate_constants { return None; } for (n, access, value) in self.variables.iter().rev() { if n == name { return match access { AccessMode::ReadWrite => None, AccessMode::ReadOnly => value.as_ref(), }; } } None } /// Call a registered function #[inline] pub fn call_fn_with_constant_arguments( &mut self, fn_name: &str, op_token: Option<&Token>, arg_values: &mut [Dynamic], ) -> Option { self.engine .exec_native_fn_call( &mut self.global, &mut self.caches, fn_name, op_token, calc_fn_hash(None, fn_name, arg_values.len()), &mut arg_values.iter_mut().collect::>(), false, Position::NONE, ) .ok() .map(|(v, ..)| v) } } /// Optimize a block of [statements][Stmt]. fn optimize_stmt_block( mut statements: StmtBlockContainer, state: &mut OptimizerState, preserve_result: bool, is_internal: bool, reduce_return: bool, ) -> StmtBlockContainer { if statements.is_empty() { return statements; } let mut is_dirty = state.is_dirty(); let is_pure = if is_internal { Stmt::is_internally_pure } else { Stmt::is_pure }; // Flatten blocks while let Some(n) = statements.iter().position( |s| matches!(s, Stmt::Block(block, ..) if !block.iter().any(Stmt::is_block_dependent)), ) { let (first, second) = statements.split_at_mut(n); let stmt = mem::take(&mut second[0]); let mut stmts = match stmt { Stmt::Block(block, ..) => block, stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt), }; statements = first .iter_mut() .map(mem::take) .chain(stmts.iter_mut().map(mem::take)) .chain(second.iter_mut().skip(1).map(mem::take)) .collect(); is_dirty = true; } // Optimize loop { state.clear_dirty(); let orig_constants_len = state.variables.len(); // Original number of constants in the state, for restore later let orig_propagate_constants = state.propagate_constants; // Remove everything following control flow breaking statements let mut dead_code = false; statements.retain(|stmt| { if dead_code { state.set_dirty(); false } else if stmt.is_control_flow_break() { dead_code = true; true } else { true } }); // Optimize each statement in the block statements.iter_mut().for_each(|stmt| { match stmt { Stmt::Var(x, options, ..) => { if options.contains(ASTFlags::CONSTANT) { // Add constant literals into the state optimize_expr(&mut x.1, state, false); if x.1.is_constant() { state.push_var( x.0.as_str(), AccessMode::ReadOnly, x.1.get_literal_value(), ); } } else { // Add variables into the state optimize_expr(&mut x.1, state, false); state.push_var(x.0.as_str(), AccessMode::ReadWrite, None); } } // Optimize the statement _ => optimize_stmt(stmt, state, preserve_result), } }); // Remove all pure statements except the last one let mut index = 0; let mut first_non_constant = statements .iter() .rev() .enumerate() .find_map(|(i, stmt)| match stmt { stmt if !is_pure(stmt) => Some(i), Stmt::Var(x, ..) if x.1.is_constant() => Some(i), Stmt::Expr(e) if !e.is_constant() => Some(i), #[cfg(not(feature = "no_module"))] Stmt::Import(x, ..) if !x.0.is_constant() => Some(i), _ => None, }) .map_or(0, |n| statements.len() - n - 1); while index < statements.len() { if preserve_result && index >= statements.len() - 1 { break; } match statements[index] { ref stmt if is_pure(stmt) && index >= first_non_constant => { state.set_dirty(); statements.remove(index); } ref stmt if stmt.is_pure() => { state.set_dirty(); if index < first_non_constant { first_non_constant -= 1; } statements.remove(index); } _ => index += 1, } } // Remove all pure statements that do not return values at the end of a block. // We cannot remove anything for non-pure statements due to potential side-effects. if preserve_result { loop { match statements[..] { // { return; } -> {} [Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); statements.clear(); } [ref stmt] if !stmt.returns_value() && is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., ref last_stmt, Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) && !last_stmt.returns_value() => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return val; } -> { ...; val } [.., Stmt::Return(ref mut expr, options, pos)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); *statements.last_mut().unwrap() = expr .as_mut() .map_or_else(|| Stmt::Noop(pos), |e| Stmt::Expr(mem::take(e))); } // { ...; stmt; noop } -> done [.., ref second_last_stmt, Stmt::Noop(..)] if second_last_stmt.returns_value() => { break } // { ...; stmt_that_returns; pure_non_value_stmt } -> { ...; stmt_that_returns; noop } // { ...; stmt; pure_non_value_stmt } -> { ...; stmt } [.., ref second_last_stmt, ref last_stmt] if !last_stmt.returns_value() && is_pure(last_stmt) => { state.set_dirty(); if second_last_stmt.returns_value() { *statements.last_mut().unwrap() = Stmt::Noop(last_stmt.position()); } else { statements.pop().unwrap(); } } _ => break, } } } else { loop { match statements[..] { [ref stmt] if is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., Stmt::Return(None, options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return pure_val; } -> { ... } [.., Stmt::Return(Some(ref expr), options, ..)] if reduce_return && !options.contains(ASTFlags::BREAK) && expr.is_pure() => { state.set_dirty(); statements.pop().unwrap(); } [.., ref last_stmt] if is_pure(last_stmt) => { state.set_dirty(); statements.pop().unwrap(); } _ => break, } } } // Pop the stack and remove all the local constants state.restore_var(orig_constants_len); state.propagate_constants = orig_propagate_constants; if !state.is_dirty() { break; } is_dirty = true; } if is_dirty { state.set_dirty(); } statements.shrink_to_fit(); statements } /// Optimize a [statement][Stmt]. fn optimize_stmt(stmt: &mut Stmt, state: &mut OptimizerState, preserve_result: bool) { match stmt { // var = var op expr => var op= expr Stmt::Assignment(x, ..) if !x.0.is_op_assignment() && x.1.lhs.is_variable_access(true) && matches!(&x.1.rhs, Expr::FnCall(x2, ..) if Token::lookup_symbol_from_syntax(&x2.name).map_or(false, |t| t.has_op_assignment()) && x2.args.len() == 2 && x2.args[0].get_variable_name(true) == x.1.lhs.get_variable_name(true) ) => { match x.1.rhs { Expr::FnCall(ref mut x2, pos) => { state.set_dirty(); x.0 = OpAssignment::new_op_assignment_from_base(&x2.name, pos); x.1.rhs = mem::take(&mut x2.args[1]); } ref expr => unreachable!("Expr::FnCall expected but gets {:?}", expr), } } // expr op= expr Stmt::Assignment(x, ..) => { if !x.1.lhs.is_variable_access(false) { optimize_expr(&mut x.1.lhs, state, false); } optimize_expr(&mut x.1.rhs, state, false); } // if expr {} Stmt::If(x, ..) if x.body.is_empty() && x.branch.is_empty() => { let condition = &mut x.expr; state.set_dirty(); let pos = condition.start_position(); let mut expr = mem::take(condition); optimize_expr(&mut expr, state, false); *stmt = if preserve_result { // -> { expr, Noop } ( [Stmt::Expr(expr.into()), Stmt::Noop(pos)], pos, Position::NONE, ) .into() } else { // -> expr Stmt::Expr(expr.into()) }; } // if false { if_block } -> Noop Stmt::If(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) && x.branch.is_empty() => { if let Expr::BoolConstant(false, pos) = x.expr { state.set_dirty(); *stmt = Stmt::Noop(pos); } else { unreachable!("`Expr::BoolConstant`"); } } // if false { if_block } else { else_block } -> else_block Stmt::If(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) => { state.set_dirty(); let body = mem::take(&mut *x.branch); *stmt = match optimize_stmt_block(body, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.branch.position()), statements => (statements, x.branch.span()).into(), } } // if true { if_block } else { else_block } -> if_block Stmt::If(x, ..) if matches!(x.expr, Expr::BoolConstant(true, ..)) => { state.set_dirty(); let body = mem::take(&mut *x.body); *stmt = match optimize_stmt_block(body, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.body.position()), statements => (statements, x.body.span()).into(), } } // if expr { if_block } else { else_block } Stmt::If(x, ..) => { let FlowControl { expr, body, branch } = &mut **x; optimize_expr(expr, state, false); let statements = mem::take(&mut **body); **body = optimize_stmt_block(statements, state, preserve_result, true, false); let statements = mem::take(&mut **branch); **branch = optimize_stmt_block(statements, state, preserve_result, true, false); } // switch const { ... } Stmt::Switch(x, pos) if x.0.is_constant() => { let ( match_expr, SwitchCasesCollection { expressions, cases, ranges, def_case, }, ) = &mut **x; let value = match_expr.get_literal_value().unwrap(); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); // First check hashes if let Some(case_blocks_list) = cases.get(&hash) { match &case_blocks_list[..] { [] => (), [index] => { let mut b = mem::take(&mut expressions[*index]); cases.clear(); if b.is_always_true() { // Promote the matched case let mut statements = Stmt::Expr(mem::take(&mut b.expr).into()); optimize_stmt(&mut statements, state, true); *stmt = statements; } else { // switch const { case if condition => stmt, _ => def } => if condition { stmt } else { def } optimize_expr(&mut b.condition, state, false); let branch = match def_case { Some(index) => { let mut def_stmt = Stmt::Expr(mem::take(&mut expressions[*index].expr).into()); optimize_stmt(&mut def_stmt, state, true); def_stmt.into() } _ => StmtBlock::NONE, }; let body = Stmt::Expr(mem::take(&mut b.expr).into()).into(); let expr = mem::take(&mut b.condition); *stmt = Stmt::If( FlowControl { expr, body, branch }.into(), match_expr.start_position(), ); } state.set_dirty(); return; } _ => { for &index in case_blocks_list { let mut b = mem::take(&mut expressions[index]); if b.is_always_true() { // Promote the matched case let mut statements = Stmt::Expr(mem::take(&mut b.expr).into()); optimize_stmt(&mut statements, state, true); *stmt = statements; state.set_dirty(); return; } } } } } // Then check ranges if !ranges.is_empty() { // Only one range or all ranges without conditions if ranges.len() == 1 || ranges .iter() .all(|r| expressions[r.index()].is_always_true()) { if let Some(r) = ranges.iter().find(|r| r.contains(&value)) { let range_block = &mut expressions[r.index()]; if range_block.is_always_true() { // Promote the matched case let block = &mut expressions[r.index()]; let mut statements = Stmt::Expr(mem::take(&mut block.expr).into()); optimize_stmt(&mut statements, state, true); *stmt = statements; } else { let mut expr = mem::take(&mut range_block.condition); // switch const { range if condition => stmt, _ => def } => if condition { stmt } else { def } optimize_expr(&mut expr, state, false); let branch = match def_case { Some(index) => { let mut def_stmt = Stmt::Expr(mem::take(&mut expressions[*index].expr).into()); optimize_stmt(&mut def_stmt, state, true); def_stmt.into() } _ => StmtBlock::NONE, }; let body = Stmt::Expr(mem::take(&mut expressions[r.index()].expr).into()) .into(); *stmt = Stmt::If( FlowControl { expr, body, branch }.into(), match_expr.start_position(), ); } state.set_dirty(); return; } } else { // Multiple ranges - clear the table and just keep the right ranges if !cases.is_empty() { state.set_dirty(); cases.clear(); } let old_ranges_len = ranges.len(); ranges.retain(|r| r.contains(&value)); if ranges.len() != old_ranges_len { state.set_dirty(); } ranges.iter().for_each(|r| { let b = &mut expressions[r.index()]; optimize_expr(&mut b.condition, state, false); optimize_expr(&mut b.expr, state, false); }); return; } } // Promote the default case state.set_dirty(); match def_case { Some(index) => { let mut def_stmt = Stmt::Expr(mem::take(&mut expressions[*index].expr).into()); optimize_stmt(&mut def_stmt, state, true); *stmt = def_stmt; } _ => *stmt = StmtBlock::empty(*pos).into(), } } // switch Stmt::Switch(x, ..) => { let ( match_expr, SwitchCasesCollection { expressions, cases, ranges, def_case, .. }, ) = &mut **x; optimize_expr(match_expr, state, false); // Optimize blocks expressions.iter_mut().for_each(|b| { optimize_expr(&mut b.condition, state, false); optimize_expr(&mut b.expr, state, false); if b.is_always_false() && !b.expr.is_unit() { b.expr = Expr::Unit(b.expr.position()); state.set_dirty(); } }); // Remove false cases cases.retain(|_, list| { // Remove all entries that have false conditions list.retain(|index| { if expressions[*index].is_always_false() { state.set_dirty(); false } else { true } }); // Remove all entries after a `true` condition if let Some(n) = list .iter() .position(|&index| expressions[index].is_always_true()) { if n + 1 < list.len() { state.set_dirty(); list.truncate(n + 1); } } // Remove if no entry left if list.is_empty() { state.set_dirty(); false } else { true } }); // Remove false ranges ranges.retain(|r| { if expressions[r.index()].is_always_false() { state.set_dirty(); false } else { true } }); if let Some(index) = def_case { optimize_expr(&mut expressions[*index].expr, state, false); } // Remove unused block statements (0..expressions.len()).into_iter().for_each(|index| { if *def_case == Some(index) || cases.values().flat_map(|c| c.iter()).any(|&n| n == index) || ranges.iter().any(|r| r.index() == index) { return; } let b = &mut expressions[index]; if !b.expr.is_unit() { b.expr = Expr::Unit(b.expr.position()); state.set_dirty(); } }); } // while false { block } -> Noop Stmt::While(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) => match x.expr { Expr::BoolConstant(false, pos) => { state.set_dirty(); *stmt = Stmt::Noop(pos); } _ => unreachable!("`Expr::BoolConstant"), }, // while expr { block } Stmt::While(x, ..) => { let FlowControl { expr, body, .. } = &mut **x; optimize_expr(expr, state, false); if let Expr::BoolConstant(true, pos) = expr { *expr = Expr::Unit(*pos); } **body = optimize_stmt_block(mem::take(&mut **body), state, false, true, false); } // do { block } while|until expr Stmt::Do(x, ..) => { optimize_expr(&mut x.expr, state, false); *x.body = optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false); } // for id in expr { block } Stmt::For(x, ..) => { optimize_expr(&mut x.2.expr, state, false); *x.2.body = optimize_stmt_block(mem::take(&mut *x.2.body), state, false, true, false); } // let id = expr; Stmt::Var(x, options, ..) if !options.contains(ASTFlags::CONSTANT) => { optimize_expr(&mut x.1, state, false); } // import expr as var; #[cfg(not(feature = "no_module"))] Stmt::Import(x, ..) => optimize_expr(&mut x.0, state, false), // { block } Stmt::Block(block) => { let span = block.span(); let statements = block.take_statements().into_vec().into(); let mut block = optimize_stmt_block(statements, state, preserve_result, true, false); match block.as_mut_slice() { [] => { state.set_dirty(); *stmt = Stmt::Noop(span.start()); } // Only one statement which is not block-dependent - promote [s] if !s.is_block_dependent() => { state.set_dirty(); *stmt = mem::take(s); } _ => *stmt = (block, span).into(), } } // try { pure try_block } catch ( var ) { catch_block } -> try_block Stmt::TryCatch(x, ..) if x.body.iter().all(Stmt::is_pure) => { // If try block is pure, there will never be any exceptions state.set_dirty(); *stmt = ( optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false), x.body.span(), ) .into(); } // try { try_block } catch ( var ) { catch_block } Stmt::TryCatch(x, ..) => { *x.body = optimize_stmt_block(mem::take(&mut *x.body), state, false, true, false); *x.branch = optimize_stmt_block(mem::take(&mut *x.branch), state, false, true, false); } // expr(stmt) Stmt::Expr(expr) if matches!(**expr, Expr::Stmt(..)) => { state.set_dirty(); match expr.as_mut() { Expr::Stmt(block) if !block.is_empty() => { let mut stmt_block = *mem::take(block); *stmt_block = optimize_stmt_block(mem::take(&mut *stmt_block), state, true, true, false); *stmt = stmt_block.into(); } Expr::Stmt(..) => *stmt = Stmt::Noop(expr.position()), _ => unreachable!("`Expr::Stmt`"), } } Stmt::Expr(expr) => { optimize_expr(expr, state, false); // Do not promote until the expression is fully optimized if !state.is_dirty() && matches!(**expr, Expr::FnCall(..) | Expr::Stmt(..)) { *stmt = match *mem::take(expr) { // func(...); Expr::FnCall(x, pos) => Stmt::FnCall(x, pos), // {}; Expr::Stmt(x) if x.is_empty() => Stmt::Noop(x.position()), // {...}; Expr::Stmt(x) => (*x).into(), _ => unreachable!(), }; state.set_dirty(); } } // break expr; Stmt::BreakLoop(Some(ref mut expr), ..) => optimize_expr(expr, state, false), // return expr; Stmt::Return(Some(ref mut expr), ..) => optimize_expr(expr, state, false), // All other statements - skip _ => (), } } /// Optimize an [expression][Expr]. fn optimize_expr(expr: &mut Expr, state: &mut OptimizerState, _chaining: bool) { // These keywords are handled specially const DONT_EVAL_KEYWORDS: &[&str] = &[ KEYWORD_PRINT, // side effects KEYWORD_DEBUG, // side effects KEYWORD_EVAL, // arbitrary scripts ]; match expr { // {} Expr::Stmt(x) if x.is_empty() => { state.set_dirty(); *expr = Expr::Unit(x.position()) } Expr::Stmt(x) if x.len() == 1 && matches!(x.statements()[0], Stmt::Expr(..)) => { state.set_dirty(); match x.take_statements().remove(0) { Stmt::Expr(mut e) => { optimize_expr(&mut e, state, false); *expr = *e; } _ => unreachable!("`Expr::Stmt`") } } // { stmt; ... } - do not count promotion as dirty because it gets turned back into an array Expr::Stmt(x) => { ***x = optimize_stmt_block(mem::take(&mut **x), state, true, true, false); // { Stmt(Expr) } - promote if let [ Stmt::Expr(e) ] = &mut ****x { state.set_dirty(); *expr = mem::take(e); } } // ()?.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x, options, ..) if options.contains(ASTFlags::NEGATED) && matches!(x.lhs, Expr::Unit(..)) => { state.set_dirty(); *expr = mem::take(&mut x.lhs); } // lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // map.string (Expr::Map(m, pos), Expr::Property(p, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => { let prop = p.2.as_str(); // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == prop) .map_or_else(|| Expr::Unit(*pos), |(.., mut expr)| { expr.set_position(*pos); expr }); } // var.rhs (Expr::Variable(..), rhs) => optimize_expr(rhs, state, true), // const.type_of() (lhs, Expr::MethodCall(x, pos)) if lhs.is_constant() && x.name == KEYWORD_TYPE_OF && x.args.is_empty() => { if let Some(value) = lhs.get_literal_value() { state.set_dirty(); let typ = state.engine.map_type_name(value.type_name()).into(); *expr = Expr::from_dynamic(typ, *pos); } } // const.is_shared() #[cfg(not(feature = "no_closure"))] (lhs, Expr::MethodCall(x, pos)) if lhs.is_constant() && x.name == crate::engine::KEYWORD_IS_SHARED && x.args.is_empty() => { if let Some(..) = lhs.get_literal_value() { state.set_dirty(); *expr = Expr::from_dynamic(Dynamic::FALSE, *pos); } } // lhs.rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } } // ....lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x,..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // ()?[rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, options, ..) if options.contains(ASTFlags::NEGATED) && matches!(x.lhs, Expr::Unit(..)) => { state.set_dirty(); *expr = mem::take(&mut x.lhs); } // lhs[rhs] #[cfg(not(feature = "no_index"))] #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)] Expr::Index(x, ..) if !_chaining => match (&mut x.lhs, &mut x.rhs) { // array[int] (Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let mut result = mem::take(&mut a[*i as usize]); result.set_position(*pos); *expr = result; } // array[-int] (Expr::Array(a, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= a.len() as u64 && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let index = a.len() - i.unsigned_abs() as usize; let mut result = mem::take(&mut a[index]); result.set_position(*pos); *expr = result; } // map[string] (Expr::Map(m, pos), Expr::StringConstant(s, ..)) if m.0.iter().all(|(.., x)| x.is_pure()) => { // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, ..)| x.as_str() == s.as_str()) .map_or_else(|| Expr::Unit(*pos), |(.., mut expr)| { expr.set_position(*pos); expr }); } // int[int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < crate::INT_BITS => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (*i as usize))) != 0, *pos); } // int[-int] (Expr::IntegerConstant(n, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= crate::INT_BITS as u64 => { // Bit-field literal indexing - get the bit state.set_dirty(); *expr = Expr::BoolConstant((*n & (1 << (crate::INT_BITS - i.unsigned_abs() as usize))) != 0, *pos); } // string[int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i >= 0 && *i <= crate::MAX_USIZE_INT && (*i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().nth(*i as usize).unwrap(), *pos); } // string[-int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, ..)) if *i < 0 && i.unsigned_abs() as u64 <= s.chars().count() as u64 => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().rev().nth(i.unsigned_abs() as usize - 1).unwrap(), *pos); } // var[rhs] (Expr::Variable(..), rhs) => optimize_expr(rhs, state, true), // lhs[rhs] (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, true); } }, // ...[lhs][rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, ..) => { optimize_expr(&mut x.lhs, state, false); optimize_expr(&mut x.rhs, state, _chaining); } // `` Expr::InterpolatedString(x, pos) if x.is_empty() => { state.set_dirty(); *expr = Expr::StringConstant(state.engine.const_empty_string(), *pos); } // `... ${const} ...` Expr::InterpolatedString(..) if expr.is_constant() => { state.set_dirty(); *expr = Expr::StringConstant(expr.get_literal_value().unwrap().cast::(), expr.position()); } // `... ${ ... } ...` Expr::InterpolatedString(x, ..) => { x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)); let mut n = 0; // Merge consecutive strings while n < x.len() - 1 { match (mem::take(&mut x[n]), mem::take(&mut x[n+1])) { (Expr::StringConstant(mut s1, pos), Expr::StringConstant(s2, ..)) => { s1 += s2; x[n] = Expr::StringConstant(s1, pos); x.remove(n+1); state.set_dirty(); } (expr1, Expr::Unit(..)) => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::Unit(..), expr2) => { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, Expr::StringConstant(s, ..)) if s.is_empty() => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::StringConstant(s, ..), expr2) if s.is_empty()=> { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, expr2) => { x[n] = expr1; x[n+1] = expr2; n += 1; } } } x.shrink_to_fit(); } // [ constant .. ] #[cfg(not(feature = "no_index"))] Expr::Array(..) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position()); } // [ items .. ] #[cfg(not(feature = "no_index"))] Expr::Array(x, ..) => x.iter_mut().for_each(|expr| optimize_expr(expr, state, false)), // #{ key:constant, .. } #[cfg(not(feature = "no_object"))] Expr::Map(..) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(expr.get_literal_value().unwrap().into(), expr.position()); } // #{ key:value, .. } #[cfg(not(feature = "no_object"))] Expr::Map(x, ..) => x.0.iter_mut().for_each(|(.., expr)| optimize_expr(expr, state, false)), // lhs && rhs Expr::And(x, ..) => match (&mut x.lhs, &mut x.rhs) { // true && rhs -> rhs (Expr::BoolConstant(true, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // false && rhs -> false (Expr::BoolConstant(false, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(false, *pos); } // lhs && true -> lhs (lhs, Expr::BoolConstant(true, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs && rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // lhs || rhs Expr::Or(ref mut x, ..) => match (&mut x.lhs, &mut x.rhs) { // false || rhs -> rhs (Expr::BoolConstant(false, ..), rhs) => { state.set_dirty(); optimize_expr(rhs, state, false); *expr = mem::take(rhs); } // true || rhs -> true (Expr::BoolConstant(true, pos), ..) => { state.set_dirty(); *expr = Expr::BoolConstant(true, *pos); } // lhs || false (lhs, Expr::BoolConstant(false, ..)) => { state.set_dirty(); optimize_expr(lhs, state, false); *expr = mem::take(lhs); } // lhs || rhs (lhs, rhs) => { optimize_expr(lhs, state, false); optimize_expr(rhs, state, false); } }, // () ?? rhs -> rhs Expr::Coalesce(x, ..) if matches!(x.lhs, Expr::Unit(..)) => { state.set_dirty(); *expr = mem::take(&mut x.rhs); }, // lhs:constant ?? rhs -> lhs Expr::Coalesce(x, ..) if x.lhs.is_constant() => { state.set_dirty(); *expr = mem::take(&mut x.lhs); }, // !true or !false Expr::FnCall(x,..) if x.name == OP_NOT && x.args.len() == 1 && matches!(x.args[0], Expr::BoolConstant(..)) => { state.set_dirty(); if let Expr::BoolConstant(b, pos) = x.args[0] { *expr = Expr::BoolConstant(!b, pos) } else { unreachable!() } } // eval! Expr::FnCall(x, ..) if x.name == KEYWORD_EVAL => { state.propagate_constants = false; } // Fn Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.args.len() == 1 && x.name == KEYWORD_FN_PTR && x.constant_args() => { let fn_name = match x.args[0] { Expr::StringConstant(ref s, ..) => s.clone().into(), _ => Dynamic::UNIT }; if let Ok(fn_ptr) = fn_name.into_immutable_string().map_err(Into::into).and_then(FnPtr::try_from) { state.set_dirty(); *expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), *pos); } else { optimize_expr(&mut x.args[0], state, false); } } // Do not call some special keywords Expr::FnCall(x, ..) if DONT_EVAL_KEYWORDS.contains(&x.name.as_str()) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // Call built-in operators Expr::FnCall(x, pos) if !x.is_qualified() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.constant_args() // all arguments are constants => { let arg_values = &mut x.args.iter().map(|e| e.get_literal_value().unwrap()).collect::>(); let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect(); match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => { state.set_dirty(); let typ = state.engine.map_type_name(arg_values[0].type_name()).into(); *expr = Expr::from_dynamic(typ, *pos); return; } #[cfg(not(feature = "no_closure"))] crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => { state.set_dirty(); *expr = Expr::from_dynamic(Dynamic::FALSE, *pos); return; } // Overloaded operators can override built-in. _ if x.args.len() == 2 && x.op_token.is_some() && (state.engine.fast_operators() || !state.engine.has_native_fn_override(x.hashes.native(), &arg_types)) => { if let Some(result) = get_builtin_binary_op_fn(x.op_token.as_ref().unwrap(), &arg_values[0], &arg_values[1]) .and_then(|(f, ctx)| { let context = ctx.then(|| (state.engine, x.name.as_str(), None, &state.global, *pos).into()); let (first, second) = arg_values.split_first_mut().unwrap(); f(context, &mut [ first, &mut second[0] ]).ok() }) { state.set_dirty(); *expr = Expr::from_dynamic(result, *pos); return; } } _ => () } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); // Move constant arguments x.args.iter_mut().for_each(|arg| match arg { Expr::DynamicConstant(..) | Expr::Unit(..) | Expr::StringConstant(..) | Expr::CharConstant(..) | Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (), #[cfg(not(feature = "no_float"))] Expr:: FloatConstant(..) => (), _ => if let Some(value) = arg.get_literal_value() { state.set_dirty(); *arg = Expr::DynamicConstant(value.into(), arg.start_position()); }, }); } // Eagerly call functions Expr::FnCall(x, pos) if !x.is_qualified() // non-qualified && state.optimization_level == OptimizationLevel::Full // full optimizations && x.constant_args() // all arguments are constants => { // First search for script-defined functions (can override built-in) #[cfg(not(feature = "no_function"))] let has_script_fn = !x.hashes.is_native_only() && state.global.lib.iter().find_map(|m| m.get_script_fn(&x.name, x.args.len())).is_some(); #[cfg(feature = "no_function")] let has_script_fn = false; if !has_script_fn { let arg_values = &mut x.args.iter().map(Expr::get_literal_value).collect::>>().unwrap(); let result = match x.name.as_str() { KEYWORD_TYPE_OF if arg_values.len() == 1 => Some(state.engine.map_type_name(arg_values[0].type_name()).into()), #[cfg(not(feature = "no_closure"))] crate::engine::KEYWORD_IS_SHARED if arg_values.len() == 1 => Some(Dynamic::FALSE), _ => state.call_fn_with_constant_arguments(&x.name, x.op_token.as_ref(), arg_values) }; if let Some(r) = result { state.set_dirty(); *expr = Expr::from_dynamic(r, *pos); return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state, false)); } // id(args ..) or xxx.id(args ..) -> optimize function call arguments Expr::FnCall(x, ..) | Expr::MethodCall(x, ..) => x.args.iter_mut().for_each(|arg| { optimize_expr(arg, state, false); // Move constant arguments match arg { Expr::DynamicConstant(..) | Expr::Unit(..) | Expr::StringConstant(..) | Expr::CharConstant(..) | Expr::BoolConstant(..) | Expr::IntegerConstant(..) => (), #[cfg(not(feature = "no_float"))] Expr:: FloatConstant(..) => (), _ => if let Some(value) = arg.get_literal_value() { state.set_dirty(); *arg = Expr::DynamicConstant(value.into(), arg.start_position()); }, } }), // constant-name #[cfg(not(feature = "no_module"))] Expr::Variable(x, ..) if !x.1.is_empty() => (), Expr::Variable(x, .., pos) if state.find_constant(&x.3).is_some() => { // Replace constant with value *expr = Expr::from_dynamic(state.find_constant(&x.3).unwrap().clone(), *pos); state.set_dirty(); } // Custom syntax #[cfg(not(feature = "no_custom_syntax"))] Expr::Custom(x, ..) => { if x.scope_may_be_changed { state.propagate_constants = false; } // Do not optimize custom syntax expressions as you won't know how they would be called } // All other expressions - skip _ => (), } } impl Engine { /// Has a system function a Rust-native override? fn has_native_fn_override(&self, hash_script: u64, arg_types: impl AsRef<[TypeId]>) -> bool { let hash = calc_fn_hash_full(hash_script, arg_types.as_ref().iter().copied()); // First check the global namespace and packages, but skip modules that are standard because // they should never conflict with system functions. if self .global_modules .iter() .filter(|m| !m.flags.contains(ModuleFlags::STANDARD_LIB)) .any(|m| m.contains_fn(hash)) { return true; } // Then check sub-modules #[cfg(not(feature = "no_module"))] if self .global_sub_modules .as_deref() .into_iter() .flatten() .any(|(_, m)| m.contains_qualified_fn(hash)) { return true; } false } /// Optimize a block of [statements][Stmt] at top level. /// /// Constants and variables from the scope are added. fn optimize_top_level( &self, statements: StmtBlockContainer, scope: Option<&Scope>, lib: &[crate::SharedModule], optimization_level: OptimizationLevel, ) -> StmtBlockContainer { let mut statements = statements; // If optimization level is None then skip optimizing if optimization_level == OptimizationLevel::None { statements.shrink_to_fit(); return statements; } // Set up the state let mut state = OptimizerState::new(self, lib, optimization_level); // Add constants from global modules self.global_modules .iter() .rev() .flat_map(|m| m.iter_var()) .for_each(|(name, value)| { state.push_var(name, AccessMode::ReadOnly, Some(value.clone())) }); // Add constants and variables from the scope scope .into_iter() .flat_map(Scope::iter) .for_each(|(name, constant, value)| { if constant { state.push_var(name, AccessMode::ReadOnly, Some(value)); } else { state.push_var(name, AccessMode::ReadWrite, None); } }); optimize_stmt_block(statements, &mut state, true, false, true) } /// Optimize a collection of statements and functions into an [`AST`]. pub(crate) fn optimize_into_ast( &self, scope: Option<&Scope>, statements: StmtBlockContainer, #[cfg(not(feature = "no_function"))] functions: StaticVec< crate::Shared, >, optimization_level: OptimizationLevel, ) -> AST { let mut statements = statements; #[cfg(not(feature = "no_function"))] let lib: crate::Shared<_> = { let mut module = crate::Module::new(); if optimization_level == OptimizationLevel::None { functions.into_iter().for_each(|fn_def| { module.set_script_fn(fn_def); }); } else { // We only need the script library's signatures for optimization purposes let mut lib2 = crate::Module::new(); functions .iter() .map(|fn_def| crate::ast::ScriptFnDef { name: fn_def.name.clone(), access: fn_def.access, body: crate::ast::StmtBlock::NONE, params: fn_def.params.clone(), #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: Box::default(), }) .for_each(|script_def| { lib2.set_script_fn(script_def); }); let lib2 = &[lib2.into()]; functions.into_iter().for_each(|fn_def| { let mut fn_def = crate::func::shared_take_or_clone(fn_def); // Optimize the function body let body = mem::take(&mut *fn_def.body); *fn_def.body = self.optimize_top_level(body, scope, lib2, optimization_level); module.set_script_fn(fn_def); }); } module.into() }; #[cfg(feature = "no_function")] let lib: crate::Shared<_> = crate::Module::new().into(); statements.shrink_to_fit(); AST::new( match optimization_level { OptimizationLevel::None => statements, OptimizationLevel::Simple | OptimizationLevel::Full => { self.optimize_top_level(statements, scope, &[lib.clone()], optimization_level) } }, #[cfg(not(feature = "no_function"))] lib, ) } }