//! Helper module that allows registration of the _core library_ and //! _standard library_ of utility functions. use crate::any::Any; use crate::engine::Engine; use crate::fn_register::{RegisterDynamicFn, RegisterFn, RegisterResultFn}; use crate::parser::{Position, INT}; use crate::result::EvalAltResult; #[cfg(not(feature = "no_index"))] use crate::engine::Array; #[cfg(not(feature = "no_float"))] use crate::parser::FLOAT; use num_traits::{ identities::Zero, CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub, }; use crate::stdlib::{ boxed::Box, fmt::{Debug, Display}, format, ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Range, Rem, Shl, Shr, Sub}, string::{String, ToString}, vec::Vec, {i32, i64, u32}, }; macro_rules! reg_op { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $y, y: $y)->$y); )* ) } #[cfg(not(feature = "unchecked"))] macro_rules! reg_op_result { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( $self.register_result_fn($x, $op as fn(x: $y, y: $y)->Result<$y,EvalAltResult>); )* ) } #[cfg(not(feature = "unchecked"))] macro_rules! reg_op_result1 { ($self:expr, $x:expr, $op:expr, $v:ty, $( $y:ty ),*) => ( $( $self.register_result_fn($x, $op as fn(x: $y, y: $v)->Result<$y,EvalAltResult>); )* ) } impl Engine<'_> { /// Register the core built-in library. pub(crate) fn register_core_lib(&mut self) { /// Checked add #[cfg(not(feature = "unchecked"))] fn add(x: T, y: T) -> Result { x.checked_add(&y).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Addition overflow: {} + {}", x, y), Position::none(), ) }) } /// Checked subtract #[cfg(not(feature = "unchecked"))] fn sub(x: T, y: T) -> Result { x.checked_sub(&y).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Subtraction underflow: {} - {}", x, y), Position::none(), ) }) } /// Checked multiply #[cfg(not(feature = "unchecked"))] fn mul(x: T, y: T) -> Result { x.checked_mul(&y).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Multiplication overflow: {} * {}", x, y), Position::none(), ) }) } /// Checked divide #[cfg(not(feature = "unchecked"))] fn div(x: T, y: T) -> Result where T: Display + CheckedDiv + PartialEq + Zero, { // Detect division by zero if y == T::zero() { return Err(EvalAltResult::ErrorArithmetic( format!("Division by zero: {} / {}", x, y), Position::none(), )); } x.checked_div(&y).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Division overflow: {} / {}", x, y), Position::none(), ) }) } /// Checked negative - e.g. -(i32::MIN) will overflow i32::MAX #[cfg(not(feature = "unchecked"))] fn neg(x: T) -> Result { x.checked_neg().ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Negation overflow: -{}", x), Position::none(), ) }) } /// Checked absolute #[cfg(not(feature = "unchecked"))] fn abs(x: T) -> Result { // FIX - We don't use Signed::abs() here because, contrary to documentation, it panics // when the number is ::MIN instead of returning ::MIN itself. if x >= ::zero() { Ok(x) } else { x.checked_neg().ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Negation overflow: -{}", x), Position::none(), ) }) } } /// Unchecked add - may panic on overflow #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn add_u(x: T, y: T) -> ::Output { x + y } /// Unchecked subtract - may panic on underflow #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn sub_u(x: T, y: T) -> ::Output { x - y } /// Unchecked multiply - may panic on overflow #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn mul_u(x: T, y: T) -> ::Output { x * y } /// Unchecked divide - may panic when dividing by zero #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn div_u(x: T, y: T) -> ::Output { x / y } /// Unchecked negative - may panic on overflow #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn neg_u(x: T) -> ::Output { -x } /// Unchecked absolute - may panic on overflow #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn abs_u(x: T) -> ::Output where T: Neg + PartialOrd + Default + Into<::Output>, { // Numbers should default to zero if x < Default::default() { -x } else { x.into() } } // Comparison operators fn lt(x: T, y: T) -> bool { x < y } fn lte(x: T, y: T) -> bool { x <= y } fn gt(x: T, y: T) -> bool { x > y } fn gte(x: T, y: T) -> bool { x >= y } fn eq(x: T, y: T) -> bool { x == y } fn ne(x: T, y: T) -> bool { x != y } // Logic operators fn and(x: bool, y: bool) -> bool { x && y } fn or(x: bool, y: bool) -> bool { x || y } fn not(x: bool) -> bool { !x } // Bit operators fn binary_and(x: T, y: T) -> ::Output { x & y } fn binary_or(x: T, y: T) -> ::Output { x | y } fn binary_xor(x: T, y: T) -> ::Output { x ^ y } /// Checked left-shift #[cfg(not(feature = "unchecked"))] fn shl(x: T, y: INT) -> Result { // Cannot shift by a negative number of bits if y < 0 { return Err(EvalAltResult::ErrorArithmetic( format!("Left-shift by a negative number: {} << {}", x, y), Position::none(), )); } CheckedShl::checked_shl(&x, y as u32).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Left-shift by too many bits: {} << {}", x, y), Position::none(), ) }) } /// Checked right-shift #[cfg(not(feature = "unchecked"))] fn shr(x: T, y: INT) -> Result { // Cannot shift by a negative number of bits if y < 0 { return Err(EvalAltResult::ErrorArithmetic( format!("Right-shift by a negative number: {} >> {}", x, y), Position::none(), )); } CheckedShr::checked_shr(&x, y as u32).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Right-shift by too many bits: {} % {}", x, y), Position::none(), ) }) } /// Unchecked left-shift - may panic if shifting by a negative number of bits #[cfg(feature = "unchecked")] fn shl_u>(x: T, y: T) -> >::Output { x.shl(y) } /// Unchecked right-shift - may panic if shifting by a negative number of bits #[cfg(feature = "unchecked")] fn shr_u>(x: T, y: T) -> >::Output { x.shr(y) } /// Checked modulo #[cfg(not(feature = "unchecked"))] fn modulo(x: T, y: T) -> Result { x.checked_rem(&y).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Modulo division by zero or overflow: {} % {}", x, y), Position::none(), ) }) } /// Unchecked modulo - may panic if dividing by zero #[cfg(any(feature = "unchecked", not(feature = "no_float")))] fn modulo_u(x: T, y: T) -> ::Output { x % y } /// Checked power #[cfg(not(feature = "unchecked"))] fn pow_i_i(x: INT, y: INT) -> Result { #[cfg(not(feature = "only_i32"))] { if y > (u32::MAX as INT) { Err(EvalAltResult::ErrorArithmetic( format!("Integer raised to too large an index: {} ~ {}", x, y), Position::none(), )) } else if y < 0 { Err(EvalAltResult::ErrorArithmetic( format!("Integer raised to a negative index: {} ~ {}", x, y), Position::none(), )) } else { x.checked_pow(y as u32).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Power overflow: {} ~ {}", x, y), Position::none(), ) }) } } #[cfg(feature = "only_i32")] { if y < 0 { Err(EvalAltResult::ErrorArithmetic( format!("Integer raised to a negative index: {} ~ {}", x, y), Position::none(), )) } else { x.checked_pow(y as u32).ok_or_else(|| { EvalAltResult::ErrorArithmetic( format!("Power overflow: {} ~ {}", x, y), Position::none(), ) }) } } } /// Unchecked integer power - may panic on overflow or if the power index is too high (> u32::MAX) #[cfg(feature = "unchecked")] fn pow_i_i_u(x: INT, y: INT) -> INT { x.pow(y as u32) } /// Floating-point power - always well-defined #[cfg(not(feature = "no_float"))] fn pow_f_f(x: FLOAT, y: FLOAT) -> FLOAT { x.powf(y) } /// Checked power #[cfg(not(feature = "unchecked"))] #[cfg(not(feature = "no_float"))] fn pow_f_i(x: FLOAT, y: INT) -> Result { // Raise to power that is larger than an i32 if y > (i32::MAX as INT) { return Err(EvalAltResult::ErrorArithmetic( format!("Number raised to too large an index: {} ~ {}", x, y), Position::none(), )); } Ok(x.powi(y as i32)) } /// Unchecked power - may be incorrect if the power index is too high (> i32::MAX) #[cfg(feature = "unchecked")] #[cfg(not(feature = "no_float"))] fn pow_f_i_u(x: FLOAT, y: INT) -> FLOAT { x.powi(y as i32) } #[cfg(not(feature = "unchecked"))] { reg_op_result!(self, "+", add, INT); reg_op_result!(self, "-", sub, INT); reg_op_result!(self, "*", mul, INT); reg_op_result!(self, "/", div, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_op_result!(self, "+", add, i8, u8, i16, u16, i32, i64, u32, u64); reg_op_result!(self, "-", sub, i8, u8, i16, u16, i32, i64, u32, u64); reg_op_result!(self, "*", mul, i8, u8, i16, u16, i32, i64, u32, u64); reg_op_result!(self, "/", div, i8, u8, i16, u16, i32, i64, u32, u64); } } #[cfg(feature = "unchecked")] { reg_op!(self, "+", add_u, INT); reg_op!(self, "-", sub_u, INT); reg_op!(self, "*", mul_u, INT); reg_op!(self, "/", div_u, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_op!(self, "+", add_u, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "-", sub_u, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "*", mul_u, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "/", div_u, i8, u8, i16, u16, i32, i64, u32, u64); } } #[cfg(not(feature = "no_float"))] { reg_op!(self, "+", add_u, f32, f64); reg_op!(self, "-", sub_u, f32, f64); reg_op!(self, "*", mul_u, f32, f64); reg_op!(self, "/", div_u, f32, f64); } { macro_rules! reg_cmp { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $y, y: $y)->bool); )* ) } reg_cmp!(self, "<", lt, INT, String, char); reg_cmp!(self, "<=", lte, INT, String, char); reg_cmp!(self, ">", gt, INT, String, char); reg_cmp!(self, ">=", gte, INT, String, char); reg_cmp!(self, "==", eq, INT, String, char, bool); reg_cmp!(self, "!=", ne, INT, String, char, bool); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_cmp!(self, "<", lt, i8, u8, i16, u16, i32, i64, u32, u64); reg_cmp!(self, "<=", lte, i8, u8, i16, u16, i32, i64, u32, u64); reg_cmp!(self, ">", gt, i8, u8, i16, u16, i32, i64, u32, u64); reg_cmp!(self, ">=", gte, i8, u8, i16, u16, i32, i64, u32, u64); reg_cmp!(self, "==", eq, i8, u8, i16, u16, i32, i64, u32, u64); reg_cmp!(self, "!=", ne, i8, u8, i16, u16, i32, i64, u32, u64); } #[cfg(not(feature = "no_float"))] { reg_cmp!(self, "<", lt, f32, f64); reg_cmp!(self, "<=", lte, f32, f64); reg_cmp!(self, ">", gt, f32, f64); reg_cmp!(self, ">=", gte, f32, f64); reg_cmp!(self, "==", eq, f32, f64); reg_cmp!(self, "!=", ne, f32, f64); } } // `&&` and `||` are treated specially as they short-circuit //reg_op!(self, "||", or, bool); //reg_op!(self, "&&", and, bool); reg_op!(self, "|", or, bool); reg_op!(self, "&", and, bool); reg_op!(self, "|", binary_or, INT); reg_op!(self, "&", binary_and, INT); reg_op!(self, "^", binary_xor, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_op!(self, "|", binary_or, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "&", binary_and, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "^", binary_xor, i8, u8, i16, u16, i32, i64, u32, u64); } #[cfg(not(feature = "unchecked"))] { reg_op_result1!(self, "<<", shl, INT, INT); reg_op_result1!(self, ">>", shr, INT, INT); reg_op_result!(self, "%", modulo, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_op_result1!(self, "<<", shl, i64, i8, u8, i16, u16, i32, i64, u32, u64); reg_op_result1!(self, ">>", shr, i64, i8, u8, i16, u16, i32, i64, u32, u64); reg_op_result!(self, "%", modulo, i8, u8, i16, u16, i32, i64, u32, u64); } } #[cfg(feature = "unchecked")] { reg_op!(self, "<<", shl_u, INT, INT); reg_op!(self, ">>", shr_u, INT, INT); reg_op!(self, "%", modulo_u, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_op!(self, "<<", shl_u, i64, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, ">>", shr_u, i64, i8, u8, i16, u16, i32, i64, u32, u64); reg_op!(self, "%", modulo_u, i8, u8, i16, u16, i32, i64, u32, u64); } } #[cfg(not(feature = "no_float"))] { reg_op!(self, "%", modulo_u, f32, f64); self.register_fn("~", pow_f_f); } #[cfg(not(feature = "unchecked"))] { self.register_result_fn("~", pow_i_i); #[cfg(not(feature = "no_float"))] self.register_result_fn("~", pow_f_i); } #[cfg(feature = "unchecked")] { self.register_fn("~", pow_i_i_u); #[cfg(not(feature = "no_float"))] self.register_fn("~", pow_f_i_u); } { macro_rules! reg_un { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $y)->$y); )* ) } #[cfg(not(feature = "unchecked"))] macro_rules! reg_un_result { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( $self.register_result_fn($x, $op as fn(x: $y)->Result<$y,EvalAltResult>); )* ) } #[cfg(not(feature = "unchecked"))] { reg_un_result!(self, "-", neg, INT); reg_un_result!(self, "abs", abs, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_un_result!(self, "-", neg, i8, i16, i32, i64); reg_un_result!(self, "abs", abs, i8, i16, i32, i64); } } #[cfg(feature = "unchecked")] { reg_un!(self, "-", neg_u, INT); reg_un!(self, "abs", abs_u, INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_un!(self, "-", neg_u, i8, i16, i32, i64); reg_un!(self, "abs", abs_u, i8, i16, i32, i64); } } #[cfg(not(feature = "no_float"))] { reg_un!(self, "-", neg_u, f32, f64); reg_un!(self, "abs", abs_u, f32, f64); } reg_un!(self, "!", not, bool); } self.register_fn("+", |x: String, y: String| x + &y); // String + String self.register_fn("==", |_: (), _: ()| true); // () == () // Register print and debug fn debug(x: T) -> String { format!("{:?}", x) } fn print(x: T) -> String { format!("{}", x) } { macro_rules! reg_fn1 { ($self:expr, $x:expr, $op:expr, $r:ty, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $y)->$r); )* ) } reg_fn1!(self, "print", print, String, INT, bool, char, String); self.register_fn("print", || "".to_string()); self.register_fn("print", |_: ()| "".to_string()); reg_fn1!(self, "debug", debug, String, INT, bool, char, String, ()); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_fn1!(self, "print", print, String, i8, u8, i16, u16); reg_fn1!(self, "print", print, String, i32, i64, u32, u64); reg_fn1!(self, "debug", debug, String, i8, u8, i16, u16); reg_fn1!(self, "debug", debug, String, i32, i64, u32, u64); } #[cfg(not(feature = "no_float"))] { reg_fn1!(self, "print", print, String, f32, f64); reg_fn1!(self, "debug", debug, String, f32, f64); } #[cfg(not(feature = "no_index"))] { reg_fn1!(self, "print", debug, String, Array); reg_fn1!(self, "debug", debug, String, Array); // Register array iterator self.register_iterator::(|a| { Box::new(a.downcast_ref::().unwrap().clone().into_iter()) }); } } // Register range function fn reg_iterator(engine: &mut Engine) where Range: Iterator, { engine.register_iterator::, _>(|a| { Box::new( a.downcast_ref::>() .unwrap() .clone() .map(|n| n.into_dynamic()), ) }); } fn range(from: T, to: T) -> Range { from..to } reg_iterator::(self); self.register_fn("range", |i1: INT, i2: INT| (i1..i2)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { macro_rules! reg_range { ($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => ( $( reg_iterator::<$y>(self); $self.register_fn($x, $op as fn(x: $y, y: $y)->Range<$y>); )* ) } reg_range!(self, "range", range, i8, u8, i16, u16, i32, i64, u32, u64); } } } macro_rules! reg_fn2x { ($self:expr, $x:expr, $op:expr, $v:ty, $r:ty, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $v, y: $y)->$r); )* ) } macro_rules! reg_fn2y { ($self:expr, $x:expr, $op:expr, $v:ty, $r:ty, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(y: $y, x: $v)->$r); )* ) } /// Register the built-in library. impl Engine<'_> { #[cfg(not(feature = "no_stdlib"))] pub(crate) fn register_stdlib(&mut self) { #[cfg(not(feature = "no_float"))] { // Advanced math functions self.register_fn("sin", |x: FLOAT| x.to_radians().sin()); self.register_fn("cos", |x: FLOAT| x.to_radians().cos()); self.register_fn("tan", |x: FLOAT| x.to_radians().tan()); self.register_fn("sinh", |x: FLOAT| x.to_radians().sinh()); self.register_fn("cosh", |x: FLOAT| x.to_radians().cosh()); self.register_fn("tanh", |x: FLOAT| x.to_radians().tanh()); self.register_fn("asin", |x: FLOAT| x.asin().to_degrees()); self.register_fn("acos", |x: FLOAT| x.acos().to_degrees()); self.register_fn("atan", |x: FLOAT| x.atan().to_degrees()); self.register_fn("asinh", |x: FLOAT| x.asinh().to_degrees()); self.register_fn("acosh", |x: FLOAT| x.acosh().to_degrees()); self.register_fn("atanh", |x: FLOAT| x.atanh().to_degrees()); self.register_fn("sqrt", |x: FLOAT| x.sqrt()); self.register_fn("exp", |x: FLOAT| x.exp()); self.register_fn("ln", |x: FLOAT| x.ln()); self.register_fn("log", |x: FLOAT, base: FLOAT| x.log(base)); self.register_fn("log10", |x: FLOAT| x.log10()); self.register_fn("floor", |x: FLOAT| x.floor()); self.register_fn("ceiling", |x: FLOAT| x.ceil()); self.register_fn("round", |x: FLOAT| x.ceil()); self.register_fn("int", |x: FLOAT| x.trunc()); self.register_fn("fraction", |x: FLOAT| x.fract()); self.register_fn("is_nan", |x: FLOAT| x.is_nan()); self.register_fn("is_finite", |x: FLOAT| x.is_finite()); self.register_fn("is_infinite", |x: FLOAT| x.is_infinite()); // Register conversion functions self.register_fn("to_float", |x: INT| x as FLOAT); self.register_fn("to_float", |x: f32| x as FLOAT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { self.register_fn("to_float", |x: i8| x as FLOAT); self.register_fn("to_float", |x: u8| x as FLOAT); self.register_fn("to_float", |x: i16| x as FLOAT); self.register_fn("to_float", |x: u16| x as FLOAT); self.register_fn("to_float", |x: i32| x as FLOAT); self.register_fn("to_float", |x: u32| x as FLOAT); self.register_fn("to_float", |x: i64| x as FLOAT); self.register_fn("to_float", |x: u64| x as FLOAT); } } self.register_fn("to_int", |ch: char| ch as INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { self.register_fn("to_int", |x: i8| x as INT); self.register_fn("to_int", |x: u8| x as INT); self.register_fn("to_int", |x: i16| x as INT); self.register_fn("to_int", |x: u16| x as INT); } #[cfg(not(feature = "only_i32"))] { self.register_fn("to_int", |x: i32| x as INT); self.register_fn("to_int", |x: u64| x as INT); #[cfg(feature = "only_i64")] self.register_fn("to_int", |x: u32| x as INT); } #[cfg(not(feature = "no_float"))] { #[cfg(not(feature = "unchecked"))] { self.register_result_fn("to_int", |x: f32| { if x > (i64::MAX as f32) { return Err(EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::none(), )); } Ok(x.trunc() as INT) }); self.register_result_fn("to_int", |x: FLOAT| { if x > (i64::MAX as FLOAT) { return Err(EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::none(), )); } Ok(x.trunc() as INT) }); } #[cfg(feature = "unchecked")] { self.register_fn("to_int", |x: f32| x as INT); self.register_fn("to_int", |x: f64| x as INT); } } #[cfg(not(feature = "no_index"))] { macro_rules! reg_fn3 { ($self:expr, $x:expr, $op:expr, $v:ty, $w:ty, $r:ty, $( $y:ty ),*) => ( $( $self.register_fn($x, $op as fn(x: $v, y: $w, z: $y)->$r); )* ) } // Register array utility functions fn push(list: &mut Array, item: T) { list.push(Box::new(item)); } fn pad(list: &mut Array, len: INT, item: T) { if len >= 0 { while list.len() < len as usize { push(list, item.clone()); } } } reg_fn2x!(self, "push", push, &mut Array, (), INT, bool, char); reg_fn2x!(self, "push", push, &mut Array, (), String, Array, ()); reg_fn3!(self, "pad", pad, &mut Array, INT, (), INT, bool, char); reg_fn3!(self, "pad", pad, &mut Array, INT, (), String, Array, ()); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_fn2x!(self, "push", push, &mut Array, (), i8, u8, i16, u16); reg_fn2x!(self, "push", push, &mut Array, (), i32, i64, u32, u64); reg_fn3!(self, "pad", pad, &mut Array, INT, (), i8, u8, i16, u16); reg_fn3!(self, "pad", pad, &mut Array, INT, (), i32, u32, i64, u64); } #[cfg(not(feature = "no_float"))] { reg_fn2x!(self, "push", push, &mut Array, (), f32, f64); reg_fn3!(self, "pad", pad, &mut Array, INT, (), f32, f64); } self.register_dynamic_fn("pop", |list: &mut Array| { list.pop().unwrap_or_else(|| ().into_dynamic()) }); self.register_dynamic_fn("shift", |list: &mut Array| { if !list.is_empty() { ().into_dynamic() } else { list.remove(0) } }); self.register_fn("len", |list: &mut Array| list.len() as INT); self.register_fn("clear", |list: &mut Array| list.clear()); self.register_fn("truncate", |list: &mut Array, len: INT| { if len >= 0 { list.truncate(len as usize); } }); } // Register string concatenate functions fn prepend(x: T, y: String) -> String { format!("{}{}", x, y) } fn append(x: String, y: T) -> String { format!("{}{}", x, y) } reg_fn2x!(self, "+", append, String, String, INT, bool, char); self.register_fn("+", |x: String, _: ()| format!("{}", x)); reg_fn2y!(self, "+", prepend, String, String, INT, bool, char); self.register_fn("+", |_: (), y: String| format!("{}", y)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_fn2x!(self, "+", append, String, String, i8, u8, i16, u16, i32, i64, u32, u64); reg_fn2y!(self, "+", prepend, String, String, i8, u8, i16, u16, i32, i64, u32, u64); } #[cfg(not(feature = "no_float"))] { reg_fn2x!(self, "+", append, String, String, f32, f64); reg_fn2y!(self, "+", prepend, String, String, f32, f64); } #[cfg(not(feature = "no_index"))] { self.register_fn("+", |x: String, y: Array| format!("{}{:?}", x, y)); self.register_fn("+", |x: Array, y: String| format!("{:?}{}", x, y)); } // Register string utility functions self.register_fn("len", |s: &mut String| s.chars().count() as INT); self.register_fn("contains", |s: &mut String, ch: char| s.contains(ch)); self.register_fn("contains", |s: &mut String, find: String| s.contains(&find)); self.register_fn("clear", |s: &mut String| s.clear()); self.register_fn("append", |s: &mut String, ch: char| s.push(ch)); self.register_fn("append", |s: &mut String, add: String| s.push_str(&add)); self.register_fn("truncate", |s: &mut String, len: INT| { if len >= 0 { let chars: Vec<_> = s.chars().take(len as usize).collect(); s.clear(); chars.iter().for_each(|&ch| s.push(ch)); } else { s.clear(); } }); self.register_fn("pad", |s: &mut String, len: INT, ch: char| { for _ in 0..s.chars().count() - len as usize { s.push(ch); } }); self.register_fn("replace", |s: &mut String, find: String, sub: String| { let new_str = s.replace(&find, &sub); s.clear(); s.push_str(&new_str); }); self.register_fn("trim", |s: &mut String| { let trimmed = s.trim(); if trimmed.len() < s.len() { let chars: Vec<_> = trimmed.chars().collect(); s.clear(); chars.iter().for_each(|&ch| s.push(ch)); } }); } }