#![allow(non_snake_case)] use crate::def_package; use crate::parser::INT; use crate::plugin::*; #[cfg(not(feature = "no_float"))] use crate::parser::FLOAT; #[cfg(not(feature = "no_float"))] use crate::{result::EvalAltResult, token::Position}; #[cfg(feature = "no_std")] #[cfg(not(feature = "no_float"))] use num_traits::float::Float; #[cfg(not(feature = "no_float"))] use crate::stdlib::format; #[allow(dead_code)] #[cfg(feature = "only_i32")] pub const MAX_INT: INT = i32::MAX; #[allow(dead_code)] #[cfg(not(feature = "only_i32"))] pub const MAX_INT: INT = i64::MAX; macro_rules! gen_conversion_functions { ($root:ident => $func_name:ident ( $($arg_type:ident),+ ) -> $result_type:ty) => { pub mod $root { $(pub mod $arg_type { use super::super::*; #[export_fn] #[inline(always)] pub fn $func_name(x: $arg_type) -> $result_type { x as $result_type } })* } } } macro_rules! reg_functions { ($mod_name:ident += $root:ident :: $func_name:ident ( $($arg_type:ident),+ ) ) => { $( set_exported_fn!($mod_name, stringify!($func_name), $root::$arg_type::$func_name); )* } } def_package!(crate:BasicMathPackage:"Basic mathematic functions.", lib, { #[cfg(not(feature = "no_float"))] { // Floating point functions lib.combine_flatten(exported_module!(float_functions)); // Trig functions lib.combine_flatten(exported_module!(trig_functions)); reg_functions!(lib += basic_to_float::to_float(INT)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_functions!(lib += numbers_to_float::to_float(i8, u8, i16, u16, i32, u32, i64, u32)); #[cfg(not(target_arch = "wasm32"))] reg_functions!(lib += num_128_to_float::to_float(i128, u128)); } } reg_functions!(lib += basic_to_int::to_int(char)); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] { reg_functions!(lib += numbers_to_int::to_int(i8, u8, i16, u16, i32, u32, i64, u64)); #[cfg(not(target_arch = "wasm32"))] reg_functions!(lib += num_128_to_int::to_int(i128, u128)); } }); #[cfg(not(feature = "no_float"))] #[export_module] mod trig_functions { use crate::parser::FLOAT; #[inline(always)] pub fn sin(x: FLOAT) -> FLOAT { x.to_radians().sin() } #[inline(always)] pub fn cos(x: FLOAT) -> FLOAT { x.to_radians().cos() } #[inline(always)] pub fn tan(x: FLOAT) -> FLOAT { x.to_radians().tan() } #[inline(always)] pub fn sinh(x: FLOAT) -> FLOAT { x.to_radians().sinh() } #[inline(always)] pub fn cosh(x: FLOAT) -> FLOAT { x.to_radians().cosh() } #[inline(always)] pub fn tanh(x: FLOAT) -> FLOAT { x.to_radians().tanh() } #[inline(always)] pub fn asin(x: FLOAT) -> FLOAT { x.asin().to_degrees() } #[inline(always)] pub fn acos(x: FLOAT) -> FLOAT { x.acos().to_degrees() } #[inline(always)] pub fn atan(x: FLOAT) -> FLOAT { x.atan().to_degrees() } #[inline(always)] pub fn asinh(x: FLOAT) -> FLOAT { x.asinh().to_degrees() } #[inline(always)] pub fn acosh(x: FLOAT) -> FLOAT { x.acosh().to_degrees() } #[inline(always)] pub fn atanh(x: FLOAT) -> FLOAT { x.atanh().to_degrees() } } #[cfg(not(feature = "no_float"))] #[export_module] mod float_functions { use crate::parser::FLOAT; #[inline(always)] pub fn sqrt(x: FLOAT) -> FLOAT { x.sqrt() } #[inline(always)] pub fn exp(x: FLOAT) -> FLOAT { x.exp() } #[inline(always)] pub fn ln(x: FLOAT) -> FLOAT { x.ln() } #[inline(always)] pub fn log(x: FLOAT, base: FLOAT) -> FLOAT { x.log(base) } #[inline(always)] pub fn log10(x: FLOAT) -> FLOAT { x.log10() } #[inline(always)] pub fn floor(x: FLOAT) -> FLOAT { x.floor() } #[rhai_fn(get = "floor")] #[inline(always)] pub fn floor_prop(x: FLOAT) -> FLOAT { floor(x) } #[inline(always)] pub fn ceiling(x: FLOAT) -> FLOAT { x.ceil() } #[rhai_fn(get = "ceiling")] #[inline(always)] pub fn ceiling_prop(x: FLOAT) -> FLOAT { ceiling(x) } #[inline(always)] pub fn round(x: FLOAT) -> FLOAT { x.ceil() } #[rhai_fn(get = "round")] #[inline(always)] pub fn round_prop(x: FLOAT) -> FLOAT { ceiling(x) } #[inline(always)] pub fn int(x: FLOAT) -> FLOAT { x.trunc() } #[rhai_fn(get = "int")] #[inline(always)] pub fn int_prop(x: FLOAT) -> FLOAT { int(x) } #[inline(always)] pub fn fraction(x: FLOAT) -> FLOAT { x.fract() } #[rhai_fn(get = "fraction")] #[inline(always)] pub fn fraction_prop(x: FLOAT) -> FLOAT { fraction(x) } #[inline(always)] pub fn is_nan(x: FLOAT) -> bool { x.is_nan() } #[rhai_fn(get = "is_nan")] #[inline(always)] pub fn is_nan_prop(x: FLOAT) -> bool { is_nan(x) } #[inline(always)] pub fn is_finite(x: FLOAT) -> bool { x.is_finite() } #[rhai_fn(get = "is_finite")] #[inline(always)] pub fn is_finite_prop(x: FLOAT) -> bool { is_finite(x) } #[inline(always)] pub fn is_infinite(x: FLOAT) -> bool { x.is_infinite() } #[rhai_fn(get = "is_infinite")] #[inline(always)] pub fn is_infinite_prop(x: FLOAT) -> bool { is_infinite(x) } #[rhai_fn(name = "to_int", return_raw)] #[inline] pub fn f32_to_int(x: f32) -> Result> { if cfg!(not(feature = "unchecked")) && x > (MAX_INT as f32) { EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::none(), ) .into() } else { Ok((x.trunc() as INT).into()) } } #[rhai_fn(name = "to_int", return_raw)] #[inline] pub fn f64_to_int(x: f64) -> Result> { if cfg!(not(feature = "unchecked")) && x > (MAX_INT as f64) { EvalAltResult::ErrorArithmetic( format!("Integer overflow: to_int({})", x), Position::none(), ) .into() } else { Ok((x.trunc() as INT).into()) } } } #[cfg(not(feature = "no_float"))] gen_conversion_functions!(basic_to_float => to_float (INT) -> FLOAT); #[cfg(not(feature = "no_float"))] #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] gen_conversion_functions!(numbers_to_float => to_float (i8, u8, i16, u16, i32, u32, i64, u64) -> FLOAT); #[cfg(not(feature = "no_float"))] #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] #[cfg(not(target_arch = "wasm32"))] gen_conversion_functions!(num_128_to_float => to_float (i128, u128) -> FLOAT); gen_conversion_functions!(basic_to_int => to_int (char) -> INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] gen_conversion_functions!(numbers_to_int => to_int (i8, u8, i16, u16, i32, u32, i64, u64) -> INT); #[cfg(not(feature = "only_i32"))] #[cfg(not(feature = "only_i64"))] #[cfg(not(target_arch = "wasm32"))] gen_conversion_functions!(num_128_to_int => to_int (i128, u128) -> INT);