//! Module implementing the [`AST`] optimizer. use crate::ast::{Expr, Stmt, StmtBlock}; use crate::dynamic::AccessMode; use crate::engine::{KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF}; use crate::fn_builtin::get_builtin_binary_op_fn; use crate::parser::map_dynamic_to_expr; use crate::stdlib::{ any::TypeId, boxed::Box, hash::{Hash, Hasher}, iter::empty, mem, string::{String, ToString}, vec, vec::Vec, }; use crate::utils::get_hasher; use crate::{ calc_fn_hash, calc_fn_params_hash, combine_hashes, Dynamic, Engine, ImmutableString, Module, Position, Scope, StaticVec, AST, }; /// Level of optimization performed. #[derive(Debug, Eq, PartialEq, Hash, Clone, Copy)] pub enum OptimizationLevel { /// No optimization performed. None, /// Only perform simple optimizations without evaluating functions. Simple, /// Full optimizations performed, including evaluating functions. /// Take care that this may cause side effects as it essentially assumes that all functions are pure. Full, } impl OptimizationLevel { /// Is the `OptimizationLevel` [`None`][OptimizationLevel::None]? #[allow(dead_code)] #[inline(always)] pub fn is_none(self) -> bool { self == Self::None } /// Is the `OptimizationLevel` [`Simple`][OptimizationLevel::Simple]? #[allow(dead_code)] #[inline(always)] pub fn is_simple(self) -> bool { self == Self::Simple } /// Is the `OptimizationLevel` [`Full`][OptimizationLevel::Full]? #[allow(dead_code)] #[inline(always)] pub fn is_full(self) -> bool { self == Self::Full } } /// Mutable state throughout an optimization pass. #[derive(Debug, Clone)] struct State<'a> { /// Has the [`AST`] been changed during this pass? changed: bool, /// Collection of constants to use for eager function evaluations. variables: Vec<(String, AccessMode, Expr)>, /// Activate constants propagation? propagate_constants: bool, /// An [`Engine`] instance for eager function evaluation. engine: &'a Engine, /// [Module] containing script-defined functions. lib: &'a [&'a Module], /// Optimization level. optimization_level: OptimizationLevel, } impl<'a> State<'a> { /// Create a new State. #[inline(always)] pub fn new( engine: &'a Engine, lib: &'a [&'a Module], optimization_level: OptimizationLevel, ) -> Self { Self { changed: false, variables: vec![], propagate_constants: true, engine, lib, optimization_level, } } /// Set the [`AST`] state to be dirty (i.e. changed). #[inline(always)] pub fn set_dirty(&mut self) { self.changed = true; } /// Set the [`AST`] state to be not dirty (i.e. unchanged). #[inline(always)] pub fn clear_dirty(&mut self) { self.changed = false; } /// Is the [`AST`] dirty (i.e. changed)? #[inline(always)] pub fn is_dirty(&self) -> bool { self.changed } /// Prune the list of constants back to a specified size. #[inline(always)] pub fn restore_var(&mut self, len: usize) { self.variables.truncate(len) } /// Add a new constant to the list. #[inline(always)] pub fn push_var(&mut self, name: &str, access: AccessMode, value: Expr) { self.variables.push((name.into(), access, value)) } /// Look up a constant from the list. #[inline] pub fn find_constant(&self, name: &str) -> Option<&Expr> { if !self.propagate_constants { return None; } self.variables.iter().rev().find_map(|(n, access, expr)| { if n == name { match access { AccessMode::ReadWrite => None, AccessMode::ReadOnly => Some(expr), } } else { None } }) } } // Has a system function a Rust-native override? fn has_native_fn(state: &State, hash_script: u64, arg_types: &[TypeId]) -> bool { let hash_params = calc_fn_params_hash(arg_types.iter().cloned()); let hash = combine_hashes(hash_script, hash_params); // First check registered functions state.engine.global_namespace.contains_fn(hash) // Then check packages || state.engine.global_modules.iter().any(|m| m.contains_fn(hash)) // Then check sub-modules || state.engine.global_sub_modules.values().any(|m| m.contains_qualified_fn(hash)) } /// Call a registered function fn call_fn_with_constant_arguments( state: &State, fn_name: &str, arg_values: &mut [Dynamic], ) -> Option { state .engine .call_native_fn( &mut Default::default(), &mut Default::default(), state.lib, fn_name, calc_fn_hash(empty(), fn_name, arg_values.len()), arg_values.iter_mut().collect::>().as_mut(), false, false, Position::NONE, ) .ok() .map(|(v, _)| v) } /// Optimize a block of [statements][Stmt]. fn optimize_stmt_block( mut statements: Vec, state: &mut State, preserve_result: bool, is_internal: bool, reduce_return: bool, ) -> Vec { if statements.is_empty() { return statements; } let mut is_dirty = state.is_dirty(); let is_pure = if is_internal { Stmt::is_internally_pure } else { Stmt::is_pure }; loop { state.clear_dirty(); let orig_constants_len = state.variables.len(); // Original number of constants in the state, for restore later let orig_propagate_constants = state.propagate_constants; // Remove everything following control flow breaking statements let mut dead_code = false; statements.retain(|stmt| { if dead_code { state.set_dirty(); false } else if stmt.is_control_flow_break() { dead_code = true; true } else { true } }); // Optimize each statement in the block statements.iter_mut().for_each(|stmt| { match stmt { // Add constant literals into the state Stmt::Const(value_expr, x, _, _) => { optimize_expr(value_expr, state); if value_expr.is_constant() { state.push_var(&x.name, AccessMode::ReadOnly, value_expr.clone()); } } // Add variables into the state Stmt::Let(value_expr, x, _, _) => { optimize_expr(value_expr, state); state.push_var(&x.name, AccessMode::ReadWrite, Expr::Unit(x.pos)); } // Optimize the statement _ => optimize_stmt(stmt, state, preserve_result), } }); // Remove all pure statements except the last one let mut index = 0; let mut first_non_constant = statements .iter() .rev() .enumerate() .find_map(|(i, stmt)| match stmt { stmt if !is_pure(stmt) => Some(i), Stmt::Noop(_) | Stmt::Return(_, None, _) => None, Stmt::Let(e, _, _, _) | Stmt::Const(e, _, _, _) | Stmt::Expr(e) | Stmt::Return(_, Some(e), _) if e.is_constant() => { None } #[cfg(not(feature = "no_module"))] Stmt::Import(e, _, _) if e.is_constant() => None, #[cfg(not(feature = "no_module"))] Stmt::Export(_, _) => None, #[cfg(not(feature = "no_closure"))] Stmt::Share(_) => None, _ => Some(i), }) .map_or(0, |n| statements.len() - n); while index < statements.len() { if preserve_result && index >= statements.len() - 1 { break; } else { match &statements[index] { stmt if is_pure(stmt) && index >= first_non_constant => { state.set_dirty(); statements.remove(index); } stmt if stmt.is_pure() => { state.set_dirty(); if index < first_non_constant { first_non_constant -= 1; } statements.remove(index); } _ => index += 1, } } } // Remove all pure statements that do not return values at the end of a block. // We cannot remove anything for non-pure statements due to potential side-effects. if preserve_result { loop { match &mut statements[..] { // { return; } -> {} [Stmt::Return(crate::ast::ReturnType::Return, None, _)] if reduce_return => { state.set_dirty(); statements.clear(); } [stmt] if !stmt.returns_value() && is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., last_stmt, Stmt::Return(crate::ast::ReturnType::Return, None, _)] if reduce_return && !last_stmt.returns_value() => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return val; } -> { ...; val } [.., Stmt::Return(crate::ast::ReturnType::Return, expr, pos)] if reduce_return => { state.set_dirty(); *statements.last_mut().unwrap() = if let Some(expr) = expr { Stmt::Expr(mem::take(expr)) } else { Stmt::Noop(*pos) }; } [.., second_last_stmt, Stmt::Noop(_)] if second_last_stmt.returns_value() => {} [.., second_last_stmt, last_stmt] if !last_stmt.returns_value() && is_pure(last_stmt) => { state.set_dirty(); if second_last_stmt.returns_value() { *statements.last_mut().unwrap() = Stmt::Noop(last_stmt.position()); } else { statements.pop().unwrap(); } } _ => break, } } } else { loop { match &statements[..] { [stmt] if is_pure(stmt) => { state.set_dirty(); statements.clear(); } // { ...; return; } -> { ... } [.., Stmt::Return(crate::ast::ReturnType::Return, None, _)] if reduce_return => { state.set_dirty(); statements.pop().unwrap(); } // { ...; return pure_val; } -> { ... } [.., Stmt::Return(crate::ast::ReturnType::Return, Some(expr), _)] if reduce_return && expr.is_pure() => { state.set_dirty(); statements.pop().unwrap(); } [.., last_stmt] if is_pure(last_stmt) => { state.set_dirty(); statements.pop().unwrap(); } _ => break, } } } // Pop the stack and remove all the local constants state.restore_var(orig_constants_len); state.propagate_constants = orig_propagate_constants; if !state.is_dirty() { break; } is_dirty = true; } if is_dirty { state.set_dirty(); } statements.shrink_to_fit(); statements } /// Optimize a [statement][Stmt]. fn optimize_stmt(stmt: &mut Stmt, state: &mut State, preserve_result: bool) { match stmt { // expr op= expr Stmt::Assignment(x, _) => match x.0 { Expr::Variable(_, _, _) => optimize_expr(&mut x.2, state), _ => { optimize_expr(&mut x.0, state); optimize_expr(&mut x.2, state); } }, // if expr {} Stmt::If(condition, x, _) if x.0.is_empty() && x.1.is_empty() => { state.set_dirty(); let pos = condition.position(); let mut expr = mem::take(condition); optimize_expr(&mut expr, state); *stmt = if preserve_result { // -> { expr, Noop } Stmt::Block(vec![Stmt::Expr(expr), Stmt::Noop(pos)], pos) } else { // -> expr Stmt::Expr(expr) }; } // if false { if_block } -> Noop Stmt::If(Expr::BoolConstant(false, pos), x, _) if x.1.is_empty() => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // if false { if_block } else { else_block } -> else_block Stmt::If(Expr::BoolConstant(false, _), x, _) => { state.set_dirty(); let else_block = mem::take(&mut x.1.statements).into_vec(); *stmt = match optimize_stmt_block(else_block, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.1.pos), statements => Stmt::Block(statements, x.1.pos), } } // if true { if_block } else { else_block } -> if_block Stmt::If(Expr::BoolConstant(true, _), x, _) => { state.set_dirty(); let if_block = mem::take(&mut x.0.statements).into_vec(); *stmt = match optimize_stmt_block(if_block, state, preserve_result, true, false) { statements if statements.is_empty() => Stmt::Noop(x.0.pos), statements => Stmt::Block(statements, x.0.pos), } } // if expr { if_block } else { else_block } Stmt::If(condition, x, _) => { optimize_expr(condition, state); let if_block = mem::take(&mut x.0.statements).into_vec(); x.0.statements = optimize_stmt_block(if_block, state, preserve_result, true, false).into(); let else_block = mem::take(&mut x.1.statements).into_vec(); x.1.statements = optimize_stmt_block(else_block, state, preserve_result, true, false).into(); } // switch const { ... } Stmt::Switch(expr, x, pos) if expr.is_constant() => { let value = expr.get_constant_value().unwrap(); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); state.set_dirty(); let table = &mut x.0; let (statements, new_pos) = if let Some(block) = table.get_mut(&hash) { let match_block = mem::take(&mut block.statements).into_vec(); ( optimize_stmt_block(match_block, state, true, true, false).into(), block.pos, ) } else { let def_block = mem::take(&mut x.1.statements).into_vec(); ( optimize_stmt_block(def_block, state, true, true, false).into(), if x.1.pos.is_none() { *pos } else { x.1.pos }, ) }; *expr = Expr::Stmt(Box::new(StmtBlock { statements, pos: new_pos, })); } // switch Stmt::Switch(expr, x, _) => { optimize_expr(expr, state); x.0.values_mut().for_each(|block| { let match_block = mem::take(&mut block.statements).into_vec(); block.statements = optimize_stmt_block(match_block, state, preserve_result, true, false).into() }); let def_block = mem::take(&mut x.1.statements).into_vec(); x.1.statements = optimize_stmt_block(def_block, state, preserve_result, true, false).into() } // while false { block } -> Noop Stmt::While(Expr::BoolConstant(false, pos), _, _) => { state.set_dirty(); *stmt = Stmt::Noop(*pos) } // while expr { block } Stmt::While(condition, body, _) => { optimize_expr(condition, state); let block = mem::take(&mut body.statements).into_vec(); body.statements = optimize_stmt_block(block, state, false, true, false).into(); if body.len() == 1 { match body.statements[0] { // while expr { break; } -> { expr; } Stmt::Break(pos) => { // Only a single break statement - turn into running the guard expression once state.set_dirty(); if !condition.is_unit() { let mut statements = vec![Stmt::Expr(mem::take(condition))]; if preserve_result { statements.push(Stmt::Noop(pos)) } *stmt = Stmt::Block(statements, pos); } else { *stmt = Stmt::Noop(pos); }; } _ => (), } } } // do { block } while false | do { block } until true -> { block } Stmt::Do(body, Expr::BoolConstant(true, _), false, _) | Stmt::Do(body, Expr::BoolConstant(false, _), true, _) => { state.set_dirty(); let block = mem::take(&mut body.statements).into_vec(); *stmt = Stmt::Block( optimize_stmt_block(block, state, false, true, false), body.pos, ); } // do { block } while|until expr Stmt::Do(body, condition, _, _) => { optimize_expr(condition, state); let block = mem::take(&mut body.statements).into_vec(); body.statements = optimize_stmt_block(block, state, false, true, false).into(); } // for id in expr { block } Stmt::For(iterable, x, _) => { optimize_expr(iterable, state); let body = mem::take(&mut x.1.statements).into_vec(); x.1.statements = optimize_stmt_block(body, state, false, true, false).into(); } // let id = expr; Stmt::Let(expr, _, _, _) => optimize_expr(expr, state), // import expr as var; #[cfg(not(feature = "no_module"))] Stmt::Import(expr, _, _) => optimize_expr(expr, state), // { block } Stmt::Block(statements, pos) => { let mut block = optimize_stmt_block(mem::take(statements), state, preserve_result, true, false); match block.as_mut_slice() { [] => { state.set_dirty(); *stmt = Stmt::Noop(*pos); } // Only one statement - promote [s] => { state.set_dirty(); *stmt = mem::take(s); } _ => *stmt = Stmt::Block(block, *pos), } } // try { pure try_block } catch ( var ) { catch_block } -> try_block Stmt::TryCatch(x, _, _) if x.0.statements.iter().all(Stmt::is_pure) => { // If try block is pure, there will never be any exceptions state.set_dirty(); let try_block = mem::take(&mut x.0.statements).into_vec(); *stmt = Stmt::Block( optimize_stmt_block(try_block, state, false, true, false), x.0.pos, ); } // try { try_block } catch ( var ) { catch_block } Stmt::TryCatch(x, _, _) => { let try_block = mem::take(&mut x.0.statements).into_vec(); x.0.statements = optimize_stmt_block(try_block, state, false, true, false).into(); let catch_block = mem::take(&mut x.2.statements).into_vec(); x.2.statements = optimize_stmt_block(catch_block, state, false, true, false).into(); } // {} Stmt::Expr(Expr::Stmt(x)) if x.statements.is_empty() => { state.set_dirty(); *stmt = Stmt::Noop(x.pos); } // {...}; Stmt::Expr(Expr::Stmt(x)) => { state.set_dirty(); *stmt = Stmt::Block(mem::take(&mut x.statements).into_vec(), x.pos); } // expr; Stmt::Expr(expr) => optimize_expr(expr, state), // return expr; Stmt::Return(_, Some(ref mut expr), _) => optimize_expr(expr, state), // All other statements - skip _ => (), } } /// Optimize an [expression][Expr]. fn optimize_expr(expr: &mut Expr, state: &mut State) { // These keywords are handled specially const DONT_EVAL_KEYWORDS: &[&str] = &[ KEYWORD_PRINT, // side effects KEYWORD_DEBUG, // side effects KEYWORD_EVAL, // arbitrary scripts ]; match expr { // {} Expr::Stmt(x) if x.statements.is_empty() => { state.set_dirty(); *expr = Expr::Unit(x.pos) } // { stmt; ... } - do not count promotion as dirty because it gets turned back into an array Expr::Stmt(x) => { x.statements = optimize_stmt_block(mem::take(&mut x.statements).into_vec(), state, true, true, false).into(); // { Stmt(Expr) } - promote match x.statements.as_mut() { [ Stmt::Expr(e) ] => { state.set_dirty(); *expr = mem::take(e); } _ => () } } // lhs.rhs #[cfg(not(feature = "no_object"))] Expr::Dot(x, _) => match (&mut x.lhs, &mut x.rhs) { // map.string (Expr::Map(m, pos), Expr::Property(p)) if m.0.iter().all(|(_, x)| x.is_pure()) => { let prop = &p.2.name; // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, _)| &x.name == prop) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // var.rhs (Expr::Variable(_, _, _), rhs) => optimize_expr(rhs, state), // lhs.rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } } // lhs[rhs] #[cfg(not(feature = "no_index"))] Expr::Index(x, _) => match (&mut x.lhs, &mut x.rhs) { // array[int] (Expr::Array(a, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < a.len() && a.iter().all(Expr::is_pure) => { // Array literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); let mut result = a.remove(*i as usize); result.set_position(*pos); *expr = result; } // map[string] (Expr::Map(m, pos), Expr::StringConstant(s, _)) if m.0.iter().all(|(_, x)| x.is_pure()) => { // Map literal where everything is pure - promote the indexed item. // All other items can be thrown away. state.set_dirty(); *expr = mem::take(&mut m.0).into_iter().find(|(x, _)| x.name.as_str() == s.as_str()) .map(|(_, mut expr)| { expr.set_position(*pos); expr }) .unwrap_or_else(|| Expr::Unit(*pos)); } // string[int] (Expr::StringConstant(s, pos), Expr::IntegerConstant(i, _)) if *i >= 0 && (*i as usize) < s.chars().count() => { // String literal indexing - get the character state.set_dirty(); *expr = Expr::CharConstant(s.chars().nth(*i as usize).unwrap(), *pos); } // var[rhs] (Expr::Variable(_, _, _), rhs) => optimize_expr(rhs, state), // lhs[rhs] (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // `` Expr::InterpolatedString(x) if x.is_empty() => { state.set_dirty(); *expr = Expr::StringConstant(state.engine.empty_string.clone(), Position::NONE); } // `...` Expr::InterpolatedString(x) if x.len() == 1 && matches!(x[0], Expr::StringConstant(_, _)) => { state.set_dirty(); *expr = mem::take(&mut x[0]); } // `... ${ ... } ...` Expr::InterpolatedString(x) => { x.iter_mut().for_each(|expr| optimize_expr(expr, state)); let mut n= 0; // Merge consecutive strings while n < x.len()-1 { match (mem::take(&mut x[n]), mem::take(&mut x[n+1])) { (Expr::StringConstant(mut s1, pos), Expr::StringConstant(s2, _)) => { s1 += s2; x[n] = Expr::StringConstant(s1, pos); x.remove(n+1); state.set_dirty(); } (expr1, Expr::Unit(_)) => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::Unit(_), expr2) => { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, Expr::StringConstant(s, _)) if s.is_empty() => { x[n] = expr1; x.remove(n+1); state.set_dirty(); } (Expr::StringConstant(s, _), expr2) if s.is_empty()=> { x[n+1] = expr2; x.remove(n); state.set_dirty(); } (expr1, expr2) => { x[n] = expr1; x[n+1] = expr2; n += 1; } } } } // [ constant .. ] #[cfg(not(feature = "no_index"))] Expr::Array(_, _) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(Box::new(expr.get_constant_value().unwrap()), expr.position()); } // [ items .. ] #[cfg(not(feature = "no_index"))] Expr::Array(x, _) => x.iter_mut().for_each(|expr| optimize_expr(expr, state)), // #{ key:constant, .. } #[cfg(not(feature = "no_object"))] Expr::Map(_, _) if expr.is_constant() => { state.set_dirty(); *expr = Expr::DynamicConstant(Box::new(expr.get_constant_value().unwrap()), expr.position()); } // #{ key:value, .. } #[cfg(not(feature = "no_object"))] Expr::Map(x, _) => x.0.iter_mut().for_each(|(_, expr)| optimize_expr(expr, state)), // lhs && rhs Expr::And(x, _) => match (&mut x.lhs, &mut x.rhs) { // true && rhs -> rhs (Expr::BoolConstant(true, _), rhs) => { state.set_dirty(); optimize_expr(rhs, state); *expr = mem::take(rhs); } // false && rhs -> false (Expr::BoolConstant(false, pos), _) => { state.set_dirty(); *expr = Expr::BoolConstant(false, *pos); } // lhs && true -> lhs (lhs, Expr::BoolConstant(true, _)) => { state.set_dirty(); optimize_expr(lhs, state); *expr = mem::take(lhs); } // lhs && rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // lhs || rhs Expr::Or(ref mut x, _) => match (&mut x.lhs, &mut x.rhs) { // false || rhs -> rhs (Expr::BoolConstant(false, _), rhs) => { state.set_dirty(); optimize_expr(rhs, state); *expr = mem::take(rhs); } // true || rhs -> true (Expr::BoolConstant(true, pos), _) => { state.set_dirty(); *expr = Expr::BoolConstant(true, *pos); } // lhs || false (lhs, Expr::BoolConstant(false, _)) => { state.set_dirty(); optimize_expr(lhs, state); *expr = mem::take(lhs); } // lhs || rhs (lhs, rhs) => { optimize_expr(lhs, state); optimize_expr(rhs, state); } }, // eval! Expr::FnCall(x, _) if x.name == KEYWORD_EVAL => { state.propagate_constants = false; } // Fn Expr::FnCall(x, pos) if x.namespace.is_none() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.num_args() == 1 && x.constant_args.len() == 1 && x.constant_args[0].0.is::() && x.name == KEYWORD_FN_PTR => { state.set_dirty(); *expr = Expr::FnPointer(mem::take(&mut x.constant_args[0].0).take_immutable_string().unwrap(), *pos); } // Do not call some special keywords Expr::FnCall(x, _) if DONT_EVAL_KEYWORDS.contains(&x.name.as_ref()) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state)); } // Call built-in operators Expr::FnCall(x, pos) if x.namespace.is_none() // Non-qualified && state.optimization_level == OptimizationLevel::Simple // simple optimizations && x.num_args() == 2 // binary call && x.args.iter().all(Expr::is_constant) // all arguments are constants //&& !is_valid_identifier(x.name.chars()) // cannot be scripted => { let mut arg_values: StaticVec<_> = x.args.iter().map(|e| e.get_constant_value().unwrap()) .chain(x.constant_args.iter().map(|(v, _)| v).cloned()) .collect(); let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect(); // Search for overloaded operators (can override built-in). if !has_native_fn(state, x.hash.native_hash(), arg_types.as_ref()) { if let Some(result) = get_builtin_binary_op_fn(x.name.as_ref(), &arg_values[0], &arg_values[1]) .and_then(|f| { let ctx = (state.engine, x.name.as_ref(), state.lib).into(); let (first, second) = arg_values.split_first_mut().unwrap(); (f)(ctx, &mut [ first, &mut second[0] ]).ok() }) .and_then(|result| map_dynamic_to_expr(result, *pos)) { state.set_dirty(); *expr = result; return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state)); // Move constant arguments to the right while x.args.last().map(Expr::is_constant).unwrap_or(false) { let arg = x.args.pop().unwrap(); let arg_pos = arg.position(); x.constant_args.insert(0, (arg.get_constant_value().unwrap(), arg_pos)); } x.args.shrink_to_fit(); } // Eagerly call functions Expr::FnCall(x, pos) if x.namespace.is_none() // Non-qualified && state.optimization_level == OptimizationLevel::Full // full optimizations && x.args.iter().all(Expr::is_constant) // all arguments are constants => { // First search for script-defined functions (can override built-in) #[cfg(not(feature = "no_function"))] let has_script_fn = state.lib.iter().any(|&m| m.get_script_fn(x.name.as_ref(), x.num_args()).is_some()); #[cfg(feature = "no_function")] let has_script_fn = false; if !has_script_fn { let mut arg_values: StaticVec<_> = x.args.iter().map(|e| e.get_constant_value().unwrap()) .chain(x.constant_args.iter().map(|(v, _)| v).cloned()) .collect(); // Save the typename of the first argument if it is `type_of()` // This is to avoid `call_args` being passed into the closure let arg_for_type_of = if x.name == KEYWORD_TYPE_OF && arg_values.len() == 1 { state.engine.map_type_name(arg_values[0].type_name()) } else { "" }; if let Some(result) = call_fn_with_constant_arguments(&state, x.name.as_ref(), arg_values.as_mut()) .or_else(|| { if !arg_for_type_of.is_empty() { // Handle `type_of()` Some(arg_for_type_of.to_string().into()) } else { None } }) .and_then(|result| map_dynamic_to_expr(result, *pos)) { state.set_dirty(); *expr = result; return; } } x.args.iter_mut().for_each(|a| optimize_expr(a, state)); } // id(args ..) -> optimize function call arguments Expr::FnCall(x, _) => { x.args.iter_mut().for_each(|a| optimize_expr(a, state)); // Move constant arguments to the right while x.args.last().map(Expr::is_constant).unwrap_or(false) { let arg = x.args.pop().unwrap(); let arg_pos = arg.position(); x.constant_args.insert(0, (arg.get_constant_value().unwrap(), arg_pos)); } x.args.shrink_to_fit(); } // constant-name Expr::Variable(_, pos, x) if x.1.is_none() && state.find_constant(&x.2).is_some() => { state.set_dirty(); // Replace constant with value let mut result = state.find_constant(&x.2).unwrap().clone(); result.set_position(*pos); *expr = result; } // Custom syntax Expr::Custom(x, _) => { if x.scope_delta != 0 { state.propagate_constants = false; } x.keywords.iter_mut().for_each(|expr| optimize_expr(expr, state)); } // All other expressions - skip _ => (), } } /// Optimize a block of [statements][Stmt] at top level. fn optimize_top_level( mut statements: Vec, engine: &Engine, scope: &Scope, lib: &[&Module], optimization_level: OptimizationLevel, ) -> Vec { // If optimization level is None then skip optimizing if optimization_level == OptimizationLevel::None { statements.shrink_to_fit(); return statements; } // Set up the state let mut state = State::new(engine, lib, optimization_level); // Add constants and variables from the scope scope.iter().for_each(|(name, constant, value)| { if !constant { state.push_var(name, AccessMode::ReadWrite, Expr::Unit(Position::NONE)); } else if let Some(val) = map_dynamic_to_expr(value, Position::NONE) { state.push_var(name, AccessMode::ReadOnly, val); } else { state.push_var(name, AccessMode::ReadOnly, Expr::Unit(Position::NONE)); } }); statements = optimize_stmt_block(statements, &mut state, true, false, true); statements } /// Optimize an [`AST`]. pub fn optimize_into_ast( engine: &Engine, scope: &Scope, mut statements: Vec, _functions: Vec>, optimization_level: OptimizationLevel, ) -> AST { let level = if cfg!(feature = "no_optimize") { OptimizationLevel::None } else { optimization_level }; #[cfg(not(feature = "no_function"))] let lib = { let mut module = Module::new(); if !level.is_none() { // We only need the script library's signatures for optimization purposes let mut lib2 = Module::new(); _functions .iter() .map(|fn_def| crate::ast::ScriptFnDef { name: fn_def.name.clone(), access: fn_def.access, body: Default::default(), params: fn_def.params.clone(), #[cfg(not(feature = "no_closure"))] externals: fn_def.externals.clone(), lib: None, #[cfg(not(feature = "no_module"))] mods: Default::default(), comments: Default::default(), }) .for_each(|fn_def| { lib2.set_script_fn(fn_def); }); let lib2 = &[&lib2]; _functions .into_iter() .map(|fn_def| { let mut fn_def = crate::fn_native::shared_take_or_clone(fn_def); let pos = fn_def.body.pos; let mut body = fn_def.body.statements.into_vec(); // Optimize the function body let state = &mut State::new(engine, lib2, level); body = optimize_stmt_block(body, state, true, true, true); fn_def.body = StmtBlock { statements: body.into(), pos, }; fn_def }) .for_each(|fn_def| { module.set_script_fn(fn_def); }); } else { _functions.into_iter().for_each(|fn_def| { module.set_script_fn(fn_def); }); } module }; #[cfg(feature = "no_function")] let lib = Default::default(); statements.shrink_to_fit(); AST::new( match level { OptimizationLevel::None => statements, OptimizationLevel::Simple | OptimizationLevel::Full => { optimize_top_level(statements, engine, &scope, &[&lib], level) } }, lib, ) }