//! Main module defining the lexer and parser. use crate::api::custom_syntax::{markers::*, CustomSyntax}; use crate::api::events::VarDefInfo; use crate::api::options::LangOptions; use crate::ast::{ ASTFlags, BinaryExpr, ConditionalStmtBlock, CustomExpr, Expr, FnCallExpr, FnCallHashes, Ident, OpAssignment, ScriptFnDef, Stmt, StmtBlock, StmtBlockContainer, SwitchCases, TryCatchBlock, }; use crate::engine::{Precedence, KEYWORD_THIS, OP_CONTAINS}; use crate::eval::GlobalRuntimeState; use crate::func::hashing::get_hasher; use crate::tokenizer::{ is_keyword_function, is_valid_function_name, is_valid_identifier, Token, TokenStream, TokenizerControl, }; use crate::types::dynamic::AccessMode; use crate::types::StringsInterner; use crate::{ calc_fn_hash, Dynamic, Engine, EvalAltResult, EvalContext, ExclusiveRange, Identifier, ImmutableString, InclusiveRange, LexError, OptimizationLevel, ParseError, Position, Scope, Shared, SmartString, StaticVec, AST, INT, PERR, }; #[cfg(feature = "no_std")] use std::prelude::v1::*; use std::{ collections::BTreeMap, hash::{Hash, Hasher}, num::{NonZeroU8, NonZeroUsize}, }; pub type ParseResult = Result; type FnLib = BTreeMap>; /// Invalid variable name that acts as a search barrier in a [`Scope`]. const SCOPE_SEARCH_BARRIER_MARKER: &str = "$ BARRIER $"; /// The message: `TokenStream` never ends const NEVER_ENDS: &str = "`Token`"; /// _(internals)_ A type that encapsulates the current state of the parser. /// Exported under the `internals` feature only. #[derive(Debug)] pub struct ParseState<'e> { /// Input stream buffer containing the next character to read. pub tokenizer_control: TokenizerControl, /// Interned strings. interned_strings: StringsInterner<'e>, /// External [scope][Scope] with constants. pub scope: &'e Scope<'e>, /// Global runtime state. pub global: GlobalRuntimeState<'e>, /// Encapsulates a local stack with variable names to simulate an actual runtime scope. pub stack: Scope<'e>, /// Size of the local variables stack upon entry of the current block scope. pub block_stack_len: usize, /// Tracks a list of external variables (variables that are not explicitly declared in the scope). #[cfg(not(feature = "no_closure"))] pub external_vars: Vec, /// An indicator that disables variable capturing into externals one single time /// up until the nearest consumed Identifier token. /// If set to false the next call to [`access_var`][ParseState::access_var] will not capture the variable. /// All consequent calls to [`access_var`][ParseState::access_var] will not be affected. #[cfg(not(feature = "no_closure"))] pub allow_capture: bool, /// Encapsulates a local stack with imported [module][crate::Module] names. #[cfg(not(feature = "no_module"))] pub imports: StaticVec, /// Maximum levels of expression nesting (0 for unlimited). #[cfg(not(feature = "unchecked"))] pub max_expr_depth: usize, } impl<'e> ParseState<'e> { /// Create a new [`ParseState`]. #[inline(always)] #[must_use] pub fn new(engine: &Engine, scope: &'e Scope, tokenizer_control: TokenizerControl) -> Self { Self { tokenizer_control, #[cfg(not(feature = "no_closure"))] external_vars: Vec::new(), #[cfg(not(feature = "no_closure"))] allow_capture: true, interned_strings: StringsInterner::new(), scope, global: GlobalRuntimeState::new(engine), stack: Scope::new(), block_stack_len: 0, #[cfg(not(feature = "no_module"))] imports: StaticVec::new_const(), #[cfg(not(feature = "unchecked"))] max_expr_depth: engine.max_expr_depth(), } } /// Find explicitly declared variable by name in the [`ParseState`], searching in reverse order. /// /// The first return value is the offset to be deducted from `ParseState::stack::len()`, /// i.e. the top element of [`ParseState`]'s variables stack is offset 1. /// /// If the variable is not present in the scope, the first return value is zero. /// /// The second return value indicates whether the barrier has been hit before finding the variable. pub fn find_var(&self, name: &str) -> (usize, bool) { let mut hit_barrier = false; ( self.stack .iter_rev_raw() .enumerate() .find(|&(.., (n, ..))| { if n == SCOPE_SEARCH_BARRIER_MARKER { // Do not go beyond the barrier hit_barrier = true; false } else { n == name } }) .map_or(0, |(i, ..)| i + 1), hit_barrier, ) } /// Find explicitly declared variable by name in the [`ParseState`], searching in reverse order. /// /// If the variable is not present in the scope adds it to the list of external variables. /// /// The return value is the offset to be deducted from `ParseState::stack::len()`, /// i.e. the top element of [`ParseState`]'s variables stack is offset 1. /// /// Return `None` when the variable name is not found in the `stack`. #[inline] #[must_use] pub fn access_var(&mut self, name: &str, pos: Position) -> Option { let _pos = pos; let (index, hit_barrier) = self.find_var(name); #[cfg(not(feature = "no_closure"))] if self.allow_capture { if index == 0 && !self.external_vars.iter().any(|v| v.as_str() == name) { self.external_vars.push(crate::ast::Ident { name: name.into(), pos: _pos, }); } } else { self.allow_capture = true } if hit_barrier { None } else { NonZeroUsize::new(index) } } /// Find a module by name in the [`ParseState`], searching in reverse. /// /// Returns the offset to be deducted from `Stack::len`, /// i.e. the top element of the [`ParseState`] is offset 1. /// /// Returns `None` when the variable name is not found in the [`ParseState`]. /// /// # Panics /// /// Panics when called under `no_module`. #[cfg(not(feature = "no_module"))] #[inline] #[must_use] pub fn find_module(&self, name: &str) -> Option { self.imports .iter() .rev() .enumerate() .find(|&(.., n)| n == name) .and_then(|(i, ..)| NonZeroUsize::new(i + 1)) } /// Get an interned identifier, creating one if it is not yet interned. #[inline(always)] #[must_use] pub fn get_identifier(&mut self, prefix: impl AsRef, text: impl AsRef) -> Identifier { self.interned_strings.get(prefix, text).into() } /// Get an interned string, creating one if it is not yet interned. #[inline(always)] #[allow(dead_code)] #[must_use] pub fn get_interned_string( &mut self, prefix: impl AsRef, text: impl AsRef, ) -> ImmutableString { self.interned_strings.get(prefix, text) } } /// A type that encapsulates all the settings for a particular parsing function. #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)] struct ParseSettings { /// Is the construct being parsed located at global level? is_global: bool, /// Is the construct being parsed located at function definition level? #[cfg(not(feature = "no_function"))] is_function_scope: bool, /// Is the construct being parsed located inside a closure? #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_closure"))] is_closure_scope: bool, /// Is the current position inside a loop? is_breakable: bool, /// Language options in effect (overrides Engine options). options: LangOptions, /// Current expression nesting level. level: usize, /// Current position. pos: Position, } impl ParseSettings { /// Create a new `ParseSettings` with one higher expression level. #[inline(always)] #[must_use] pub const fn level_up(&self) -> Self { Self { level: self.level + 1, ..*self } } /// Make sure that the current level of expression nesting is within the maximum limit. /// /// If `limit` is zero, then checking is disabled. #[cfg(not(feature = "unchecked"))] #[inline] pub fn ensure_level_within_max_limit(&self, limit: usize) -> ParseResult<()> { if limit > 0 { if self.level > limit { return Err(PERR::ExprTooDeep.into_err(self.pos)); } } Ok(()) } } /// Make an anonymous function. #[cfg(not(feature = "no_function"))] #[inline] #[must_use] pub fn make_anonymous_fn(hash: u64) -> String { format!("{}{:016x}", crate::engine::FN_ANONYMOUS, hash) } /// Is this function an anonymous function? #[cfg(not(feature = "no_function"))] #[inline(always)] #[must_use] pub fn is_anonymous_fn(fn_name: &str) -> bool { fn_name.starts_with(crate::engine::FN_ANONYMOUS) } impl Expr { /// Convert a [`Variable`][Expr::Variable] into a [`Property`][Expr::Property]. /// All other variants are untouched. #[cfg(not(feature = "no_object"))] #[inline] #[must_use] fn into_property(self, state: &mut ParseState) -> Self { match self { #[cfg(not(feature = "no_module"))] Self::Variable(x, ..) if !x.1.is_empty() => unreachable!("qualified property"), Self::Variable(x, .., pos) => { let ident = x.3; let getter = state.get_identifier(crate::engine::FN_GET, &ident); let hash_get = calc_fn_hash(&getter, 1); let setter = state.get_identifier(crate::engine::FN_SET, &ident); let hash_set = calc_fn_hash(&setter, 2); Self::Property( Box::new(( (getter, hash_get), (setter, hash_set), state.get_interned_string("", &ident), )), pos, ) } _ => self, } } /// Raise an error if the expression can never yield a boolean value. fn ensure_bool_expr(self) -> ParseResult { let type_name = match self { Expr::Unit(..) => "()", Expr::DynamicConstant(ref v, ..) if !v.is::() => v.type_name(), Expr::IntegerConstant(..) => "a number", #[cfg(not(feature = "no_float"))] Expr::FloatConstant(..) => "a floating-point number", Expr::CharConstant(..) => "a character", Expr::StringConstant(..) => "a string", Expr::InterpolatedString(..) => "a string", Expr::Array(..) => "an array", Expr::Map(..) => "an object map", _ => return Ok(self), }; Err( PERR::MismatchedType("a boolean expression".to_string(), type_name.to_string()) .into_err(self.start_position()), ) } /// Raise an error if the expression can never yield an iterable value. fn ensure_iterable(self) -> ParseResult { let type_name = match self { Expr::Unit(..) => "()", Expr::BoolConstant(..) => "a boolean", Expr::IntegerConstant(..) => "a number", #[cfg(not(feature = "no_float"))] Expr::FloatConstant(..) => "a floating-point number", Expr::CharConstant(..) => "a character", Expr::Map(..) => "an object map", _ => return Ok(self), }; Err( PERR::MismatchedType("an iterable value".to_string(), type_name.to_string()) .into_err(self.start_position()), ) } } /// Make sure that the next expression is not a statement expression (i.e. wrapped in `{}`). #[inline] fn ensure_not_statement_expr(input: &mut TokenStream, type_name: impl ToString) -> ParseResult<()> { match input.peek().expect(NEVER_ENDS) { (Token::LeftBrace, pos) => Err(PERR::ExprExpected(type_name.to_string()).into_err(*pos)), _ => Ok(()), } } /// Make sure that the next expression is not a mis-typed assignment (i.e. `a = b` instead of `a == b`). #[inline] fn ensure_not_assignment(input: &mut TokenStream) -> ParseResult<()> { match input.peek().expect(NEVER_ENDS) { (Token::Equals, pos) => Err(LexError::ImproperSymbol( "=".to_string(), "Possibly a typo of '=='?".to_string(), ) .into_err(*pos)), _ => Ok(()), } } /// Consume a particular [token][Token], checking that it is the expected one. /// /// # Panics /// /// Panics if the next token is not the expected one. #[inline] fn eat_token(input: &mut TokenStream, expected_token: Token) -> Position { let (t, pos) = input.next().expect(NEVER_ENDS); if t != expected_token { unreachable!( "{} expected but gets {} at {}", expected_token.syntax(), t.syntax(), pos ); } pos } /// Match a particular [token][Token], consuming it if matched. #[inline] fn match_token(input: &mut TokenStream, token: Token) -> (bool, Position) { let (t, pos) = input.peek().expect(NEVER_ENDS); if *t == token { (true, eat_token(input, token)) } else { (false, *pos) } } /// Parse a variable name. #[inline] fn parse_var_name(input: &mut TokenStream) -> ParseResult<(SmartString, Position)> { match input.next().expect(NEVER_ENDS) { // Variable name (Token::Identifier(s), pos) => Ok((s, pos)), // Reserved keyword (Token::Reserved(s), pos) if is_valid_identifier(s.chars()) => { Err(PERR::Reserved(s.to_string()).into_err(pos)) } // Bad identifier (Token::LexError(err), pos) => Err(err.into_err(pos)), // Not a variable name (.., pos) => Err(PERR::VariableExpected.into_err(pos)), } } /// Parse a symbol. #[inline] fn parse_symbol(input: &mut TokenStream) -> ParseResult<(SmartString, Position)> { match input.next().expect(NEVER_ENDS) { // Symbol (token, pos) if token.is_standard_symbol() => Ok((token.literal_syntax().into(), pos)), // Reserved symbol (Token::Reserved(s), pos) if !is_valid_identifier(s.chars()) => Ok((s, pos)), // Bad symbol (Token::LexError(err), pos) => Err(err.into_err(pos)), // Not a symbol (.., pos) => Err(PERR::MissingSymbol(String::new()).into_err(pos)), } } impl Engine { /// Parse `(` expr `)` fn parse_paren_expr( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // ( ... let mut settings = settings; settings.pos = eat_token(input, Token::LeftParen); let expr = self.parse_expr(input, state, lib, settings.level_up())?; match input.next().expect(NEVER_ENDS) { // ( ... ) (Token::RightParen, ..) => Ok(expr), // ( (Token::LexError(err), pos) => Err(err.into_err(pos)), // ( ... ??? (.., pos) => Err(PERR::MissingToken( Token::RightParen.into(), "for a matching ( in this expression".into(), ) .into_err(pos)), } } /// Parse a function call. fn parse_fn_call( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, id: Identifier, no_args: bool, capture_parent_scope: bool, #[cfg(not(feature = "no_module"))] namespace: crate::ast::Namespace, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let (token, token_pos) = if no_args { &(Token::RightParen, Position::NONE) } else { input.peek().expect(NEVER_ENDS) }; #[cfg(not(feature = "no_module"))] let mut namespace = namespace; let mut args = StaticVec::new_const(); match token { // id( Token::EOF => { return Err(PERR::MissingToken( Token::RightParen.into(), format!("to close the arguments list of this function call '{}'", id), ) .into_err(*token_pos)) } // id( Token::LexError(err) => return Err(err.clone().into_err(*token_pos)), // id() Token::RightParen => { if !no_args { eat_token(input, Token::RightParen); } #[cfg(not(feature = "no_module"))] let hash = if !namespace.is_empty() { let root = namespace.root(); let index = state.find_module(root); #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_module"))] let is_global = root == crate::engine::KEYWORD_GLOBAL; #[cfg(any(feature = "no_function", feature = "no_module"))] let is_global = false; if settings.options.contains(LangOptions::STRICT_VAR) && index.is_none() { if !is_global && !self.global_sub_modules.contains_key(root) { return Err(PERR::ModuleUndefined(root.to_string()) .into_err(namespace.position())); } } namespace.set_index(index); crate::calc_qualified_fn_hash(namespace.iter().map(|m| m.as_str()), &id, 0) } else { calc_fn_hash(&id, 0) }; #[cfg(feature = "no_module")] let hash = calc_fn_hash(&id, 0); let hashes = if is_valid_function_name(&id) { hash.into() } else { FnCallHashes::from_native(hash) }; args.shrink_to_fit(); return Ok(FnCallExpr { name: state.get_identifier("", id), capture_parent_scope, #[cfg(not(feature = "no_module"))] namespace, hashes, args, pos: settings.pos, } .into_fn_call_expr(settings.pos)); } // id... _ => (), } let settings = settings.level_up(); loop { match input.peek().expect(NEVER_ENDS) { // id(...args, ) - handle trailing comma (Token::RightParen, ..) => (), _ => args.push(self.parse_expr(input, state, lib, settings)?), } match input.peek().expect(NEVER_ENDS) { // id(...args) (Token::RightParen, ..) => { eat_token(input, Token::RightParen); #[cfg(not(feature = "no_module"))] let hash = if !namespace.is_empty() { let root = namespace.root(); let index = state.find_module(root); #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_module"))] let is_global = root == crate::engine::KEYWORD_GLOBAL; #[cfg(any(feature = "no_function", feature = "no_module"))] let is_global = false; if settings.options.contains(LangOptions::STRICT_VAR) && index.is_none() { if !is_global && !self.global_sub_modules.contains_key(root) { return Err(PERR::ModuleUndefined(root.to_string()) .into_err(namespace.position())); } } namespace.set_index(index); crate::calc_qualified_fn_hash( namespace.iter().map(|m| m.as_str()), &id, args.len(), ) } else { calc_fn_hash(&id, args.len()) }; #[cfg(feature = "no_module")] let hash = calc_fn_hash(&id, args.len()); let hashes = if is_valid_function_name(&id) { hash.into() } else { FnCallHashes::from_native(hash) }; args.shrink_to_fit(); return Ok(FnCallExpr { name: state.get_identifier("", id), capture_parent_scope, #[cfg(not(feature = "no_module"))] namespace, hashes, args, pos: settings.pos, } .into_fn_call_expr(settings.pos)); } // id(...args, (Token::Comma, ..) => { eat_token(input, Token::Comma); } // id(...args (Token::EOF, pos) => { return Err(PERR::MissingToken( Token::RightParen.into(), format!("to close the arguments list of this function call '{}'", id), ) .into_err(*pos)) } // id(...args (Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)), // id(...args ??? (.., pos) => { return Err(PERR::MissingToken( Token::Comma.into(), format!("to separate the arguments to function call '{}'", id), ) .into_err(*pos)) } } } } /// Parse an indexing chain. /// Indexing binds to the right, so this call parses all possible levels of indexing following in the input. #[cfg(not(feature = "no_index"))] fn parse_index_chain( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, lhs: Expr, check_index_type: bool, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; let idx_expr = self.parse_expr(input, state, lib, settings.level_up())?; // Check types of indexing that cannot be overridden // - arrays, maps, strings, bit-fields match lhs { _ if !check_index_type => (), Expr::Map(..) => match idx_expr { // lhs[int] Expr::IntegerConstant(..) => { return Err(PERR::MalformedIndexExpr( "Object map expects string index, not a number".into(), ) .into_err(idx_expr.start_position())) } // lhs[string] Expr::StringConstant(..) | Expr::InterpolatedString(..) => (), // lhs[float] #[cfg(not(feature = "no_float"))] Expr::FloatConstant(..) => { return Err(PERR::MalformedIndexExpr( "Object map expects string index, not a float".into(), ) .into_err(idx_expr.start_position())) } // lhs[char] Expr::CharConstant(..) => { return Err(PERR::MalformedIndexExpr( "Object map expects string index, not a character".into(), ) .into_err(idx_expr.start_position())) } // lhs[()] Expr::Unit(..) => { return Err(PERR::MalformedIndexExpr( "Object map expects string index, not ()".into(), ) .into_err(idx_expr.start_position())) } // lhs[??? && ???], lhs[??? || ???], lhs[true], lhs[false] Expr::And(..) | Expr::Or(..) | Expr::BoolConstant(..) => { return Err(PERR::MalformedIndexExpr( "Object map expects string index, not a boolean".into(), ) .into_err(idx_expr.start_position())) } _ => (), }, Expr::IntegerConstant(..) | Expr::Array(..) | Expr::StringConstant(..) | Expr::InterpolatedString(..) => match idx_expr { // lhs[int] Expr::IntegerConstant(..) => (), // lhs[string] Expr::StringConstant(..) | Expr::InterpolatedString(..) => { return Err(PERR::MalformedIndexExpr( "Array, string or bit-field expects numeric index, not a string".into(), ) .into_err(idx_expr.start_position())) } // lhs[float] #[cfg(not(feature = "no_float"))] Expr::FloatConstant(..) => { return Err(PERR::MalformedIndexExpr( "Array, string or bit-field expects integer index, not a float".into(), ) .into_err(idx_expr.start_position())) } // lhs[char] Expr::CharConstant(..) => { return Err(PERR::MalformedIndexExpr( "Array, string or bit-field expects integer index, not a character".into(), ) .into_err(idx_expr.start_position())) } // lhs[()] Expr::Unit(..) => { return Err(PERR::MalformedIndexExpr( "Array, string or bit-field expects integer index, not ()".into(), ) .into_err(idx_expr.start_position())) } // lhs[??? && ???], lhs[??? || ???], lhs[true], lhs[false] Expr::And(..) | Expr::Or(..) | Expr::BoolConstant(..) => { return Err(PERR::MalformedIndexExpr( "Array, string or bit-field expects integer index, not a boolean".into(), ) .into_err(idx_expr.start_position())) } _ => (), }, _ => (), } // Check if there is a closing bracket match input.peek().expect(NEVER_ENDS) { (Token::RightBracket, ..) => { eat_token(input, Token::RightBracket); // Any more indexing following? match input.peek().expect(NEVER_ENDS) { // If another indexing level, right-bind it (Token::LeftBracket, ..) => { let prev_pos = settings.pos; settings.pos = eat_token(input, Token::LeftBracket); // Recursively parse the indexing chain, right-binding each let idx_expr = self.parse_index_chain( input, state, lib, idx_expr, false, settings.level_up(), )?; // Indexing binds to right Ok(Expr::Index( BinaryExpr { lhs, rhs: idx_expr }.into(), ASTFlags::NONE, prev_pos, )) } // Otherwise terminate the indexing chain _ => Ok(Expr::Index( BinaryExpr { lhs, rhs: idx_expr }.into(), ASTFlags::BREAK, settings.pos, )), } } (Token::LexError(err), pos) => Err(err.clone().into_err(*pos)), (.., pos) => Err(PERR::MissingToken( Token::RightBracket.into(), "for a matching [ in this index expression".into(), ) .into_err(*pos)), } } /// Parse an array literal. #[cfg(not(feature = "no_index"))] fn parse_array_literal( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // [ ... let mut settings = settings; settings.pos = eat_token(input, Token::LeftBracket); let mut arr = StaticVec::new_const(); loop { const MISSING_RBRACKET: &str = "to end this array literal"; #[cfg(not(feature = "unchecked"))] if self.max_array_size() > 0 && arr.len() >= self.max_array_size() { return Err(PERR::LiteralTooLarge( "Size of array literal".to_string(), self.max_array_size(), ) .into_err(input.peek().expect(NEVER_ENDS).1)); } match input.peek().expect(NEVER_ENDS) { (Token::RightBracket, ..) => { eat_token(input, Token::RightBracket); break; } (Token::EOF, pos) => { return Err(PERR::MissingToken( Token::RightBracket.into(), MISSING_RBRACKET.into(), ) .into_err(*pos)) } _ => { let expr = self.parse_expr(input, state, lib, settings.level_up())?; arr.push(expr); } } match input.peek().expect(NEVER_ENDS) { (Token::Comma, ..) => { eat_token(input, Token::Comma); } (Token::RightBracket, ..) => (), (Token::EOF, pos) => { return Err(PERR::MissingToken( Token::RightBracket.into(), MISSING_RBRACKET.into(), ) .into_err(*pos)) } (Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)), (.., pos) => { return Err(PERR::MissingToken( Token::Comma.into(), "to separate the items of this array literal".into(), ) .into_err(*pos)) } }; } arr.shrink_to_fit(); Ok(Expr::Array(arr.into(), settings.pos)) } /// Parse a map literal. #[cfg(not(feature = "no_object"))] fn parse_map_literal( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // #{ ... let mut settings = settings; settings.pos = eat_token(input, Token::MapStart); let mut map = StaticVec::<(Ident, Expr)>::new(); let mut template = BTreeMap::::new(); loop { const MISSING_RBRACE: &str = "to end this object map literal"; match input.peek().expect(NEVER_ENDS) { (Token::RightBrace, ..) => { eat_token(input, Token::RightBrace); break; } (Token::EOF, pos) => { return Err( PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into()) .into_err(*pos), ) } _ => (), } let (name, pos) = match input.next().expect(NEVER_ENDS) { (Token::Identifier(s) | Token::StringConstant(s), pos) => { if map.iter().any(|(p, ..)| **p == s) { return Err(PERR::DuplicatedProperty(s.to_string()).into_err(pos)); } (s, pos) } (Token::InterpolatedString(..), pos) => { return Err(PERR::PropertyExpected.into_err(pos)) } (Token::Reserved(s), pos) if is_valid_identifier(s.chars()) => { return Err(PERR::Reserved(s.to_string()).into_err(pos)); } (Token::LexError(err), pos) => return Err(err.into_err(pos)), (Token::EOF, pos) => { return Err(PERR::MissingToken( Token::RightBrace.into(), MISSING_RBRACE.into(), ) .into_err(pos)); } (.., pos) if map.is_empty() => { return Err(PERR::MissingToken( Token::RightBrace.into(), MISSING_RBRACE.into(), ) .into_err(pos)); } (.., pos) => return Err(PERR::PropertyExpected.into_err(pos)), }; match input.next().expect(NEVER_ENDS) { (Token::Colon, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::Colon.into(), format!( "to follow the property '{}' in this object map literal", name ), ) .into_err(pos)) } }; #[cfg(not(feature = "unchecked"))] if self.max_map_size() > 0 && map.len() >= self.max_map_size() { return Err(PERR::LiteralTooLarge( "Number of properties in object map literal".to_string(), self.max_map_size(), ) .into_err(input.peek().expect(NEVER_ENDS).1)); } let expr = self.parse_expr(input, state, lib, settings.level_up())?; let name = state.get_identifier("", name); template.insert(name.clone(), crate::Dynamic::UNIT); map.push((Ident { name, pos }, expr)); match input.peek().expect(NEVER_ENDS) { (Token::Comma, ..) => { eat_token(input, Token::Comma); } (Token::RightBrace, ..) => (), (Token::Identifier(..), pos) => { return Err(PERR::MissingToken( Token::Comma.into(), "to separate the items of this object map literal".into(), ) .into_err(*pos)) } (Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)), (.., pos) => { return Err( PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into()) .into_err(*pos), ) } } } map.shrink_to_fit(); Ok(Expr::Map((map, template).into(), settings.pos)) } /// Parse a switch expression. fn parse_switch( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // switch ... let mut settings = settings; settings.pos = eat_token(input, Token::Switch); let item = self.parse_expr(input, state, lib, settings.level_up())?; match input.next().expect(NEVER_ENDS) { (Token::LeftBrace, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::LeftBrace.into(), "to start a switch block".into(), ) .into_err(pos)) } } let mut cases = BTreeMap::>::new(); let mut ranges = StaticVec::<(INT, INT, bool, Box)>::new(); let mut def_pos = Position::NONE; let mut def_stmt = None; loop { const MISSING_RBRACE: &str = "to end this switch block"; let (expr, condition) = match input.peek().expect(NEVER_ENDS) { (Token::RightBrace, ..) => { eat_token(input, Token::RightBrace); break; } (Token::EOF, pos) => { return Err( PERR::MissingToken(Token::RightBrace.into(), MISSING_RBRACE.into()) .into_err(*pos), ) } (Token::Underscore, pos) if def_stmt.is_none() => { def_pos = *pos; eat_token(input, Token::Underscore); let (if_clause, if_pos) = match_token(input, Token::If); if if_clause { return Err(PERR::WrongSwitchCaseCondition.into_err(if_pos)); } (None, Expr::BoolConstant(true, Position::NONE)) } (Token::Underscore, pos) => return Err(PERR::DuplicatedSwitchCase.into_err(*pos)), _ if def_stmt.is_some() => { return Err(PERR::WrongSwitchDefaultCase.into_err(def_pos)) } _ => { let case_expr = Some(self.parse_expr(input, state, lib, settings.level_up())?); let condition = if match_token(input, Token::If).0 { ensure_not_statement_expr(input, "a boolean")?; let guard = self .parse_expr(input, state, lib, settings.level_up())? .ensure_bool_expr()?; ensure_not_assignment(input)?; guard } else { Expr::BoolConstant(true, Position::NONE) }; (case_expr, condition) } }; let (hash, range) = if let Some(expr) = expr { let value = expr.get_literal_value().ok_or_else(|| { PERR::ExprExpected("a literal".to_string()).into_err(expr.start_position()) })?; let guard = value.read_lock::(); if let Some(range) = guard { (None, Some((range.start, range.end, false))) } else if let Some(range) = value.read_lock::() { (None, Some((*range.start(), *range.end(), true))) } else if value.is::() && !ranges.is_empty() { return Err(PERR::WrongSwitchIntegerCase.into_err(expr.start_position())); } else { let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); if !cases.is_empty() && cases.contains_key(&hash) { return Err(PERR::DuplicatedSwitchCase.into_err(expr.start_position())); } (Some(hash), None) } } else { (None, None) }; match input.next().expect(NEVER_ENDS) { (Token::DoubleArrow, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::DoubleArrow.into(), "in this switch case".to_string(), ) .into_err(pos)) } }; let stmt = self.parse_stmt(input, state, lib, settings.level_up())?; let need_comma = !stmt.is_self_terminated(); def_stmt = match (hash, range) { (None, Some(range)) => { let is_empty = if range.2 { (range.0..=range.1).is_empty() } else { (range.0..range.1).is_empty() }; if !is_empty { match (range.1.checked_sub(range.0), range.2) { // Unroll single range (Some(1), false) | (Some(0), true) => { let value = Dynamic::from_int(range.0); let hasher = &mut get_hasher(); value.hash(hasher); let hash = hasher.finish(); cases.entry(hash).or_insert_with(|| { let block: ConditionalStmtBlock = (condition, stmt).into(); block.into() }); } // Other range _ => { let block: ConditionalStmtBlock = (condition, stmt).into(); ranges.push((range.0, range.1, range.2, block.into())) } } } None } (Some(hash), None) => { let block: ConditionalStmtBlock = (condition, stmt).into(); cases.insert(hash, block.into()); None } (None, None) => Some(Box::new(stmt.into())), _ => unreachable!("both hash and range in switch statement case"), }; match input.peek().expect(NEVER_ENDS) { (Token::Comma, ..) => { eat_token(input, Token::Comma); } (Token::RightBrace, ..) => (), (Token::EOF, pos) => { return Err( PERR::MissingToken(Token::RightParen.into(), MISSING_RBRACE.into()) .into_err(*pos), ) } (Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)), (.., pos) if need_comma => { return Err(PERR::MissingToken( Token::Comma.into(), "to separate the items in this switch block".into(), ) .into_err(*pos)) } _ => (), } } let cases = SwitchCases { cases, def_case: def_stmt.unwrap_or_else(|| StmtBlock::NONE.into()), ranges, }; Ok(Stmt::Switch((item, cases).into(), settings.pos)) } /// Parse a primary expression. fn parse_primary( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let (token, token_pos) = input.peek().expect(NEVER_ENDS); let mut settings = settings; settings.pos = *token_pos; let root_expr = match token { Token::EOF => return Err(PERR::UnexpectedEOF.into_err(settings.pos)), Token::Unit => { input.next(); Expr::Unit(settings.pos) } Token::IntegerConstant(..) | Token::CharConstant(..) | Token::StringConstant(..) | Token::True | Token::False => match input.next().expect(NEVER_ENDS).0 { Token::IntegerConstant(x) => Expr::IntegerConstant(x, settings.pos), Token::CharConstant(c) => Expr::CharConstant(c, settings.pos), Token::StringConstant(s) => { Expr::StringConstant(state.get_interned_string("", s), settings.pos) } Token::True => Expr::BoolConstant(true, settings.pos), Token::False => Expr::BoolConstant(false, settings.pos), token => unreachable!("token is {:?}", token), }, #[cfg(not(feature = "no_float"))] Token::FloatConstant(x) => { let x = *x; input.next(); Expr::FloatConstant(x, settings.pos) } #[cfg(feature = "decimal")] Token::DecimalConstant(x) => { let x = (*x).into(); input.next(); Expr::DynamicConstant(Box::new(x), settings.pos) } // { - block statement as expression Token::LeftBrace if settings.options.contains(LangOptions::STMT_EXPR) => { match self.parse_block(input, state, lib, settings.level_up())? { block @ Stmt::Block(..) => Expr::Stmt(Box::new(block.into())), stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt), } } // ( - grouped expression Token::LeftParen => self.parse_paren_expr(input, state, lib, settings.level_up())?, // If statement is allowed to act as expressions Token::If if settings.options.contains(LangOptions::IF_EXPR) => Expr::Stmt(Box::new( self.parse_if(input, state, lib, settings.level_up())? .into(), )), // Switch statement is allowed to act as expressions Token::Switch if settings.options.contains(LangOptions::SWITCH_EXPR) => { Expr::Stmt(Box::new( self.parse_switch(input, state, lib, settings.level_up())? .into(), )) } // | ... #[cfg(not(feature = "no_function"))] Token::Pipe | Token::Or if settings.options.contains(LangOptions::ANON_FN) => { let mut new_state = ParseState::new(self, state.scope, state.tokenizer_control.clone()); #[cfg(not(feature = "no_module"))] new_state.imports.clone_from(&state.imports); #[cfg(not(feature = "unchecked"))] { new_state.max_expr_depth = self.max_function_expr_depth(); } let mut options = self.options; options.set( LangOptions::STRICT_VAR, if cfg!(feature = "no_closure") { settings.options.contains(LangOptions::STRICT_VAR) } else { // A capturing closure can access variables not defined locally false }, ); let new_settings = ParseSettings { is_global: false, is_function_scope: true, #[cfg(not(feature = "no_closure"))] is_closure_scope: true, is_breakable: false, level: 0, options, ..settings }; let (expr, func) = self.parse_anon_fn(input, &mut new_state, lib, new_settings)?; #[cfg(not(feature = "no_closure"))] new_state.external_vars.iter().try_for_each( |crate::ast::Ident { name, pos }| { let index = state.access_var(name, *pos); if settings.options.contains(LangOptions::STRICT_VAR) && !settings.is_closure_scope && index.is_none() && !state.scope.contains(name) { // If the parent scope is not inside another capturing closure // then we can conclude that the captured variable doesn't exist. // Under Strict Variables mode, this is not allowed. Err(PERR::VariableUndefined(name.to_string()).into_err(*pos)) } else { Ok::<_, ParseError>(()) } }, )?; let hash_script = calc_fn_hash(&func.name, func.params.len()); lib.insert(hash_script, func.into()); expr } // Interpolated string Token::InterpolatedString(..) => { let mut segments = StaticVec::::new(); match input.next().expect(NEVER_ENDS) { (Token::InterpolatedString(s), ..) if s.is_empty() => (), (Token::InterpolatedString(s), pos) => { segments.push(Expr::StringConstant(s.into(), pos)) } token => { unreachable!("Token::InterpolatedString expected but gets {:?}", token) } } loop { let expr = match self.parse_block(input, state, lib, settings.level_up())? { block @ Stmt::Block(..) => Expr::Stmt(Box::new(block.into())), stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt), }; match expr { Expr::StringConstant(s, ..) if s.is_empty() => (), _ => segments.push(expr), } // Make sure to parse the following as text let mut control = state.tokenizer_control.get(); control.is_within_text = true; state.tokenizer_control.set(control); match input.next().expect(NEVER_ENDS) { (Token::StringConstant(s), pos) => { if !s.is_empty() { segments.push(Expr::StringConstant(s.into(), pos)); } // End the interpolated string if it is terminated by a back-tick. break; } (Token::InterpolatedString(s), pos) => { if !s.is_empty() { segments.push(Expr::StringConstant(s.into(), pos)); } } (Token::LexError(err), pos) if matches!(*err, LexError::UnterminatedString) => { return Err(err.into_err(pos)) } (token, ..) => unreachable!( "string within an interpolated string literal expected but gets {:?}", token ), } } if segments.is_empty() { Expr::StringConstant(state.get_interned_string("", ""), settings.pos) } else { segments.shrink_to_fit(); Expr::InterpolatedString(segments.into(), settings.pos) } } // Array literal #[cfg(not(feature = "no_index"))] Token::LeftBracket => { self.parse_array_literal(input, state, lib, settings.level_up())? } // Map literal #[cfg(not(feature = "no_object"))] Token::MapStart => self.parse_map_literal(input, state, lib, settings.level_up())?, // Custom syntax. Token::Custom(key) | Token::Reserved(key) | Token::Identifier(key) if !self.custom_syntax.is_empty() && self.custom_syntax.contains_key(&**key) => { let (key, syntax) = self.custom_syntax.get_key_value(&**key).unwrap(); let (.., pos) = input.next().expect(NEVER_ENDS); let settings2 = settings.level_up(); self.parse_custom_syntax(input, state, lib, settings2, key, syntax, pos)? } // Identifier Token::Identifier(..) => { #[cfg(not(feature = "no_module"))] let ns = crate::ast::Namespace::NONE; #[cfg(feature = "no_module")] let ns = (); let s = match input.next().expect(NEVER_ENDS) { (Token::Identifier(s), ..) => s, token => unreachable!("Token::Identifier expected but gets {:?}", token), }; match input.peek().expect(NEVER_ENDS).0 { // Function call Token::LeftParen | Token::Bang | Token::Unit => { #[cfg(not(feature = "no_closure"))] { // Once the identifier consumed we must enable next variables capturing state.allow_capture = true; } Expr::Variable( (None, ns, 0, state.get_identifier("", s)).into(), None, settings.pos, ) } // Namespace qualification #[cfg(not(feature = "no_module"))] Token::DoubleColon => { #[cfg(not(feature = "no_closure"))] { // Once the identifier consumed we must enable next variables capturing state.allow_capture = true; } Expr::Variable( (None, ns, 0, state.get_identifier("", s)).into(), None, settings.pos, ) } // Normal variable access _ => { let index = state.access_var(&s, settings.pos); if settings.options.contains(LangOptions::STRICT_VAR) && index.is_none() && !state.scope.contains(&s) { return Err( PERR::VariableUndefined(s.to_string()).into_err(settings.pos) ); } let short_index = index.and_then(|x| { if x.get() <= u8::MAX as usize { NonZeroU8::new(x.get() as u8) } else { None } }); Expr::Variable( (index, ns, 0, state.get_identifier("", s)).into(), short_index, settings.pos, ) } } } // Reserved keyword or symbol Token::Reserved(..) => { #[cfg(not(feature = "no_module"))] let ns = crate::ast::Namespace::NONE; #[cfg(feature = "no_module")] let ns = (); let s = match input.next().expect(NEVER_ENDS) { (Token::Reserved(s), ..) => s, token => unreachable!("Token::Reserved expected but gets {:?}", token), }; match input.peek().expect(NEVER_ENDS).0 { // Function call is allowed to have reserved keyword Token::LeftParen | Token::Bang | Token::Unit if is_keyword_function(&s) => { Expr::Variable( (None, ns, 0, state.get_identifier("", s)).into(), None, settings.pos, ) } // Access to `this` as a variable is OK within a function scope #[cfg(not(feature = "no_function"))] _ if &*s == KEYWORD_THIS && settings.is_function_scope => Expr::Variable( (None, ns, 0, state.get_identifier("", s)).into(), None, settings.pos, ), // Cannot access to `this` as a variable not in a function scope _ if &*s == KEYWORD_THIS => { let msg = format!("'{}' can only be used in functions", s); return Err( LexError::ImproperSymbol(s.to_string(), msg).into_err(settings.pos) ); } _ => return Err(PERR::Reserved(s.to_string()).into_err(settings.pos)), } } Token::LexError(..) => match input.next().expect(NEVER_ENDS) { (Token::LexError(err), ..) => return Err(err.into_err(settings.pos)), token => unreachable!("Token::LexError expected but gets {:?}", token), }, _ => { return Err( LexError::UnexpectedInput(token.syntax().to_string()).into_err(settings.pos) ) } }; self.parse_postfix(input, state, lib, root_expr, settings) } /// Tail processing of all possible postfix operators of a primary expression. fn parse_postfix( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, mut lhs: Expr, settings: ParseSettings, ) -> ParseResult { let mut settings = settings; // Tail processing all possible postfix operators loop { let (tail_token, ..) = input.peek().expect(NEVER_ENDS); if !lhs.is_valid_postfix(tail_token) { break; } let (tail_token, tail_pos) = input.next().expect(NEVER_ENDS); settings.pos = tail_pos; lhs = match (lhs, tail_token) { // Qualified function call with ! #[cfg(not(feature = "no_module"))] (Expr::Variable(x, ..), Token::Bang) if !x.1.is_empty() => { return match input.peek().expect(NEVER_ENDS) { (Token::LeftParen | Token::Unit, ..) => { Err(LexError::UnexpectedInput(Token::Bang.syntax().to_string()) .into_err(tail_pos)) } _ => Err(LexError::ImproperSymbol( "!".to_string(), "'!' cannot be used to call module functions".to_string(), ) .into_err(tail_pos)), }; } // Function call with ! (Expr::Variable(x, .., pos), Token::Bang) => { match input.peek().expect(NEVER_ENDS) { (Token::LeftParen | Token::Unit, ..) => (), (_, pos) => { return Err(PERR::MissingToken( Token::LeftParen.syntax().into(), "to start arguments list of function call".into(), ) .into_err(*pos)) } } let no_args = input.next().expect(NEVER_ENDS).0 == Token::Unit; let (.., _ns, _, name) = *x; settings.pos = pos; self.parse_fn_call( input, state, lib, name, no_args, true, #[cfg(not(feature = "no_module"))] _ns, settings.level_up(), )? } // Function call (Expr::Variable(x, .., pos), t @ (Token::LeftParen | Token::Unit)) => { let (.., _ns, _, name) = *x; settings.pos = pos; self.parse_fn_call( input, state, lib, name, t == Token::Unit, false, #[cfg(not(feature = "no_module"))] _ns, settings.level_up(), )? } // module access #[cfg(not(feature = "no_module"))] (Expr::Variable(x, .., pos), Token::DoubleColon) => { let (id2, pos2) = parse_var_name(input)?; let (.., mut namespace, _, name) = *x; let var_name_def = Ident { name, pos }; namespace.push(var_name_def); Expr::Variable( (None, namespace, 0, state.get_identifier("", id2)).into(), None, pos2, ) } // Indexing #[cfg(not(feature = "no_index"))] (expr, Token::LeftBracket) => { self.parse_index_chain(input, state, lib, expr, true, settings.level_up())? } // Property access #[cfg(not(feature = "no_object"))] (expr, op @ Token::Period) | (expr, op @ Token::Elvis) => { // Expression after dot must start with an identifier match input.peek().expect(NEVER_ENDS) { (Token::Identifier(..), ..) => { #[cfg(not(feature = "no_closure"))] { // Prevents capturing of the object properties as vars: xxx. state.allow_capture = false; } } (Token::Reserved(s), ..) if is_keyword_function(s) => (), (.., pos) => return Err(PERR::PropertyExpected.into_err(*pos)), } let rhs = self.parse_primary(input, state, lib, settings.level_up())?; let op_flags = match op { Token::Period => ASTFlags::NONE, Token::Elvis => ASTFlags::NEGATED, _ => unreachable!(), }; Self::make_dot_expr(state, expr, rhs, ASTFlags::NONE, op_flags, tail_pos)? } // Unknown postfix operator (expr, token) => unreachable!( "unknown postfix operator '{}' for {:?}", token.syntax(), expr ), } } // Cache the hash key for namespace-qualified variables #[cfg(not(feature = "no_module"))] let namespaced_variable = match lhs { Expr::Variable(ref mut x, ..) if !x.1.is_empty() => Some(x.as_mut()), Expr::Index(ref mut x, ..) | Expr::Dot(ref mut x, ..) => match x.lhs { Expr::Variable(ref mut x, ..) if !x.1.is_empty() => Some(x.as_mut()), _ => None, }, _ => None, }; #[cfg(not(feature = "no_module"))] if let Some((.., namespace, hash, name)) = namespaced_variable { if !namespace.is_empty() { *hash = crate::calc_qualified_var_hash(namespace.iter().map(|v| v.as_str()), name); #[cfg(not(feature = "no_module"))] { let root = namespace.root(); let index = state.find_module(root); #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_module"))] let is_global = root == crate::engine::KEYWORD_GLOBAL; #[cfg(any(feature = "no_function", feature = "no_module"))] let is_global = false; if settings.options.contains(LangOptions::STRICT_VAR) && index.is_none() { if !is_global && !self.global_sub_modules.contains_key(root) { return Err(PERR::ModuleUndefined(root.to_string()) .into_err(namespace.position())); } } namespace.set_index(index); } } } // Make sure identifiers are valid Ok(lhs) } /// Parse a potential unary operator. fn parse_unary( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let (token, token_pos) = input.peek().expect(NEVER_ENDS); let mut settings = settings; settings.pos = *token_pos; match token { // -expr Token::Minus | Token::UnaryMinus => { let token = token.clone(); let pos = eat_token(input, token); match self.parse_unary(input, state, lib, settings.level_up())? { // Negative integer Expr::IntegerConstant(num, ..) => num .checked_neg() .map(|i| Expr::IntegerConstant(i, pos)) .or_else(|| { #[cfg(not(feature = "no_float"))] return Some(Expr::FloatConstant((-(num as crate::FLOAT)).into(), pos)); #[cfg(feature = "no_float")] return None; }) .ok_or_else(|| { LexError::MalformedNumber(format!("-{}", num)).into_err(pos) }), // Negative float #[cfg(not(feature = "no_float"))] Expr::FloatConstant(x, ..) => Ok(Expr::FloatConstant((-(*x)).into(), pos)), // Call negative function expr => { let mut args = StaticVec::new_const(); args.push(expr); args.shrink_to_fit(); Ok(FnCallExpr { name: state.get_identifier("", "-"), hashes: FnCallHashes::from_native(calc_fn_hash("-", 1)), args, pos, ..Default::default() } .into_fn_call_expr(pos)) } } } // +expr Token::Plus | Token::UnaryPlus => { let token = token.clone(); let pos = eat_token(input, token); match self.parse_unary(input, state, lib, settings.level_up())? { expr @ Expr::IntegerConstant(..) => Ok(expr), #[cfg(not(feature = "no_float"))] expr @ Expr::FloatConstant(..) => Ok(expr), // Call plus function expr => { let mut args = StaticVec::new_const(); args.push(expr); args.shrink_to_fit(); Ok(FnCallExpr { name: state.get_identifier("", "+"), hashes: FnCallHashes::from_native(calc_fn_hash("+", 1)), args, pos, ..Default::default() } .into_fn_call_expr(pos)) } } } // !expr Token::Bang => { let pos = eat_token(input, Token::Bang); let mut args = StaticVec::new_const(); args.push(self.parse_unary(input, state, lib, settings.level_up())?); args.shrink_to_fit(); Ok(FnCallExpr { name: state.get_identifier("", "!"), hashes: FnCallHashes::from_native(calc_fn_hash("!", 1)), args, pos, ..Default::default() } .into_fn_call_expr(pos)) } // Token::EOF => Err(PERR::UnexpectedEOF.into_err(settings.pos)), // All other tokens _ => self.parse_primary(input, state, lib, settings.level_up()), } } /// Make an assignment statement. fn make_assignment_stmt( op: Option, state: &mut ParseState, lhs: Expr, rhs: Expr, op_pos: Position, ) -> ParseResult { #[must_use] fn check_lvalue(expr: &Expr, parent_is_dot: bool) -> Option { match expr { Expr::Index(x, options, ..) | Expr::Dot(x, options, ..) if parent_is_dot => { match x.lhs { Expr::Property(..) if !options.contains(ASTFlags::BREAK) => { check_lvalue(&x.rhs, matches!(expr, Expr::Dot(..))) } Expr::Property(..) => None, // Anything other than a property after dotting (e.g. a method call) is not an l-value ref e => Some(e.position()), } } Expr::Index(x, options, ..) | Expr::Dot(x, options, ..) => match x.lhs { Expr::Property(..) => unreachable!("unexpected Expr::Property in indexing"), _ if !options.contains(ASTFlags::BREAK) => { check_lvalue(&x.rhs, matches!(expr, Expr::Dot(..))) } _ => None, }, Expr::Property(..) if parent_is_dot => None, Expr::Property(..) => unreachable!("unexpected Expr::Property in indexing"), e if parent_is_dot => Some(e.position()), _ => None, } } let op_info = if let Some(op) = op { OpAssignment::new_op_assignment_from_token(op, op_pos) } else { OpAssignment::new_assignment(op_pos) }; match lhs { // const_expr = rhs ref expr if expr.is_constant() => { Err(PERR::AssignmentToConstant("".into()).into_err(lhs.start_position())) } // var (non-indexed) = rhs Expr::Variable(ref x, None, _) if x.0.is_none() => { Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into())) } // var (indexed) = rhs Expr::Variable(ref x, i, var_pos) => { let (index, .., name) = x.as_ref(); let index = i.map_or_else( || index.expect("either long or short index is `None`").get(), |n| n.get() as usize, ); match state .stack .get_mut_by_index(state.stack.len() - index) .access_mode() { AccessMode::ReadWrite => { Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into())) } // Constant values cannot be assigned to AccessMode::ReadOnly => { Err(PERR::AssignmentToConstant(name.to_string()).into_err(var_pos)) } } } // xxx[???]... = rhs, xxx.prop... = rhs Expr::Index(ref x, options, ..) | Expr::Dot(ref x, options, ..) => { let valid_lvalue = if options.contains(ASTFlags::BREAK) { None } else { check_lvalue(&x.rhs, matches!(lhs, Expr::Dot(..))) }; match valid_lvalue { None => { match x.lhs { // var[???] = rhs, var.??? = rhs Expr::Variable(..) => { Ok(Stmt::Assignment((op_info, (lhs, rhs).into()).into())) } // expr[???] = rhs, expr.??? = rhs ref expr => Err(PERR::AssignmentToInvalidLHS("".to_string()) .into_err(expr.position())), } } Some(err_pos) => { Err(PERR::AssignmentToInvalidLHS("".to_string()).into_err(err_pos)) } } } // ??? && ??? = rhs, ??? || ??? = rhs Expr::And(..) | Expr::Or(..) => Err(LexError::ImproperSymbol( "=".to_string(), "Possibly a typo of '=='?".to_string(), ) .into_err(op_pos)), // expr = rhs _ => Err(PERR::AssignmentToInvalidLHS("".to_string()).into_err(lhs.position())), } } /// Parse an operator-assignment expression (if any). fn parse_op_assignment_stmt( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, lhs: Expr, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let (op, pos) = match input.peek().expect(NEVER_ENDS) { // var = ... (Token::Equals, ..) => (None, eat_token(input, Token::Equals)), // var op= ... (token, ..) if token.is_op_assignment() => input .next() .map(|(op, pos)| (Some(op), pos)) .expect(NEVER_ENDS), // Not op-assignment _ => return Ok(Stmt::Expr(lhs.into())), }; let mut settings = settings; settings.pos = pos; let rhs = self.parse_expr(input, state, lib, settings.level_up())?; Self::make_assignment_stmt(op, state, lhs, rhs, pos) } /// Make a dot expression. #[cfg(not(feature = "no_object"))] fn make_dot_expr( state: &mut ParseState, lhs: Expr, rhs: Expr, parent_options: ASTFlags, op_flags: ASTFlags, op_pos: Position, ) -> ParseResult { match (lhs, rhs) { // lhs[idx_expr].rhs (Expr::Index(mut x, options, pos), rhs) => { x.rhs = Self::make_dot_expr( state, x.rhs, rhs, options | parent_options, op_flags, op_pos, )?; Ok(Expr::Index(x, ASTFlags::NONE, pos)) } // lhs.module::id - syntax error #[cfg(not(feature = "no_module"))] (.., Expr::Variable(x, ..)) if !x.1.is_empty() => { Err(PERR::PropertyExpected.into_err(x.1.position())) } // lhs.id (lhs, var_expr @ Expr::Variable(..)) => { let rhs = var_expr.into_property(state); Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos)) } // lhs.prop (lhs, prop @ Expr::Property(..)) => Ok(Expr::Dot( BinaryExpr { lhs, rhs: prop }.into(), op_flags, op_pos, )), // lhs.nnn::func(...) - syntax error #[cfg(not(feature = "no_module"))] (.., Expr::FnCall(func, ..)) if func.is_qualified() => { Err(PERR::PropertyExpected.into_err(func.namespace.position())) } // lhs.Fn() or lhs.eval() (.., Expr::FnCall(func, func_pos)) if func.args.is_empty() && [crate::engine::KEYWORD_FN_PTR, crate::engine::KEYWORD_EVAL] .contains(&func.name.as_ref()) => { let err_msg = format!( "'{}' should not be called in method style. Try {}(...);", func.name, func.name ); Err(LexError::ImproperSymbol(func.name.to_string(), err_msg).into_err(func_pos)) } // lhs.func!(...) (.., Expr::FnCall(func, func_pos)) if func.capture_parent_scope => { Err(PERR::MalformedCapture( "method-call style does not support running within the caller's scope".into(), ) .into_err(func_pos)) } // lhs.func(...) (lhs, Expr::FnCall(mut func, func_pos)) => { // Recalculate hash func.hashes = FnCallHashes::from_all( #[cfg(not(feature = "no_function"))] calc_fn_hash(&func.name, func.args.len()), calc_fn_hash(&func.name, func.args.len() + 1), ); let rhs = Expr::MethodCall(func, func_pos); Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos)) } // lhs.dot_lhs.dot_rhs or lhs.dot_lhs[idx_rhs] (lhs, rhs @ (Expr::Dot(..) | Expr::Index(..))) => { let (x, options, pos, is_dot) = match rhs { Expr::Dot(x, options, pos) => (x, options, pos, true), Expr::Index(x, options, pos) => (x, options, pos, false), expr => unreachable!("Expr::Dot or Expr::Index expected but gets {:?}", expr), }; match x.lhs { // lhs.module::id.dot_rhs or lhs.module::id[idx_rhs] - syntax error #[cfg(not(feature = "no_module"))] Expr::Variable(x, ..) if !x.1.is_empty() => { Err(PERR::PropertyExpected.into_err(x.1.position())) } // lhs.module::func().dot_rhs or lhs.module::func()[idx_rhs] - syntax error #[cfg(not(feature = "no_module"))] Expr::FnCall(func, ..) if func.is_qualified() => { Err(PERR::PropertyExpected.into_err(func.namespace.position())) } // lhs.id.dot_rhs or lhs.id[idx_rhs] Expr::Variable(..) | Expr::Property(..) => { let new_binary = BinaryExpr { lhs: x.lhs.into_property(state), rhs: x.rhs, } .into(); let rhs = if is_dot { Expr::Dot(new_binary, options, pos) } else { Expr::Index(new_binary, options, pos) }; Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos)) } // lhs.func().dot_rhs or lhs.func()[idx_rhs] Expr::FnCall(mut func, func_pos) => { // Recalculate hash func.hashes = FnCallHashes::from_all( #[cfg(not(feature = "no_function"))] calc_fn_hash(&func.name, func.args.len()), calc_fn_hash(&func.name, func.args.len() + 1), ); let new_lhs = BinaryExpr { lhs: Expr::MethodCall(func, func_pos), rhs: x.rhs, } .into(); let rhs = if is_dot { Expr::Dot(new_lhs, options, pos) } else { Expr::Index(new_lhs, options, pos) }; Ok(Expr::Dot(BinaryExpr { lhs, rhs }.into(), op_flags, op_pos)) } expr => unreachable!("invalid dot expression: {:?}", expr), } } // lhs.rhs (.., rhs) => Err(PERR::PropertyExpected.into_err(rhs.start_position())), } } /// Parse a binary expression (if any). fn parse_binary_op( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, parent_precedence: Option, lhs: Expr, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; settings.pos = lhs.position(); let mut root = lhs; loop { let (current_op, current_pos) = input.peek().expect(NEVER_ENDS); let precedence = match current_op { Token::Custom(c) => self .custom_keywords .get(c) .cloned() .ok_or_else(|| PERR::Reserved(c.to_string()).into_err(*current_pos))?, Token::Reserved(c) if !is_valid_identifier(c.chars()) => { return Err(PERR::UnknownOperator(c.to_string()).into_err(*current_pos)) } _ => current_op.precedence(), }; let bind_right = current_op.is_bind_right(); // Bind left to the parent lhs expression if precedence is higher // If same precedence, then check if the operator binds right if precedence < parent_precedence || (precedence == parent_precedence && !bind_right) { return Ok(root); } let (op_token, pos) = input.next().expect(NEVER_ENDS); let rhs = self.parse_unary(input, state, lib, settings)?; let (next_op, next_pos) = input.peek().expect(NEVER_ENDS); let next_precedence = match next_op { Token::Custom(c) => self .custom_keywords .get(c) .cloned() .ok_or_else(|| PERR::Reserved(c.to_string()).into_err(*next_pos))?, Token::Reserved(c) if !is_valid_identifier(c.chars()) => { return Err(PERR::UnknownOperator(c.to_string()).into_err(*next_pos)) } _ => next_op.precedence(), }; // Bind to right if the next operator has higher precedence // If same precedence, then check if the operator binds right let rhs = if (precedence == next_precedence && bind_right) || precedence < next_precedence { self.parse_binary_op(input, state, lib, precedence, rhs, settings)? } else { // Otherwise bind to left (even if next operator has the same precedence) rhs }; settings = settings.level_up(); settings.pos = pos; #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let op = op_token.syntax(); let hash = calc_fn_hash(&op, 2); let op_base = FnCallExpr { name: state.get_identifier("", op), hashes: FnCallHashes::from_native(hash), pos, ..Default::default() }; let mut args = StaticVec::new_const(); args.push(root); args.push(rhs); args.shrink_to_fit(); root = match op_token { // '!=' defaults to true when passed invalid operands Token::NotEqualsTo => FnCallExpr { args, ..op_base }.into_fn_call_expr(pos), // Comparison operators default to false when passed invalid operands Token::EqualsTo | Token::LessThan | Token::LessThanEqualsTo | Token::GreaterThan | Token::GreaterThanEqualsTo => { let pos = args[0].start_position(); FnCallExpr { args, ..op_base }.into_fn_call_expr(pos) } Token::Or => { let rhs = args.pop().unwrap(); let current_lhs = args.pop().unwrap(); Expr::Or( BinaryExpr { lhs: current_lhs.ensure_bool_expr()?, rhs: rhs.ensure_bool_expr()?, } .into(), pos, ) } Token::And => { let rhs = args.pop().unwrap(); let current_lhs = args.pop().unwrap(); Expr::And( BinaryExpr { lhs: current_lhs.ensure_bool_expr()?, rhs: rhs.ensure_bool_expr()?, } .into(), pos, ) } Token::In => { // Swap the arguments let current_lhs = args.remove(0); let pos = current_lhs.start_position(); args.push(current_lhs); args.shrink_to_fit(); // Convert into a call to `contains` FnCallExpr { hashes: calc_fn_hash(OP_CONTAINS, 2).into(), args, name: state.get_identifier("", OP_CONTAINS), ..op_base } .into_fn_call_expr(pos) } Token::Custom(s) if self .custom_keywords .get(s.as_str()) .map_or(false, Option::is_some) => { let hash = calc_fn_hash(&s, 2); let pos = args[0].start_position(); FnCallExpr { hashes: if is_valid_function_name(&s) { hash.into() } else { FnCallHashes::from_native(hash) }, args, ..op_base } .into_fn_call_expr(pos) } _ => { let pos = args[0].start_position(); FnCallExpr { args, ..op_base }.into_fn_call_expr(pos) } }; } } /// Parse a custom syntax. fn parse_custom_syntax( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, key: impl Into, syntax: &CustomSyntax, pos: Position, ) -> ParseResult { let mut settings = settings; let mut inputs = StaticVec::::new(); let mut segments = StaticVec::new_const(); let mut tokens = StaticVec::new_const(); // Adjust the variables stack if syntax.scope_may_be_changed { // Add a barrier variable to the stack so earlier variables will not be matched. // Variable searches stop at the first barrier. let marker = state.get_identifier("", SCOPE_SEARCH_BARRIER_MARKER); state.stack.push(marker, ()); } let parse_func = syntax.parse.as_ref(); let mut required_token: ImmutableString = key.into(); tokens.push(required_token.clone().into()); segments.push(required_token.clone()); loop { let (fwd_token, fwd_pos) = input.peek().expect(NEVER_ENDS); settings.pos = *fwd_pos; let settings = settings.level_up(); required_token = match parse_func(&segments, &*fwd_token.syntax()) { Ok(Some(seg)) if seg.starts_with(CUSTOM_SYNTAX_MARKER_SYNTAX_VARIANT) && seg.len() > CUSTOM_SYNTAX_MARKER_SYNTAX_VARIANT.len() => { inputs.push(Expr::StringConstant( state.get_interned_string("", seg), pos, )); break; } Ok(Some(seg)) => seg, Ok(None) => break, Err(err) => return Err(err.0.into_err(settings.pos)), }; match required_token.as_str() { CUSTOM_SYNTAX_MARKER_IDENT => { let (name, pos) = parse_var_name(input)?; let name = state.get_identifier("", name); #[cfg(not(feature = "no_module"))] let ns = crate::ast::Namespace::NONE; #[cfg(feature = "no_module")] let ns = (); segments.push(name.clone().into()); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_IDENT)); inputs.push(Expr::Variable((None, ns, 0, name).into(), None, pos)); } CUSTOM_SYNTAX_MARKER_SYMBOL => { let (symbol, pos) = parse_symbol(input)?; let symbol = state.get_interned_string("", symbol); segments.push(symbol.clone()); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_SYMBOL)); inputs.push(Expr::StringConstant(symbol, pos)); } CUSTOM_SYNTAX_MARKER_EXPR => { inputs.push(self.parse_expr(input, state, lib, settings)?); let keyword = state.get_identifier("", CUSTOM_SYNTAX_MARKER_EXPR); segments.push(keyword.clone().into()); tokens.push(keyword); } CUSTOM_SYNTAX_MARKER_BLOCK => { match self.parse_block(input, state, lib, settings)? { block @ Stmt::Block(..) => { inputs.push(Expr::Stmt(Box::new(block.into()))); let keyword = state.get_identifier("", CUSTOM_SYNTAX_MARKER_BLOCK); segments.push(keyword.clone().into()); tokens.push(keyword); } stmt => unreachable!("Stmt::Block expected but gets {:?}", stmt), } } CUSTOM_SYNTAX_MARKER_BOOL => match input.next().expect(NEVER_ENDS) { (b @ (Token::True | Token::False), pos) => { inputs.push(Expr::BoolConstant(b == Token::True, pos)); segments.push(state.get_interned_string("", b.literal_syntax())); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_BOOL)); } (.., pos) => { return Err( PERR::MissingSymbol("Expecting 'true' or 'false'".to_string()) .into_err(pos), ) } }, CUSTOM_SYNTAX_MARKER_INT => match input.next().expect(NEVER_ENDS) { (Token::IntegerConstant(i), pos) => { inputs.push(Expr::IntegerConstant(i, pos)); segments.push(i.to_string().into()); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_INT)); } (.., pos) => { return Err( PERR::MissingSymbol("Expecting an integer number".to_string()) .into_err(pos), ) } }, #[cfg(not(feature = "no_float"))] CUSTOM_SYNTAX_MARKER_FLOAT => match input.next().expect(NEVER_ENDS) { (Token::FloatConstant(f), pos) => { inputs.push(Expr::FloatConstant(f, pos)); segments.push(f.to_string().into()); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_FLOAT)); } (.., pos) => { return Err(PERR::MissingSymbol( "Expecting a floating-point number".to_string(), ) .into_err(pos)) } }, CUSTOM_SYNTAX_MARKER_STRING => match input.next().expect(NEVER_ENDS) { (Token::StringConstant(s), pos) => { let s = state.get_interned_string("", s); inputs.push(Expr::StringConstant(s.clone(), pos)); segments.push(s); tokens.push(state.get_identifier("", CUSTOM_SYNTAX_MARKER_STRING)); } (.., pos) => { return Err( PERR::MissingSymbol("Expecting a string".to_string()).into_err(pos) ) } }, s => match input.next().expect(NEVER_ENDS) { (Token::LexError(err), pos) => return Err(err.into_err(pos)), (t, ..) if &*t.syntax() == s => { segments.push(required_token.clone()); tokens.push(required_token.clone().into()); } (.., pos) => { return Err(PERR::MissingToken( s.to_string(), format!("for '{}' expression", segments[0]), ) .into_err(pos)) } }, } } inputs.shrink_to_fit(); tokens.shrink_to_fit(); const KEYWORD_SEMICOLON: &str = Token::SemiColon.literal_syntax(); const KEYWORD_CLOSE_BRACE: &str = Token::RightBrace.literal_syntax(); let self_terminated = match required_token.as_str() { // It is self-terminating if the last symbol is a block CUSTOM_SYNTAX_MARKER_BLOCK => true, // If the last symbol is `;` or `}`, it is self-terminating KEYWORD_SEMICOLON | KEYWORD_CLOSE_BRACE => true, _ => false, }; Ok(Expr::Custom( CustomExpr { inputs, tokens, scope_may_be_changed: syntax.scope_may_be_changed, self_terminated, } .into(), pos, )) } /// Parse an expression. fn parse_expr( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; settings.pos = input.peek().expect(NEVER_ENDS).1; // Parse expression normally. let precedence = Precedence::new(1); let lhs = self.parse_unary(input, state, lib, settings.level_up())?; self.parse_binary_op(input, state, lib, precedence, lhs, settings.level_up()) } /// Parse an if statement. fn parse_if( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // if ... let mut settings = settings; settings.pos = eat_token(input, Token::If); // if guard { if_body } ensure_not_statement_expr(input, "a boolean")?; let guard = self .parse_expr(input, state, lib, settings.level_up())? .ensure_bool_expr()?; ensure_not_assignment(input)?; let if_body = self.parse_block(input, state, lib, settings.level_up())?; // if guard { if_body } else ... let else_body = if match_token(input, Token::Else).0 { if let (Token::If, ..) = input.peek().expect(NEVER_ENDS) { // if guard { if_body } else if ... self.parse_if(input, state, lib, settings.level_up())? } else { // if guard { if_body } else { else-body } self.parse_block(input, state, lib, settings.level_up())? } } else { Stmt::Noop(Position::NONE) }; Ok(Stmt::If( (guard, if_body.into(), else_body.into()).into(), settings.pos, )) } /// Parse a while loop. fn parse_while_loop( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; // while|loops ... let (guard, token_pos) = match input.next().expect(NEVER_ENDS) { (Token::While, pos) => { ensure_not_statement_expr(input, "a boolean")?; let expr = self .parse_expr(input, state, lib, settings.level_up())? .ensure_bool_expr()?; ensure_not_assignment(input)?; (expr, pos) } (Token::Loop, pos) => (Expr::Unit(Position::NONE), pos), token => unreachable!("Token::While or Token::Loop expected but gets {:?}", token), }; settings.pos = token_pos; settings.is_breakable = true; let body = self.parse_block(input, state, lib, settings.level_up())?; Ok(Stmt::While((guard, body.into()).into(), settings.pos)) } /// Parse a do loop. fn parse_do( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // do ... let mut settings = settings; settings.pos = eat_token(input, Token::Do); // do { body } [while|until] guard settings.is_breakable = true; let body = self.parse_block(input, state, lib, settings.level_up())?; let negated = match input.next().expect(NEVER_ENDS) { (Token::While, ..) => ASTFlags::NONE, (Token::Until, ..) => ASTFlags::NEGATED, (.., pos) => { return Err( PERR::MissingToken(Token::While.into(), "for the do statement".into()) .into_err(pos), ) } }; settings.is_breakable = false; ensure_not_statement_expr(input, "a boolean")?; let guard = self .parse_expr(input, state, lib, settings.level_up())? .ensure_bool_expr()?; ensure_not_assignment(input)?; Ok(Stmt::Do((guard, body.into()).into(), negated, settings.pos)) } /// Parse a for loop. fn parse_for( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // for ... let mut settings = settings; settings.pos = eat_token(input, Token::For); // for name ... let (name, name_pos, counter_name, counter_pos) = if match_token(input, Token::LeftParen).0 { // ( name, counter ) let (name, name_pos) = parse_var_name(input)?; let (has_comma, pos) = match_token(input, Token::Comma); if !has_comma { return Err(PERR::MissingToken( Token::Comma.into(), "after the iteration variable name".into(), ) .into_err(pos)); } let (counter_name, counter_pos) = parse_var_name(input)?; if counter_name == name { return Err( PERR::DuplicatedVariable(counter_name.to_string()).into_err(counter_pos) ); } let (has_close_paren, pos) = match_token(input, Token::RightParen); if !has_close_paren { return Err(PERR::MissingToken( Token::RightParen.into(), "to close the iteration variable".into(), ) .into_err(pos)); } (name, name_pos, counter_name, counter_pos) } else { // name let (name, name_pos) = parse_var_name(input)?; (name, name_pos, Identifier::new_const(), Position::NONE) }; // for name in ... match input.next().expect(NEVER_ENDS) { (Token::In, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::In.into(), "after the iteration variable".into(), ) .into_err(pos)) } } // for name in expr { body } ensure_not_statement_expr(input, "a boolean")?; let expr = self .parse_expr(input, state, lib, settings.level_up())? .ensure_iterable()?; let prev_stack_len = state.stack.len(); if !counter_name.is_empty() { state.stack.push(name.clone(), ()); } let counter_var = Ident { name: state.get_identifier("", counter_name), pos: counter_pos, }; let loop_var = state.get_identifier("", name); state.stack.push(loop_var.clone(), ()); let loop_var = Ident { name: loop_var, pos: name_pos, }; settings.is_breakable = true; let body = self.parse_block(input, state, lib, settings.level_up())?; state.stack.rewind(prev_stack_len); Ok(Stmt::For( Box::new((loop_var, counter_var, expr, body.into())), settings.pos, )) } /// Parse a variable definition statement. fn parse_let( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, access: AccessMode, is_export: bool, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // let/const... (specified in `var_type`) let mut settings = settings; settings.pos = input.next().expect(NEVER_ENDS).1; // let name ... let (name, pos) = parse_var_name(input)?; if !self.allow_shadowing() && state.stack.iter().any(|(v, ..)| v == &name) { return Err(PERR::VariableExists(name.to_string()).into_err(pos)); } if let Some(ref filter) = self.def_var_filter { let will_shadow = state.stack.iter().any(|(v, ..)| v == &name); let level = settings.level; let is_const = access == AccessMode::ReadOnly; let info = VarDefInfo { name: &name, is_const, nesting_level: level, will_shadow, }; let mut this_ptr = None; let context = EvalContext::new( self, &mut state.stack, &mut state.global, None, &[], &mut this_ptr, level, ); match filter(false, info, context) { Ok(true) => (), Ok(false) => return Err(PERR::ForbiddenVariable(name.to_string()).into_err(pos)), Err(err) => match *err { EvalAltResult::ErrorParsing(perr, pos) => return Err(perr.into_err(pos)), _ => return Err(PERR::ForbiddenVariable(name.to_string()).into_err(pos)), }, } } let name = state.get_identifier("", name); // let name = ... let expr = if match_token(input, Token::Equals).0 { // let name = expr self.parse_expr(input, state, lib, settings.level_up())? } else { Expr::Unit(Position::NONE) }; let export = if is_export { ASTFlags::EXPORTED } else { ASTFlags::NONE }; let (existing, hit_barrier) = state.find_var(&name); let existing = if !hit_barrier && existing > 0 { let offset = state.stack.len() - existing; if offset < state.block_stack_len { // Defined in parent block None } else { Some(offset) } } else { None }; let idx = if let Some(n) = existing { state.stack.get_mut_by_index(n).set_access_mode(access); Some(NonZeroUsize::new(state.stack.len() - n).unwrap()) } else { state.stack.push_entry(name.as_str(), access, Dynamic::UNIT); None }; let var_def = (Ident { name, pos }, expr, idx).into(); Ok(match access { // let name = expr AccessMode::ReadWrite => Stmt::Var(var_def, export, settings.pos), // const name = { expr:constant } AccessMode::ReadOnly => Stmt::Var(var_def, ASTFlags::CONSTANT | export, settings.pos), }) } /// Parse an import statement. #[cfg(not(feature = "no_module"))] fn parse_import( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // import ... let mut settings = settings; settings.pos = eat_token(input, Token::Import); // import expr ... let expr = self.parse_expr(input, state, lib, settings.level_up())?; // import expr as ... if !match_token(input, Token::As).0 { return Ok(Stmt::Import((expr, Ident::EMPTY).into(), settings.pos)); } // import expr as name ... let (name, pos) = parse_var_name(input)?; let name = state.get_identifier("", name); state.imports.push(name.clone()); Ok(Stmt::Import( (expr, Ident { name, pos }).into(), settings.pos, )) } /// Parse an export statement. #[cfg(not(feature = "no_module"))] fn parse_export( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; settings.pos = eat_token(input, Token::Export); match input.peek().expect(NEVER_ENDS) { (Token::Let, pos) => { let pos = *pos; let mut stmt = self.parse_let(input, state, lib, AccessMode::ReadWrite, true, settings)?; stmt.set_position(pos); return Ok(stmt); } (Token::Const, pos) => { let pos = *pos; let mut stmt = self.parse_let(input, state, lib, AccessMode::ReadOnly, true, settings)?; stmt.set_position(pos); return Ok(stmt); } _ => (), } let (id, id_pos) = parse_var_name(input)?; let (alias, alias_pos) = if match_token(input, Token::As).0 { let (name, pos) = parse_var_name(input)?; (Some(name), pos) } else { (None, Position::NONE) }; let export = ( Ident { name: state.get_identifier("", id), pos: id_pos, }, Ident { name: state.get_identifier("", alias.as_ref().map_or("", <_>::as_ref)), pos: alias_pos, }, ); Ok(Stmt::Export(export.into(), settings.pos)) } /// Parse a statement block. fn parse_block( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // Must start with { let mut settings = settings; settings.pos = match input.next().expect(NEVER_ENDS) { (Token::LeftBrace, pos) => pos, (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::LeftBrace.into(), "to start a statement block".into(), ) .into_err(pos)) } }; let mut statements = StaticVec::new_const(); let prev_entry_stack_len = state.block_stack_len; state.block_stack_len = state.stack.len(); #[cfg(not(feature = "no_module"))] let orig_imports_len = state.imports.len(); let end_pos = loop { // Terminated? match input.peek().expect(NEVER_ENDS) { (Token::RightBrace, ..) => break eat_token(input, Token::RightBrace), (Token::EOF, pos) => { return Err(PERR::MissingToken( Token::RightBrace.into(), "to terminate this block".into(), ) .into_err(*pos)); } _ => (), } // Parse statements inside the block settings.is_global = false; let stmt = self.parse_stmt(input, state, lib, settings.level_up())?; if stmt.is_noop() { continue; } // See if it needs a terminating semicolon let need_semicolon = !stmt.is_self_terminated(); statements.push(stmt); match input.peek().expect(NEVER_ENDS) { // { ... stmt } (Token::RightBrace, ..) => break eat_token(input, Token::RightBrace), // { ... stmt; (Token::SemiColon, ..) if need_semicolon => { eat_token(input, Token::SemiColon); } // { ... { stmt } ; (Token::SemiColon, ..) if !need_semicolon => { eat_token(input, Token::SemiColon); } // { ... { stmt } ??? _ if !need_semicolon => (), // { ... stmt (Token::LexError(err), err_pos) => return Err(err.clone().into_err(*err_pos)), // { ... stmt ??? (.., pos) => { // Semicolons are not optional between statements return Err(PERR::MissingToken( Token::SemiColon.into(), "to terminate this statement".into(), ) .into_err(*pos)); } } }; state.stack.rewind(state.block_stack_len); state.block_stack_len = prev_entry_stack_len; #[cfg(not(feature = "no_module"))] state.imports.truncate(orig_imports_len); Ok((statements, settings.pos, end_pos).into()) } /// Parse an expression as a statement. fn parse_expr_stmt( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; settings.pos = input.peek().expect(NEVER_ENDS).1; let expr = self.parse_expr(input, state, lib, settings.level_up())?; let stmt = self.parse_op_assignment_stmt(input, state, lib, expr, settings.level_up())?; Ok(stmt) } /// Parse a single statement. fn parse_stmt( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { use AccessMode::{ReadOnly, ReadWrite}; let mut settings = settings; #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] let comments = { let mut comments = StaticVec::::new(); let mut comments_pos = Position::NONE; // Handle doc-comments. while let (Token::Comment(ref comment), pos) = input.peek().expect(NEVER_ENDS) { if comments_pos.is_none() { comments_pos = *pos; } if !crate::tokenizer::is_doc_comment(comment) { unreachable!("doc-comment expected but gets {:?}", comment); } if !settings.is_global { return Err(PERR::WrongDocComment.into_err(comments_pos)); } match input.next().expect(NEVER_ENDS).0 { Token::Comment(comment) => { comments.push(comment); match input.peek().expect(NEVER_ENDS) { (Token::Fn | Token::Private, ..) => break, (Token::Comment(..), ..) => (), _ => return Err(PERR::WrongDocComment.into_err(comments_pos)), } } token => unreachable!("Token::Comment expected but gets {:?}", token), } } comments }; let (token, token_pos) = match input.peek().expect(NEVER_ENDS) { (Token::EOF, pos) => return Ok(Stmt::Noop(*pos)), (x, pos) => (x, *pos), }; settings.pos = token_pos; #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; match token { // ; - empty statement Token::SemiColon => { eat_token(input, Token::SemiColon); Ok(Stmt::Noop(token_pos)) } // { - statements block Token::LeftBrace => Ok(self.parse_block(input, state, lib, settings.level_up())?), // fn ... #[cfg(not(feature = "no_function"))] Token::Fn if !settings.is_global => Err(PERR::WrongFnDefinition.into_err(token_pos)), #[cfg(not(feature = "no_function"))] Token::Fn | Token::Private => { let access = if matches!(token, Token::Private) { eat_token(input, Token::Private); crate::FnAccess::Private } else { crate::FnAccess::Public }; match input.next().expect(NEVER_ENDS) { (Token::Fn, pos) => { let mut new_state = ParseState::new(self, state.scope, state.tokenizer_control.clone()); #[cfg(not(feature = "no_module"))] new_state.imports.clone_from(&state.imports); #[cfg(not(feature = "unchecked"))] { new_state.max_expr_depth = self.max_function_expr_depth(); } let mut options = self.options; options.set( LangOptions::STRICT_VAR, settings.options.contains(LangOptions::STRICT_VAR), ); let new_settings = ParseSettings { is_global: false, is_function_scope: true, #[cfg(not(feature = "no_closure"))] is_closure_scope: false, is_breakable: false, level: 0, options, pos, ..settings }; let func = self.parse_fn( input, &mut new_state, lib, access, new_settings, #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments, )?; let hash = calc_fn_hash(&func.name, func.params.len()); if !lib.is_empty() && lib.contains_key(&hash) { return Err(PERR::FnDuplicatedDefinition( func.name.to_string(), func.params.len(), ) .into_err(pos)); } lib.insert(hash, func.into()); Ok(Stmt::Noop(pos)) } (.., pos) => Err(PERR::MissingToken( Token::Fn.into(), format!("following '{}'", Token::Private.syntax()), ) .into_err(pos)), } } Token::If => self.parse_if(input, state, lib, settings.level_up()), Token::Switch => self.parse_switch(input, state, lib, settings.level_up()), Token::While | Token::Loop if self.allow_looping() => { self.parse_while_loop(input, state, lib, settings.level_up()) } Token::Do if self.allow_looping() => { self.parse_do(input, state, lib, settings.level_up()) } Token::For if self.allow_looping() => { self.parse_for(input, state, lib, settings.level_up()) } Token::Continue if self.allow_looping() && settings.is_breakable => { let pos = eat_token(input, Token::Continue); Ok(Stmt::BreakLoop(ASTFlags::NONE, pos)) } Token::Break if self.allow_looping() && settings.is_breakable => { let pos = eat_token(input, Token::Break); Ok(Stmt::BreakLoop(ASTFlags::BREAK, pos)) } Token::Continue | Token::Break if self.allow_looping() => { Err(PERR::LoopBreak.into_err(token_pos)) } Token::Return | Token::Throw => { let (return_type, token_pos) = input .next() .map(|(token, pos)| { let flags = match token { Token::Return => ASTFlags::NONE, Token::Throw => ASTFlags::BREAK, token => unreachable!( "Token::Return or Token::Throw expected but gets {:?}", token ), }; (flags, pos) }) .expect(NEVER_ENDS); match input.peek().expect(NEVER_ENDS) { // `return`/`throw` at (Token::EOF, ..) => Ok(Stmt::Return(None, return_type, token_pos)), // `return`/`throw` at end of block (Token::RightBrace, ..) if !settings.is_global => { Ok(Stmt::Return(None, return_type, token_pos)) } // `return;` or `throw;` (Token::SemiColon, ..) => Ok(Stmt::Return(None, return_type, token_pos)), // `return` or `throw` with expression _ => { let expr = self.parse_expr(input, state, lib, settings.level_up())?; Ok(Stmt::Return(Some(expr.into()), return_type, token_pos)) } } } Token::Try => self.parse_try_catch(input, state, lib, settings.level_up()), Token::Let => self.parse_let(input, state, lib, ReadWrite, false, settings.level_up()), Token::Const => self.parse_let(input, state, lib, ReadOnly, false, settings.level_up()), #[cfg(not(feature = "no_module"))] Token::Import => self.parse_import(input, state, lib, settings.level_up()), #[cfg(not(feature = "no_module"))] Token::Export if !settings.is_global => Err(PERR::WrongExport.into_err(token_pos)), #[cfg(not(feature = "no_module"))] Token::Export => self.parse_export(input, state, lib, settings.level_up()), _ => self.parse_expr_stmt(input, state, lib, settings.level_up()), } } /// Parse a try/catch statement. fn parse_try_catch( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; // try ... let mut settings = settings; settings.pos = eat_token(input, Token::Try); // try { try_block } let try_block = self.parse_block(input, state, lib, settings.level_up())?; // try { try_block } catch let (matched, catch_pos) = match_token(input, Token::Catch); if !matched { return Err( PERR::MissingToken(Token::Catch.into(), "for the 'try' statement".into()) .into_err(catch_pos), ); } // try { try_block } catch ( let catch_var = if match_token(input, Token::LeftParen).0 { let (name, pos) = parse_var_name(input)?; let (matched, err_pos) = match_token(input, Token::RightParen); if !matched { return Err(PERR::MissingToken( Token::RightParen.into(), "to enclose the catch variable".into(), ) .into_err(err_pos)); } let name = state.get_identifier("", name); state.stack.push(name.clone(), ()); Ident { name, pos } } else { Ident::EMPTY }; // try { try_block } catch ( var ) { catch_block } let catch_block = self.parse_block(input, state, lib, settings.level_up())?; if !catch_var.is_empty() { // Remove the error variable from the stack state.stack.rewind(state.stack.len() - 1); } Ok(Stmt::TryCatch( TryCatchBlock { try_block: try_block.into(), catch_var, catch_block: catch_block.into(), } .into(), settings.pos, )) } /// Parse a function definition. #[cfg(not(feature = "no_function"))] fn parse_fn( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, access: crate::FnAccess, settings: ParseSettings, #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: StaticVec, ) -> ParseResult { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; let (token, pos) = input.next().expect(NEVER_ENDS); let name = match token.into_function_name_for_override() { Ok(r) => r, Err(Token::Reserved(s)) => return Err(PERR::Reserved(s.to_string()).into_err(pos)), Err(_) => return Err(PERR::FnMissingName.into_err(pos)), }; let no_params = match input.peek().expect(NEVER_ENDS) { (Token::LeftParen, ..) => { eat_token(input, Token::LeftParen); match_token(input, Token::RightParen).0 } (Token::Unit, ..) => { eat_token(input, Token::Unit); true } (.., pos) => return Err(PERR::FnMissingParams(name.to_string()).into_err(*pos)), }; let mut params = StaticVec::new_const(); if !no_params { let sep_err = format!("to separate the parameters of function '{}'", name); loop { match input.next().expect(NEVER_ENDS) { (Token::RightParen, ..) => break, (Token::Identifier(s), pos) => { if params.iter().any(|(p, _)| p == &*s) { return Err(PERR::FnDuplicatedParam(name.to_string(), s.to_string()) .into_err(pos)); } let s = state.get_identifier("", s); state.stack.push(s.clone(), ()); params.push((s, pos)) } (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::RightParen.into(), format!("to close the parameters list of function '{}'", name), ) .into_err(pos)) } } match input.next().expect(NEVER_ENDS) { (Token::RightParen, ..) => break, (Token::Comma, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken(Token::Comma.into(), sep_err).into_err(pos)) } } } } // Parse function body let body = match input.peek().expect(NEVER_ENDS) { (Token::LeftBrace, ..) => { settings.is_breakable = false; self.parse_block(input, state, lib, settings.level_up())? } (.., pos) => return Err(PERR::FnMissingBody(name.to_string()).into_err(*pos)), } .into(); let mut params: StaticVec<_> = params.into_iter().map(|(p, ..)| p).collect(); params.shrink_to_fit(); Ok(ScriptFnDef { name: state.get_identifier("", name), access, params, body, #[cfg(not(feature = "no_module"))] environ: None, #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: comments .into_iter() .map(|s| s.to_string().into_boxed_str()) .collect::>() .into_boxed_slice(), }) } /// Creates a curried expression from a list of external variables #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_closure"))] fn make_curry_from_externals( state: &mut ParseState, fn_expr: Expr, externals: StaticVec, pos: Position, ) -> Expr { // If there are no captured variables, no need to curry if externals.is_empty() { return fn_expr; } let num_externals = externals.len(); let mut args = StaticVec::with_capacity(externals.len() + 1); args.push(fn_expr); args.extend( externals .iter() .cloned() .map(|crate::ast::Ident { name, pos }| { #[cfg(not(feature = "no_module"))] let ns = crate::ast::Namespace::NONE; #[cfg(feature = "no_module")] let ns = (); Expr::Variable((None, ns, 0, name).into(), None, pos) }), ); let expr = FnCallExpr { name: state.get_identifier("", crate::engine::KEYWORD_FN_PTR_CURRY), hashes: FnCallHashes::from_native(calc_fn_hash( crate::engine::KEYWORD_FN_PTR_CURRY, num_externals + 1, )), args, pos, ..Default::default() } .into_fn_call_expr(pos); // Convert the entire expression into a statement block, then insert the relevant // [`Share`][Stmt::Share] statements. let mut statements = StaticVec::with_capacity(externals.len() + 1); statements.extend( externals .into_iter() .map(|crate::ast::Ident { name, pos }| Stmt::Share(name.into(), pos)), ); statements.push(Stmt::Expr(expr.into())); Expr::Stmt(crate::ast::StmtBlock::new(statements, pos, Position::NONE).into()) } /// Parse an anonymous function definition. #[cfg(not(feature = "no_function"))] fn parse_anon_fn( &self, input: &mut TokenStream, state: &mut ParseState, lib: &mut FnLib, settings: ParseSettings, ) -> ParseResult<(Expr, ScriptFnDef)> { #[cfg(not(feature = "unchecked"))] settings.ensure_level_within_max_limit(state.max_expr_depth)?; let mut settings = settings; let mut params_list = StaticVec::new_const(); if input.next().expect(NEVER_ENDS).0 != Token::Or && !match_token(input, Token::Pipe).0 { loop { match input.next().expect(NEVER_ENDS) { (Token::Pipe, ..) => break, (Token::Identifier(s), pos) => { if params_list.iter().any(|p| p == &*s) { return Err(PERR::FnDuplicatedParam("".to_string(), s.to_string()) .into_err(pos)); } let s = state.get_identifier("", s); state.stack.push(s.clone(), ()); params_list.push(s) } (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::Pipe.into(), "to close the parameters list of anonymous function".into(), ) .into_err(pos)) } } match input.next().expect(NEVER_ENDS) { (Token::Pipe, ..) => break, (Token::Comma, ..) => (), (Token::LexError(err), pos) => return Err(err.into_err(pos)), (.., pos) => { return Err(PERR::MissingToken( Token::Comma.into(), "to separate the parameters of anonymous function".into(), ) .into_err(pos)) } } } } // Parse function body settings.is_breakable = false; let body = self.parse_stmt(input, state, lib, settings.level_up())?; // External variables may need to be processed in a consistent order, // so extract them into a list. #[cfg(not(feature = "no_closure"))] let (mut params, externals) = { let externals: StaticVec<_> = state.external_vars.iter().cloned().collect(); let mut params = StaticVec::with_capacity(params_list.len() + externals.len()); params.extend( externals .iter() .map(|crate::ast::Ident { name, .. }| name.clone()), ); (params, externals) }; #[cfg(feature = "no_closure")] let mut params = StaticVec::with_capacity(params_list.len()); params.append(&mut params_list); // Create unique function name by hashing the script body plus the parameters. let hasher = &mut get_hasher(); params.iter().for_each(|p| p.hash(hasher)); body.hash(hasher); let hash = hasher.finish(); let fn_name = state.get_identifier("", make_anonymous_fn(hash)); // Define the function let script = ScriptFnDef { name: fn_name.clone(), access: crate::FnAccess::Public, params, body: body.into(), #[cfg(not(feature = "no_module"))] environ: None, #[cfg(not(feature = "no_function"))] #[cfg(feature = "metadata")] comments: Box::default(), }; let fn_ptr = crate::FnPtr::new_unchecked(fn_name, StaticVec::new_const()); let expr = Expr::DynamicConstant(Box::new(fn_ptr.into()), settings.pos); #[cfg(not(feature = "no_closure"))] let expr = Self::make_curry_from_externals(state, expr, externals, settings.pos); Ok((expr, script)) } /// Parse a global level expression. pub(crate) fn parse_global_expr( &self, input: &mut TokenStream, state: &mut ParseState, _optimization_level: OptimizationLevel, ) -> ParseResult { let mut functions = BTreeMap::new(); let mut options = self.options; options.remove(LangOptions::IF_EXPR | LangOptions::SWITCH_EXPR | LangOptions::STMT_EXPR); #[cfg(not(feature = "no_function"))] options.remove(LangOptions::ANON_FN); let settings = ParseSettings { is_global: true, #[cfg(not(feature = "no_function"))] is_function_scope: false, #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_closure"))] is_closure_scope: false, is_breakable: false, level: 0, options, pos: Position::NONE, }; let expr = self.parse_expr(input, state, &mut functions, settings)?; assert!(functions.is_empty()); match input.peek().expect(NEVER_ENDS) { (Token::EOF, ..) => (), // Return error if the expression doesn't end (token, pos) => { return Err(LexError::UnexpectedInput(token.syntax().to_string()).into_err(*pos)) } } let mut statements = StmtBlockContainer::new_const(); statements.push(Stmt::Expr(expr.into())); #[cfg(not(feature = "no_optimize"))] return Ok(crate::optimizer::optimize_into_ast( self, state.scope, statements, #[cfg(not(feature = "no_function"))] StaticVec::new_const(), _optimization_level, )); #[cfg(feature = "no_optimize")] return Ok(AST::new( statements, #[cfg(not(feature = "no_function"))] crate::Module::new(), )); } /// Parse the global level statements. fn parse_global_level( &self, input: &mut TokenStream, state: &mut ParseState, ) -> ParseResult<(StmtBlockContainer, StaticVec>)> { let mut statements = StmtBlockContainer::new_const(); let mut functions = BTreeMap::new(); while !input.peek().expect(NEVER_ENDS).0.is_eof() { let settings = ParseSettings { is_global: true, #[cfg(not(feature = "no_function"))] is_function_scope: false, #[cfg(not(feature = "no_function"))] #[cfg(not(feature = "no_closure"))] is_closure_scope: false, is_breakable: false, options: self.options, level: 0, pos: Position::NONE, }; let stmt = self.parse_stmt(input, state, &mut functions, settings)?; if stmt.is_noop() { continue; } let need_semicolon = !stmt.is_self_terminated(); statements.push(stmt); match input.peek().expect(NEVER_ENDS) { // EOF (Token::EOF, ..) => break, // stmt ; (Token::SemiColon, ..) if need_semicolon => { eat_token(input, Token::SemiColon); } // stmt ; (Token::SemiColon, ..) if !need_semicolon => (), // { stmt } ??? _ if !need_semicolon => (), // stmt (Token::LexError(err), pos) => return Err(err.clone().into_err(*pos)), // stmt ??? (.., pos) => { // Semicolons are not optional between statements return Err(PERR::MissingToken( Token::SemiColon.into(), "to terminate this statement".into(), ) .into_err(*pos)); } } } Ok((statements, functions.into_iter().map(|(.., v)| v).collect())) } /// Run the parser on an input stream, returning an AST. #[inline] pub(crate) fn parse( &self, input: &mut TokenStream, state: &mut ParseState, _optimization_level: OptimizationLevel, ) -> ParseResult { let (statements, _lib) = self.parse_global_level(input, state)?; #[cfg(not(feature = "no_optimize"))] return Ok(crate::optimizer::optimize_into_ast( self, state.scope, statements, #[cfg(not(feature = "no_function"))] _lib, _optimization_level, )); #[cfg(feature = "no_optimize")] #[cfg(not(feature = "no_function"))] { let mut m = crate::Module::new(); for fn_def in _lib { m.set_script_fn(fn_def); } return Ok(AST::new(statements, m)); } #[cfg(feature = "no_optimize")] #[cfg(feature = "no_function")] return Ok(AST::new( statements, #[cfg(not(feature = "no_function"))] crate::Module::new(), )); } }