Eagerly evaluate built-in operators for OptimizationLevel::Simple.

This commit is contained in:
Stephen Chung 2020-10-05 10:27:31 +08:00
parent b91a073596
commit 0d0affd5e9
11 changed files with 182 additions and 104 deletions

View File

@ -16,7 +16,9 @@ Breaking changes
New features
------------
* `is_def_var()` to detect if variable is defined and `is_def_fn()` to detect if script function is defined.
* `OptimizationLevel::Simple` now eagerly evaluates built-in binary operators of primary types (if not overloaded).
* Added `is_def_var()` to detect if variable is defined and `is_def_fn()` to detect if script function is defined.
* Added `Module::get_script_fn` to get a scripted function in a module, if any, based on name and number of parameters.
Version 0.19.0

View File

@ -3,8 +3,8 @@ Eager Function Evaluation When Using Full Optimization Level
{{#include ../../links.md}}
When the optimization level is [`OptimizationLevel::Full`], the [`Engine`] assumes all functions to be _pure_ and will _eagerly_
evaluated all function calls with constant arguments, using the result to replace the call.
When the optimization level is [`OptimizationLevel::Full`], the [`Engine`] assumes all functions to be _pure_
and will _eagerly_ evaluated all function calls with constant arguments, using the result to replace the call.
This also applies to all operators (which are implemented as functions).
@ -14,8 +14,8 @@ For instance, the same example above:
// When compiling the following with OptimizationLevel::Full...
const DECISION = 1;
// this condition is now eliminated because 'DECISION == 1'
if DECISION == 1 { // is a function call to the '==' function, and it returns 'true'
// this condition is now eliminated because 'sign(DECISION) > 0'
if DECISION.sign() > 0 { // is a call to the 'sign' and '>' functions, and they return 'true'
print("hello!"); // this block is promoted to the parent level
} else {
print("boo!"); // this block is eliminated because it is never reached
@ -24,13 +24,3 @@ if DECISION == 1 { // is a function call to the '==' function, and it r
print("hello!"); // <- the above is equivalent to this
// ('print' and 'debug' are handled specially)
```
Because of the eager evaluation of functions, many constant expressions will be evaluated and replaced by the result.
This does not happen with [`OptimizationLevel::Simple`] which doesn't assume all functions to be _pure_.
```rust
// When compiling the following with OptimizationLevel::Full...
let x = (1+2)*3-4/5%6; // <- will be replaced by 'let x = 9'
let y = (1>2) || (3<=4); // <- will be replaced by 'let y = true'
```

View File

@ -61,17 +61,63 @@ For fixed script texts, the constant values can be provided in a user-defined [`
to the [`Engine`] for use in compilation and evaluation.
Watch Out for Function Calls
---------------------------
Eager Operator Evaluations
-------------------------
Beware, however, that most operators are actually function calls, and those functions can be overridden,
so they are not optimized away:
so whether they are optimized away depends on the situation:
* If the operands are not _constant_ values, it is not optimized.
* If the operator is [overloaded][operator overloading], it is not optimized because the overloading function may not be _pure_
(i.e. may cause side-effects when called).
* If the operator is not _binary_, it is not optimized. Only binary operators are built-in to Rhai.
* If the operands are not of the same type, it is not optimized.
* If the operator is not _built-in_ (see list of [built-in operators]), it is not optimized.
* If the operator is a binary built-in operator for a [standard type][standard types], it is called and replaced by a constant result.
Rhai guarantees that no external function will be run (in order not to trigger side-effects) during the
optimization process (unless the optimization level is set to [`OptimizationLevel::Full`]).
```rust
const DECISION = 1;
const DECISION = 1; // this is an integer, one of the standard types
if DECISION == 1 { // NOT optimized away because you can define
: // your own '==' function to override the built-in default!
if DECISION == 1 { // this is optimized into 'true'
:
} else if DECISION == 2 { // this is optimized into 'false'
:
} else if DECISION == 3 { // this is optimized into 'false'
:
} else {
:
}
```
Because of the eager evaluation of operators for [standard types], many constant expressions will be evaluated
and replaced by the result.
```rust
let x = (1+2)*3-4/5%6; // will be replaced by 'let x = 9'
let y = (1>2) || (3<=4); // will be replaced by 'let y = true'
```
For operators that are not optimized away due to one of the above reasons, the function calls
are simply left behind:
```rust
// Assume 'new_state' returns some custom type that is NOT one of the standard types.
// Also assume that the '==; operator is defined for that custom type.
const DECISION_1 = new_state(1);
const DECISION_2 = new_state(2);
const DECISION_3 = new_state(3);
if DECISION == 1 { // NOT optimized away because the operator is not built-in
: // and may cause side-effects if called!
:
} else if DECISION == 2 { // same here, NOT optimized away
:
@ -82,28 +128,4 @@ if DECISION == 1 { // NOT optimized away because you can define
}
```
because no operator functions will be run (in order not to trigger side-effects) during the optimization process
(unless the optimization level is set to [`OptimizationLevel::Full`]).
So, instead, do this:
```rust
const DECISION_1 = true;
const DECISION_2 = false;
const DECISION_3 = false;
if DECISION_1 {
: // this branch is kept and promoted to the parent level
} else if DECISION_2 {
: // this branch is eliminated
} else if DECISION_3 {
: // this branch is eliminated
} else {
: // this branch is eliminated
}
```
In general, boolean constants are most effective for the optimizer to automatically prune
large `if`-`else` branches because they do not depend on operators.
Alternatively, turn the optimizer to [`OptimizationLevel::Full`].

View File

@ -8,9 +8,10 @@ There are three levels of optimization: `None`, `Simple` and `Full`.
* `None` is obvious - no optimization on the AST is performed.
* `Simple` (default) performs only relatively _safe_ optimizations without causing side-effects
(i.e. it only relies on static analysis and will not actually perform any function calls).
(i.e. it only relies on static analysis and [built-in operators] for constant [standard types],
and will not perform any external function calls).
* `Full` is _much_ more aggressive, _including_ running functions on constant arguments to determine their result.
* `Full` is _much_ more aggressive, _including_ calling external functions on constant arguments to determine their result.
One benefit to this is that many more optimization opportunities arise, especially with regards to comparison operators.

View File

@ -16,11 +16,11 @@ The final, optimized [`AST`] is then used for evaluations.
// Compile master script to AST
let master_ast = engine.compile(
r"
if SCENARIO_1 {
if SCENARIO == 1 {
do_work();
} else if SCENARIO_2 {
} else if SCENARIO == 2 {
do_something();
} else if SCENARIO_3 {
} else if SCENARIO == 3 {
do_something_else();
} else {
do_nothing();
@ -29,9 +29,7 @@ r"
// Create a new 'Scope' - put constants in it to aid optimization
let mut scope = Scope::new();
scope.push_constant("SCENARIO_1", true);
scope.push_constant("SCENARIO_2", false);
scope.push_constant("SCENARIO_3", false);
scope.push_constant("SCENARIO", 1_i64);
// Re-optimize the AST
let new_ast = engine.optimize_ast(&scope, master_ast.clone(), OptimizationLevel::Simple);

View File

@ -3,17 +3,20 @@ Side-Effect Considerations for Full Optimization Level
{{#include ../../links.md}}
All of Rhai's built-in functions (and operators which are implemented as functions) are _pure_ (i.e. they do not mutate state
nor cause any side-effects, with the exception of `print` and `debug` which are handled specially) so using
[`OptimizationLevel::Full`] is usually quite safe _unless_ custom types and functions are registered.
All of Rhai's built-in functions (and operators which are implemented as functions) are _pure_
(i.e. they do not mutate state nor cause any side-effects, with the exception of `print` and `debug`
which are handled specially) so using [`OptimizationLevel::Full`] is usually quite safe _unless_
custom types and functions are registered.
If custom functions are registered, they _may_ be called (or maybe not, if the calls happen to lie within a pruned code block).
If custom functions are registered, they _may_ be called (or maybe not, if the calls happen to lie
within a pruned code block).
If custom functions are registered to overload built-in operators, they will also be called when the operators are used
(in an `if` statement, for example) causing side-effects.
If custom functions are registered to overload built-in operators, they will also be called when
the operators are used (in an `if` statement, for example) causing side-effects.
Therefore, the rule-of-thumb is:
* _Always_ register custom types and functions _after_ compiling scripts if [`OptimizationLevel::Full`] is used.
* _DO NOT_ depend on knowledge that the functions have no side-effects, because those functions can change later on and, when that happens, existing scripts may break in subtle ways.
* _DO NOT_ depend on knowledge that the functions have no side-effects, because those functions can change later on and,
when that happens, existing scripts may break in subtle ways.

View File

@ -100,6 +100,7 @@
[function namespaces]: {{rootUrl}}/language/fn-namespaces.md
[anonymous function]: {{rootUrl}}/language/fn-anon.md
[anonymous functions]: {{rootUrl}}/language/fn-anon.md
[operator overloading]: {{rootUrl}}/rust/operators.md
[`Module`]: {{rootUrl}}/language/modules/index.md
[module]: {{rootUrl}}/language/modules/index.md

View File

@ -146,7 +146,7 @@ fn main() {
#[cfg(not(feature = "no_optimize"))]
{
ast = engine.optimize_ast(&scope, r, OptimizationLevel::Full);
ast = engine.optimize_ast(&scope, r, OptimizationLevel::Simple);
}
#[cfg(feature = "no_optimize")]

View File

@ -439,7 +439,33 @@ impl Engine {
}
// Has a system function an override?
fn has_override(&self, lib: &Module, hash_fn: u64, hash_script: u64, pub_only: bool) -> bool {
pub(crate) fn has_override_by_name_and_arguments(
&self,
lib: &Module,
name: &str,
arg_types: &[TypeId],
pub_only: bool,
) -> bool {
let arg_len = if arg_types.is_empty() {
usize::MAX
} else {
arg_types.len()
};
let hash_fn = calc_fn_hash(empty(), name, arg_len, arg_types.iter().cloned());
let hash_script = calc_fn_hash(empty(), name, arg_types.len(), empty());
self.has_override(lib, hash_fn, hash_script, pub_only)
}
// Has a system function an override?
pub(crate) fn has_override(
&self,
lib: &Module,
hash_fn: u64,
hash_script: u64,
pub_only: bool,
) -> bool {
// NOTE: We skip script functions for global_module and packages, and native functions for lib
// First check script-defined functions

View File

@ -294,6 +294,23 @@ impl Module {
hash_script
}
/// Get a script-defined function in the module based on name and number of parameters.
pub fn get_script_fn(
&self,
name: &str,
num_params: usize,
public_only: bool,
) -> Option<&Shared<ScriptFnDef>> {
self.functions
.values()
.find(|(fn_name, access, num, _, _)| {
(!public_only || *access == FnAccess::Public)
&& *num == num_params
&& fn_name == name
})
.map(|(_, _, _, _, f)| f.get_shared_fn_def())
}
/// Does a sub-module exist in the module?
///
/// # Examples

View File

@ -5,6 +5,7 @@ use crate::calc_fn_hash;
use crate::engine::{
Engine, KEYWORD_DEBUG, KEYWORD_EVAL, KEYWORD_FN_PTR, KEYWORD_PRINT, KEYWORD_TYPE_OF,
};
use crate::fn_call::run_builtin_binary_op;
use crate::fn_native::FnPtr;
use crate::module::Module;
use crate::parser::{map_dynamic_to_expr, Expr, ScriptFnDef, Stmt, AST};
@ -568,58 +569,75 @@ fn optimize_expr(expr: Expr, state: &mut State) -> Expr {
}
}
// Call built-in functions
Expr::FnCall(mut x)
if x.1.is_none() // Non-qualified
&& state.optimization_level == OptimizationLevel::Simple // simple optimizations
&& x.3.len() == 2 // binary call
&& x.3.iter().all(Expr::is_constant) // all arguments are constants
=> {
let ((name, _, _, pos), _, _, args, _) = x.as_mut();
let arg_values: StaticVec<_> = args.iter().map(Expr::get_constant_value).collect();
let arg_types: StaticVec<_> = arg_values.iter().map(Dynamic::type_id).collect();
// Search for overloaded operators (can override built-in).
if !state.engine.has_override_by_name_and_arguments(state.lib, name, arg_types.as_ref(), false) {
if let Some(expr) = run_builtin_binary_op(name, &arg_values[0], &arg_values[1])
.ok().flatten()
.and_then(|result| map_dynamic_to_expr(result, *pos))
{
state.set_dirty();
return expr;
}
}
x.3 = x.3.into_iter().map(|a| optimize_expr(a, state)).collect();
Expr::FnCall(x)
}
// Eagerly call functions
Expr::FnCall(mut x)
if x.1.is_none() // Non-qualified
&& state.optimization_level == OptimizationLevel::Full // full optimizations
&& x.3.iter().all(|expr| expr.is_constant()) // all arguments are constants
&& x.3.iter().all(Expr::is_constant) // all arguments are constants
=> {
let ((name, _, _, pos), _, _, args, def_value) = x.as_mut();
// First search in functions lib (can override built-in)
// Cater for both normal function call style and method call style (one additional arguments)
let has_script_fn = cfg!(not(feature = "no_function")) && state.lib.iter_fn().find(|(_, _, _, _,f)| {
if !f.is_script() { return false; }
let fn_def = f.get_fn_def();
fn_def.name == name && (args.len()..=args.len() + 1).contains(&fn_def.params.len())
}).is_some();
// First search for script-defined functions (can override built-in)
let has_script_fn = cfg!(not(feature = "no_function"))
&& state.lib.get_script_fn(name, args.len(), false).is_some();
if has_script_fn {
// A script-defined function overrides the built-in function - do not make the call
x.3 = x.3.into_iter().map(|a| optimize_expr(a, state)).collect();
return Expr::FnCall(x);
if !has_script_fn {
let mut arg_values: StaticVec<_> = args.iter().map(Expr::get_constant_value).collect();
// Save the typename of the first argument if it is `type_of()`
// This is to avoid `call_args` being passed into the closure
let arg_for_type_of = if name == KEYWORD_TYPE_OF && arg_values.len() == 1 {
state.engine.map_type_name(arg_values[0].type_name())
} else {
""
};
if let Some(expr) = call_fn_with_constant_arguments(&state, name, arg_values.as_mut())
.or_else(|| {
if !arg_for_type_of.is_empty() {
// Handle `type_of()`
Some(arg_for_type_of.to_string().into())
} else {
// Otherwise use the default value, if any
def_value.map(|v| v.into())
}
})
.and_then(|result| map_dynamic_to_expr(result, *pos))
{
state.set_dirty();
return expr;
}
}
let mut arg_values: StaticVec<_> = args.iter().map(Expr::get_constant_value).collect();
// Save the typename of the first argument if it is `type_of()`
// This is to avoid `call_args` being passed into the closure
let arg_for_type_of = if name == KEYWORD_TYPE_OF && arg_values.len() == 1 {
state.engine.map_type_name(arg_values[0].type_name())
} else {
""
};
call_fn_with_constant_arguments(&state, name, arg_values.as_mut())
.or_else(|| {
if !arg_for_type_of.is_empty() {
// Handle `type_of()`
Some(arg_for_type_of.to_string().into())
} else {
// Otherwise use the default value, if any
def_value.map(|v| v.into())
}
})
.and_then(|result| map_dynamic_to_expr(result, *pos))
.map(|expr| {
state.set_dirty();
expr
})
.unwrap_or_else(|| {
// Optimize function call arguments
x.3 = x.3.into_iter().map(|a| optimize_expr(a, state)).collect();
Expr::FnCall(x)
})
x.3 = x.3.into_iter().map(|a| optimize_expr(a, state)).collect();
Expr::FnCall(x)
}
// id(args ..) -> optimize function call arguments