rhai/src/packages/arithmetic.rs

443 lines
14 KiB
Rust
Raw Normal View History

use super::{
create_new_package, reg_binary, reg_unary, Package, PackageLibrary, PackageLibraryStore,
};
use crate::fn_register::{map_dynamic as map, map_result as result};
use crate::parser::INT;
use crate::result::EvalAltResult;
use crate::token::Position;
#[cfg(not(feature = "no_float"))]
use crate::parser::FLOAT;
use num_traits::{
identities::Zero, CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl,
CheckedShr, CheckedSub,
};
use crate::stdlib::{
fmt::Display,
format,
ops::{Add, BitAnd, BitOr, BitXor, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub},
{i32, i64, u32},
};
// Checked add
fn add<T: Display + CheckedAdd>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_add(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Addition overflow: {} + {}", x, y),
Position::none(),
)
})
}
// Checked subtract
fn sub<T: Display + CheckedSub>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_sub(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Subtraction underflow: {} - {}", x, y),
Position::none(),
)
})
}
// Checked multiply
fn mul<T: Display + CheckedMul>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_mul(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Multiplication overflow: {} * {}", x, y),
Position::none(),
)
})
}
// Checked divide
fn div<T>(x: T, y: T) -> Result<T, EvalAltResult>
where
T: Display + CheckedDiv + PartialEq + Zero,
{
// Detect division by zero
if y == T::zero() {
return Err(EvalAltResult::ErrorArithmetic(
format!("Division by zero: {} / {}", x, y),
Position::none(),
));
}
x.checked_div(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Division overflow: {} / {}", x, y),
Position::none(),
)
})
}
// Checked negative - e.g. -(i32::MIN) will overflow i32::MAX
fn neg<T: Display + CheckedNeg>(x: T) -> Result<T, EvalAltResult> {
x.checked_neg().ok_or_else(|| {
EvalAltResult::ErrorArithmetic(format!("Negation overflow: -{}", x), Position::none())
})
}
// Checked absolute
fn abs<T: Display + CheckedNeg + PartialOrd + Zero>(x: T) -> Result<T, EvalAltResult> {
// FIX - We don't use Signed::abs() here because, contrary to documentation, it panics
// when the number is ::MIN instead of returning ::MIN itself.
if x >= <T as Zero>::zero() {
Ok(x)
} else {
x.checked_neg().ok_or_else(|| {
EvalAltResult::ErrorArithmetic(format!("Negation overflow: -{}", x), Position::none())
})
}
}
// Unchecked add - may panic on overflow
fn add_u<T: Add>(x: T, y: T) -> <T as Add>::Output {
x + y
}
// Unchecked subtract - may panic on underflow
fn sub_u<T: Sub>(x: T, y: T) -> <T as Sub>::Output {
x - y
}
// Unchecked multiply - may panic on overflow
fn mul_u<T: Mul>(x: T, y: T) -> <T as Mul>::Output {
x * y
}
// Unchecked divide - may panic when dividing by zero
fn div_u<T: Div>(x: T, y: T) -> <T as Div>::Output {
x / y
}
// Unchecked negative - may panic on overflow
fn neg_u<T: Neg>(x: T) -> <T as Neg>::Output {
-x
}
// Unchecked absolute - may panic on overflow
fn abs_u<T>(x: T) -> <T as Neg>::Output
where
T: Neg + PartialOrd + Default + Into<<T as Neg>::Output>,
{
// Numbers should default to zero
if x < Default::default() {
-x
} else {
x.into()
}
}
// Bit operators
fn binary_and<T: BitAnd>(x: T, y: T) -> <T as BitAnd>::Output {
x & y
}
fn binary_or<T: BitOr>(x: T, y: T) -> <T as BitOr>::Output {
x | y
}
fn binary_xor<T: BitXor>(x: T, y: T) -> <T as BitXor>::Output {
x ^ y
}
// Checked left-shift
fn shl<T: Display + CheckedShl>(x: T, y: INT) -> Result<T, EvalAltResult> {
// Cannot shift by a negative number of bits
if y < 0 {
return Err(EvalAltResult::ErrorArithmetic(
format!("Left-shift by a negative number: {} << {}", x, y),
Position::none(),
));
}
CheckedShl::checked_shl(&x, y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Left-shift by too many bits: {} << {}", x, y),
Position::none(),
)
})
}
// Checked right-shift
fn shr<T: Display + CheckedShr>(x: T, y: INT) -> Result<T, EvalAltResult> {
// Cannot shift by a negative number of bits
if y < 0 {
return Err(EvalAltResult::ErrorArithmetic(
format!("Right-shift by a negative number: {} >> {}", x, y),
Position::none(),
));
}
CheckedShr::checked_shr(&x, y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Right-shift by too many bits: {} % {}", x, y),
Position::none(),
)
})
}
// Unchecked left-shift - may panic if shifting by a negative number of bits
fn shl_u<T: Shl<T>>(x: T, y: T) -> <T as Shl<T>>::Output {
x.shl(y)
}
// Unchecked right-shift - may panic if shifting by a negative number of bits
fn shr_u<T: Shr<T>>(x: T, y: T) -> <T as Shr<T>>::Output {
x.shr(y)
}
// Checked modulo
fn modulo<T: Display + CheckedRem>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_rem(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Modulo division by zero or overflow: {} % {}", x, y),
Position::none(),
)
})
}
// Unchecked modulo - may panic if dividing by zero
fn modulo_u<T: Rem>(x: T, y: T) -> <T as Rem>::Output {
x % y
}
// Checked power
fn pow_i_i(x: INT, y: INT) -> Result<INT, EvalAltResult> {
#[cfg(not(feature = "only_i32"))]
{
if y > (u32::MAX as INT) {
Err(EvalAltResult::ErrorArithmetic(
format!("Integer raised to too large an index: {} ~ {}", x, y),
Position::none(),
))
} else if y < 0 {
Err(EvalAltResult::ErrorArithmetic(
format!("Integer raised to a negative index: {} ~ {}", x, y),
Position::none(),
))
} else {
x.checked_pow(y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Power overflow: {} ~ {}", x, y),
Position::none(),
)
})
}
}
#[cfg(feature = "only_i32")]
{
if y < 0 {
Err(EvalAltResult::ErrorArithmetic(
format!("Integer raised to a negative index: {} ~ {}", x, y),
Position::none(),
))
} else {
x.checked_pow(y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Power overflow: {} ~ {}", x, y),
Position::none(),
)
})
}
}
}
// Unchecked integer power - may panic on overflow or if the power index is too high (> u32::MAX)
fn pow_i_i_u(x: INT, y: INT) -> INT {
x.pow(y as u32)
}
// Floating-point power - always well-defined
#[cfg(not(feature = "no_float"))]
fn pow_f_f(x: FLOAT, y: FLOAT) -> FLOAT {
x.powf(y)
}
// Checked power
#[cfg(not(feature = "no_float"))]
fn pow_f_i(x: FLOAT, y: INT) -> Result<FLOAT, EvalAltResult> {
// Raise to power that is larger than an i32
if y > (i32::MAX as INT) {
return Err(EvalAltResult::ErrorArithmetic(
format!("Number raised to too large an index: {} ~ {}", x, y),
Position::none(),
));
}
Ok(x.powi(y as i32))
}
// Unchecked power - may be incorrect if the power index is too high (> i32::MAX)
#[cfg(feature = "unchecked")]
#[cfg(not(feature = "no_float"))]
fn pow_f_i_u(x: FLOAT, y: INT) -> FLOAT {
x.powi(y as i32)
}
pub struct ArithmeticPackage(PackageLibrary);
impl Deref for ArithmeticPackage {
type Target = PackageLibrary;
fn deref(&self) -> &PackageLibrary {
&self.0
}
}
macro_rules! reg_unary_x { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_unary($lib, $op, $func::<$par>, result);)* };
}
macro_rules! reg_unary { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_unary($lib, $op, $func::<$par>, map);)* };
}
macro_rules! reg_op_x { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, result);)* };
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, map);)* };
}
impl Package for ArithmeticPackage {
fn new() -> Self {
let mut pkg = create_new_package();
Self::init(&mut pkg);
Self(pkg.into())
}
fn get(&self) -> PackageLibrary {
self.0.clone()
}
fn init(lib: &mut PackageLibraryStore) {
// Checked basic arithmetic
#[cfg(not(feature = "unchecked"))]
{
reg_op_x!(lib, "+", add, INT);
reg_op_x!(lib, "-", sub, INT);
reg_op_x!(lib, "*", mul, INT);
reg_op_x!(lib, "/", div, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_x!(lib, "+", add, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "-", sub, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "*", mul, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "/", div, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
// Unchecked basic arithmetic
#[cfg(feature = "unchecked")]
{
reg_op!(lib, "+", add_u, INT);
reg_op!(lib, "-", sub_u, INT);
reg_op!(lib, "*", mul_u, INT);
reg_op!(lib, "/", div_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(lib, "+", add_u, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "-", sub_u, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "*", mul_u, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "/", div_u, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
// Basic arithmetic for floating-point - no need to check
#[cfg(not(feature = "no_float"))]
{
reg_op!(lib, "+", add_u, f32, f64);
reg_op!(lib, "-", sub_u, f32, f64);
reg_op!(lib, "*", mul_u, f32, f64);
reg_op!(lib, "/", div_u, f32, f64);
}
// Bit operations
reg_op!(lib, "|", binary_or, INT);
reg_op!(lib, "&", binary_and, INT);
reg_op!(lib, "^", binary_xor, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(lib, "|", binary_or, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "&", binary_and, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "^", binary_xor, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
// Checked bit shifts
#[cfg(not(feature = "unchecked"))]
{
reg_op_x!(lib, "<<", shl, INT);
reg_op_x!(lib, ">>", shr, INT);
reg_op_x!(lib, "%", modulo, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_x!(lib, "<<", shl, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, ">>", shr, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "%", modulo, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
// Unchecked bit shifts
#[cfg(feature = "unchecked")]
{
reg_op!(lib, "<<", shl_u, INT, INT);
reg_op!(lib, ">>", shr_u, INT, INT);
reg_op!(lib, "%", modulo_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(lib, "<<", shl_u, i64, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, ">>", shr_u, i64, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "%", modulo_u, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
// Checked power
#[cfg(not(feature = "unchecked"))]
{
reg_binary(lib, "~", pow_i_i, result);
#[cfg(not(feature = "no_float"))]
reg_binary(lib, "~", pow_f_i, result);
}
// Unchecked power
#[cfg(feature = "unchecked")]
{
reg_binary(lib, "~", pow_i_i_u, map);
#[cfg(not(feature = "no_float"))]
reg_binary(lib, "~", pow_f_i_u, map);
}
// Floating-point modulo and power
#[cfg(not(feature = "no_float"))]
{
reg_op!(lib, "%", modulo_u, f32, f64);
reg_binary(lib, "~", pow_f_f, map);
}
// Checked unary
#[cfg(not(feature = "unchecked"))]
{
reg_unary_x!(lib, "-", neg, INT);
reg_unary_x!(lib, "abs", abs, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_unary_x!(lib, "-", neg, i8, i16, i32, i64, i128);
reg_unary_x!(lib, "abs", abs, i8, i16, i32, i64, i128);
}
}
// Unchecked unary
#[cfg(feature = "unchecked")]
{
reg_unary!(lib, "-", neg_u, INT);
reg_unary!(lib, "abs", abs_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_unary!(lib, "-", neg_u, i8, i16, i32, i64, i128);
reg_unary!(lib, "abs", abs_u, i8, i16, i32, i64, i128);
}
}
// Floating-point unary
#[cfg(not(feature = "no_float"))]
{
reg_unary!(lib, "-", neg_u, f32, f64);
reg_unary!(lib, "abs", abs_u, f32, f64);
}
}
}