rhai/src/builtin.rs

926 lines
34 KiB
Rust
Raw Normal View History

2020-03-08 12:54:02 +01:00
//! Helper module that allows registration of the _core library_ and
//! _standard library_ of utility functions.
2020-03-04 15:00:01 +01:00
use crate::any::Any;
use crate::engine::{Engine, FUNC_TO_STRING, KEYWORD_DEBUG, KEYWORD_PRINT};
2020-03-18 03:36:50 +01:00
use crate::fn_register::{RegisterDynamicFn, RegisterFn, RegisterResultFn};
2020-03-11 04:03:18 +01:00
use crate::parser::{Position, INT};
use crate::result::EvalAltResult;
#[cfg(not(feature = "no_index"))]
use crate::engine::Array;
2020-03-29 17:53:35 +02:00
#[cfg(not(feature = "no_object"))]
use crate::engine::Map;
#[cfg(not(feature = "no_float"))]
use crate::parser::FLOAT;
2020-03-11 04:03:18 +01:00
use num_traits::{
identities::Zero, CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl,
CheckedShr, CheckedSub,
2020-03-10 03:07:44 +01:00
};
2020-03-17 19:26:11 +01:00
use crate::stdlib::{
boxed::Box,
2020-03-11 04:03:18 +01:00
fmt::{Debug, Display},
2020-03-17 19:26:11 +01:00
format,
2020-03-11 04:03:18 +01:00
ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Range, Rem, Shl, Shr, Sub},
2020-03-17 19:26:11 +01:00
string::{String, ToString},
vec::Vec,
2020-03-11 04:03:18 +01:00
{i32, i64, u32},
};
macro_rules! reg_op {
($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $y, y: $y)->$y);
)*
)
}
#[cfg(not(feature = "unchecked"))]
macro_rules! reg_op_result {
($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => (
$(
$self.register_result_fn($x, $op as fn(x: $y, y: $y)->Result<$y,EvalAltResult>);
)*
)
}
#[cfg(not(feature = "unchecked"))]
macro_rules! reg_op_result1 {
($self:expr, $x:expr, $op:expr, $v:ty, $( $y:ty ),*) => (
$(
$self.register_result_fn($x, $op as fn(x: $y, y: $v)->Result<$y,EvalAltResult>);
)*
)
}
2020-03-04 15:00:01 +01:00
impl Engine<'_> {
2020-03-04 16:44:32 +01:00
/// Register the core built-in library.
pub(crate) fn register_core_lib(&mut self) {
2020-03-25 04:27:09 +01:00
// Checked add
#[cfg(not(feature = "unchecked"))]
fn add<T: Display + CheckedAdd>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_add(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Addition overflow: {} + {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked subtract
#[cfg(not(feature = "unchecked"))]
fn sub<T: Display + CheckedSub>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_sub(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Subtraction underflow: {} - {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked multiply
#[cfg(not(feature = "unchecked"))]
fn mul<T: Display + CheckedMul>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_mul(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Multiplication overflow: {} * {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked divide
#[cfg(not(feature = "unchecked"))]
fn div<T>(x: T, y: T) -> Result<T, EvalAltResult>
where
2020-03-11 04:03:18 +01:00
T: Display + CheckedDiv + PartialEq + Zero,
{
2020-03-18 03:36:50 +01:00
// Detect division by zero
2020-03-11 04:03:18 +01:00
if y == T::zero() {
return Err(EvalAltResult::ErrorArithmetic(
format!("Division by zero: {} / {}", x, y),
Position::none(),
));
}
x.checked_div(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Division overflow: {} / {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked negative - e.g. -(i32::MIN) will overflow i32::MAX
#[cfg(not(feature = "unchecked"))]
fn neg<T: Display + CheckedNeg>(x: T) -> Result<T, EvalAltResult> {
x.checked_neg().ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Negation overflow: -{}", x),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked absolute
#[cfg(not(feature = "unchecked"))]
2020-03-11 04:03:18 +01:00
fn abs<T: Display + CheckedNeg + PartialOrd + Zero>(x: T) -> Result<T, EvalAltResult> {
// FIX - We don't use Signed::abs() here because, contrary to documentation, it panics
// when the number is ::MIN instead of returning ::MIN itself.
if x >= <T as Zero>::zero() {
Ok(x)
} else {
x.checked_neg().ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Negation overflow: -{}", x),
Position::none(),
)
})
}
}
2020-03-25 04:27:09 +01:00
// Unchecked add - may panic on overflow
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn add_u<T: Add>(x: T, y: T) -> <T as Add>::Output {
x + y
}
2020-03-25 04:27:09 +01:00
// Unchecked subtract - may panic on underflow
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn sub_u<T: Sub>(x: T, y: T) -> <T as Sub>::Output {
x - y
}
2020-03-25 04:27:09 +01:00
// Unchecked multiply - may panic on overflow
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn mul_u<T: Mul>(x: T, y: T) -> <T as Mul>::Output {
x * y
}
2020-03-25 04:27:09 +01:00
// Unchecked divide - may panic when dividing by zero
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn div_u<T: Div>(x: T, y: T) -> <T as Div>::Output {
x / y
}
2020-03-25 04:27:09 +01:00
// Unchecked negative - may panic on overflow
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn neg_u<T: Neg>(x: T) -> <T as Neg>::Output {
-x
}
2020-03-25 04:27:09 +01:00
// Unchecked absolute - may panic on overflow
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
2020-03-11 04:03:18 +01:00
fn abs_u<T>(x: T) -> <T as Neg>::Output
where
2020-03-11 04:03:18 +01:00
T: Neg + PartialOrd + Default + Into<<T as Neg>::Output>,
{
2020-03-11 04:03:18 +01:00
// Numbers should default to zero
if x < Default::default() {
-x
} else {
2020-03-11 04:03:18 +01:00
x.into()
}
}
2020-03-18 03:36:50 +01:00
// Comparison operators
fn lt<T: PartialOrd>(x: T, y: T) -> bool {
x < y
}
fn lte<T: PartialOrd>(x: T, y: T) -> bool {
x <= y
}
fn gt<T: PartialOrd>(x: T, y: T) -> bool {
x > y
}
fn gte<T: PartialOrd>(x: T, y: T) -> bool {
x >= y
}
fn eq<T: PartialEq>(x: T, y: T) -> bool {
x == y
}
fn ne<T: PartialEq>(x: T, y: T) -> bool {
x != y
}
2020-03-18 03:36:50 +01:00
// Logic operators
fn and(x: bool, y: bool) -> bool {
x && y
}
fn or(x: bool, y: bool) -> bool {
x || y
}
fn not(x: bool) -> bool {
!x
}
2020-03-18 03:36:50 +01:00
// Bit operators
fn binary_and<T: BitAnd>(x: T, y: T) -> <T as BitAnd>::Output {
x & y
}
fn binary_or<T: BitOr>(x: T, y: T) -> <T as BitOr>::Output {
x | y
}
fn binary_xor<T: BitXor>(x: T, y: T) -> <T as BitXor>::Output {
x ^ y
}
2020-03-18 03:36:50 +01:00
2020-03-25 04:27:09 +01:00
// Checked left-shift
#[cfg(not(feature = "unchecked"))]
fn shl<T: Display + CheckedShl>(x: T, y: INT) -> Result<T, EvalAltResult> {
2020-03-18 03:36:50 +01:00
// Cannot shift by a negative number of bits
if y < 0 {
return Err(EvalAltResult::ErrorArithmetic(
format!("Left-shift by a negative number: {} << {}", x, y),
Position::none(),
));
}
CheckedShl::checked_shl(&x, y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Left-shift by too many bits: {} << {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Checked right-shift
#[cfg(not(feature = "unchecked"))]
fn shr<T: Display + CheckedShr>(x: T, y: INT) -> Result<T, EvalAltResult> {
2020-03-18 03:36:50 +01:00
// Cannot shift by a negative number of bits
if y < 0 {
return Err(EvalAltResult::ErrorArithmetic(
format!("Right-shift by a negative number: {} >> {}", x, y),
Position::none(),
));
}
CheckedShr::checked_shr(&x, y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Right-shift by too many bits: {} % {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Unchecked left-shift - may panic if shifting by a negative number of bits
#[cfg(feature = "unchecked")]
fn shl_u<T: Shl<T>>(x: T, y: T) -> <T as Shl<T>>::Output {
x.shl(y)
}
2020-03-25 04:27:09 +01:00
// Unchecked right-shift - may panic if shifting by a negative number of bits
#[cfg(feature = "unchecked")]
fn shr_u<T: Shr<T>>(x: T, y: T) -> <T as Shr<T>>::Output {
x.shr(y)
}
2020-03-25 04:27:09 +01:00
// Checked modulo
#[cfg(not(feature = "unchecked"))]
fn modulo<T: Display + CheckedRem>(x: T, y: T) -> Result<T, EvalAltResult> {
x.checked_rem(&y).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Modulo division by zero or overflow: {} % {}", x, y),
Position::none(),
)
})
}
2020-03-25 04:27:09 +01:00
// Unchecked modulo - may panic if dividing by zero
#[cfg(any(feature = "unchecked", not(feature = "no_float")))]
fn modulo_u<T: Rem>(x: T, y: T) -> <T as Rem>::Output {
x % y
}
2020-03-25 04:27:09 +01:00
// Checked power
#[cfg(not(feature = "unchecked"))]
2020-03-18 03:36:50 +01:00
fn pow_i_i(x: INT, y: INT) -> Result<INT, EvalAltResult> {
#[cfg(not(feature = "only_i32"))]
{
if y > (u32::MAX as INT) {
Err(EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Integer raised to too large an index: {} ~ {}", x, y),
Position::none(),
))
} else if y < 0 {
Err(EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Integer raised to a negative index: {} ~ {}", x, y),
Position::none(),
))
} else {
x.checked_pow(y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Power overflow: {} ~ {}", x, y),
Position::none(),
)
})
}
}
#[cfg(feature = "only_i32")]
{
if y < 0 {
Err(EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Integer raised to a negative index: {} ~ {}", x, y),
Position::none(),
))
} else {
x.checked_pow(y as u32).ok_or_else(|| {
EvalAltResult::ErrorArithmetic(
format!("Power overflow: {} ~ {}", x, y),
Position::none(),
)
})
}
}
}
2020-03-25 04:27:09 +01:00
// Unchecked integer power - may panic on overflow or if the power index is too high (> u32::MAX)
#[cfg(feature = "unchecked")]
2020-03-18 03:36:50 +01:00
fn pow_i_i_u(x: INT, y: INT) -> INT {
2020-03-09 07:15:32 +01:00
x.pow(y as u32)
}
2020-03-25 04:27:09 +01:00
// Floating-point power - always well-defined
#[cfg(not(feature = "no_float"))]
fn pow_f_f(x: FLOAT, y: FLOAT) -> FLOAT {
x.powf(y)
}
2020-03-25 04:27:09 +01:00
// Checked power
#[cfg(not(feature = "unchecked"))]
#[cfg(not(feature = "no_float"))]
2020-03-18 03:36:50 +01:00
fn pow_f_i(x: FLOAT, y: INT) -> Result<FLOAT, EvalAltResult> {
// Raise to power that is larger than an i32
if y > (i32::MAX as INT) {
return Err(EvalAltResult::ErrorArithmetic(
2020-03-18 03:36:50 +01:00
format!("Number raised to too large an index: {} ~ {}", x, y),
Position::none(),
));
}
Ok(x.powi(y as i32))
}
2020-03-25 04:27:09 +01:00
// Unchecked power - may be incorrect if the power index is too high (> i32::MAX)
#[cfg(feature = "unchecked")]
#[cfg(not(feature = "no_float"))]
2020-03-18 03:36:50 +01:00
fn pow_f_i_u(x: FLOAT, y: INT) -> FLOAT {
x.powi(y as i32)
}
#[cfg(not(feature = "unchecked"))]
{
reg_op_result!(self, "+", add, INT);
reg_op_result!(self, "-", sub, INT);
reg_op_result!(self, "*", mul, INT);
reg_op_result!(self, "/", div, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_result!(self, "+", add, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op_result!(self, "-", sub, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op_result!(self, "*", mul, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op_result!(self, "/", div, i8, u8, i16, u16, i32, i64, u32, u64);
}
}
#[cfg(feature = "unchecked")]
{
reg_op!(self, "+", add_u, INT);
reg_op!(self, "-", sub_u, INT);
reg_op!(self, "*", mul_u, INT);
reg_op!(self, "/", div_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(self, "+", add_u, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "-", sub_u, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "*", mul_u, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "/", div_u, i8, u8, i16, u16, i32, i64, u32, u64);
}
}
#[cfg(not(feature = "no_float"))]
{
reg_op!(self, "+", add_u, f32, f64);
reg_op!(self, "-", sub_u, f32, f64);
reg_op!(self, "*", mul_u, f32, f64);
reg_op!(self, "/", div_u, f32, f64);
}
{
macro_rules! reg_cmp {
($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $y, y: $y)->bool);
)*
)
}
reg_cmp!(self, "<", lt, INT, String, char);
reg_cmp!(self, "<=", lte, INT, String, char);
reg_cmp!(self, ">", gt, INT, String, char);
reg_cmp!(self, ">=", gte, INT, String, char);
reg_cmp!(self, "==", eq, INT, String, char, bool);
reg_cmp!(self, "!=", ne, INT, String, char, bool);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_cmp!(self, "<", lt, i8, u8, i16, u16, i32, i64, u32, u64);
reg_cmp!(self, "<=", lte, i8, u8, i16, u16, i32, i64, u32, u64);
reg_cmp!(self, ">", gt, i8, u8, i16, u16, i32, i64, u32, u64);
reg_cmp!(self, ">=", gte, i8, u8, i16, u16, i32, i64, u32, u64);
reg_cmp!(self, "==", eq, i8, u8, i16, u16, i32, i64, u32, u64);
reg_cmp!(self, "!=", ne, i8, u8, i16, u16, i32, i64, u32, u64);
}
#[cfg(not(feature = "no_float"))]
{
reg_cmp!(self, "<", lt, f32, f64);
reg_cmp!(self, "<=", lte, f32, f64);
reg_cmp!(self, ">", gt, f32, f64);
reg_cmp!(self, ">=", gte, f32, f64);
reg_cmp!(self, "==", eq, f32, f64);
reg_cmp!(self, "!=", ne, f32, f64);
}
}
2020-03-25 04:27:09 +01:00
// `&&` and `||` are treated specially as they short-circuit.
// They are implemented as special `Expr` instances, not function calls.
2020-03-02 05:08:03 +01:00
//reg_op!(self, "||", or, bool);
//reg_op!(self, "&&", and, bool);
2020-03-18 03:36:50 +01:00
reg_op!(self, "|", or, bool);
reg_op!(self, "&", and, bool);
reg_op!(self, "|", binary_or, INT);
reg_op!(self, "&", binary_and, INT);
reg_op!(self, "^", binary_xor, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(self, "|", binary_or, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "&", binary_and, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "^", binary_xor, i8, u8, i16, u16, i32, i64, u32, u64);
}
#[cfg(not(feature = "unchecked"))]
{
reg_op_result1!(self, "<<", shl, INT, INT);
reg_op_result1!(self, ">>", shr, INT, INT);
reg_op_result!(self, "%", modulo, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_result1!(self, "<<", shl, i64, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op_result1!(self, ">>", shr, i64, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op_result!(self, "%", modulo, i8, u8, i16, u16, i32, i64, u32, u64);
}
}
#[cfg(feature = "unchecked")]
{
reg_op!(self, "<<", shl_u, INT, INT);
reg_op!(self, ">>", shr_u, INT, INT);
reg_op!(self, "%", modulo_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op!(self, "<<", shl_u, i64, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, ">>", shr_u, i64, i8, u8, i16, u16, i32, i64, u32, u64);
reg_op!(self, "%", modulo_u, i8, u8, i16, u16, i32, i64, u32, u64);
}
}
#[cfg(not(feature = "no_float"))]
{
reg_op!(self, "%", modulo_u, f32, f64);
self.register_fn("~", pow_f_f);
}
#[cfg(not(feature = "unchecked"))]
{
2020-03-18 03:36:50 +01:00
self.register_result_fn("~", pow_i_i);
#[cfg(not(feature = "no_float"))]
2020-03-18 03:36:50 +01:00
self.register_result_fn("~", pow_f_i);
}
#[cfg(feature = "unchecked")]
{
2020-03-18 03:36:50 +01:00
self.register_fn("~", pow_i_i_u);
#[cfg(not(feature = "no_float"))]
2020-03-18 03:36:50 +01:00
self.register_fn("~", pow_f_i_u);
}
{
macro_rules! reg_un {
($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $y)->$y);
)*
)
}
#[cfg(not(feature = "unchecked"))]
macro_rules! reg_un_result {
($self:expr, $x:expr, $op:expr, $( $y:ty ),*) => (
$(
$self.register_result_fn($x, $op as fn(x: $y)->Result<$y,EvalAltResult>);
)*
)
}
#[cfg(not(feature = "unchecked"))]
{
reg_un_result!(self, "-", neg, INT);
reg_un_result!(self, "abs", abs, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_un_result!(self, "-", neg, i8, i16, i32, i64);
reg_un_result!(self, "abs", abs, i8, i16, i32, i64);
}
}
#[cfg(feature = "unchecked")]
{
reg_un!(self, "-", neg_u, INT);
reg_un!(self, "abs", abs_u, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_un!(self, "-", neg_u, i8, i16, i32, i64);
reg_un!(self, "abs", abs_u, i8, i16, i32, i64);
}
}
#[cfg(not(feature = "no_float"))]
{
reg_un!(self, "-", neg_u, f32, f64);
reg_un!(self, "abs", abs_u, f32, f64);
}
reg_un!(self, "!", not, bool);
}
self.register_fn("+", |x: String, y: String| x + &y); // String + String
self.register_fn("==", |_: (), _: ()| true); // () == ()
2020-03-04 16:44:32 +01:00
// Register print and debug
fn to_debug<T: Debug>(x: T) -> String {
2020-03-04 16:44:32 +01:00
format!("{:?}", x)
}
fn to_string<T: Display>(x: T) -> String {
2020-03-04 16:44:32 +01:00
format!("{}", x)
}
{
macro_rules! reg_fn1 {
($self:expr, $x:expr, $op:expr, $r:ty, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $y)->$r);
)*
)
}
reg_fn1!(self, KEYWORD_PRINT, to_string, String, INT, bool);
reg_fn1!(self, FUNC_TO_STRING, to_string, String, INT, bool);
reg_fn1!(self, KEYWORD_PRINT, to_string, String, char, String);
reg_fn1!(self, FUNC_TO_STRING, to_string, String, char, String);
self.register_fn(KEYWORD_PRINT, || "".to_string());
self.register_fn(KEYWORD_PRINT, |_: ()| "".to_string());
self.register_fn(FUNC_TO_STRING, |_: ()| "".to_string());
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, INT, bool, ());
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, char, String);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_fn1!(self, KEYWORD_PRINT, to_string, String, i8, u8, i16, u16);
reg_fn1!(self, FUNC_TO_STRING, to_string, String, i8, u8, i16, u16);
reg_fn1!(self, KEYWORD_PRINT, to_string, String, i32, i64, u32, u64);
reg_fn1!(self, FUNC_TO_STRING, to_string, String, i32, i64, u32, u64);
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, i8, u8, i16, u16);
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, i32, i64, u32, u64);
}
#[cfg(not(feature = "no_float"))]
{
reg_fn1!(self, KEYWORD_PRINT, to_string, String, f32, f64);
reg_fn1!(self, FUNC_TO_STRING, to_string, String, f32, f64);
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, f32, f64);
}
#[cfg(not(feature = "no_index"))]
{
reg_fn1!(self, KEYWORD_PRINT, to_debug, String, Array);
reg_fn1!(self, FUNC_TO_STRING, to_debug, String, Array);
reg_fn1!(self, KEYWORD_DEBUG, to_debug, String, Array);
// Register array iterator
self.register_iterator::<Array, _>(|a| {
Box::new(a.downcast_ref::<Array>().unwrap().clone().into_iter())
});
}
2020-03-29 17:53:35 +02:00
#[cfg(not(feature = "no_object"))]
{
self.register_fn(KEYWORD_PRINT, |x: &mut Map| -> String {
format!("#{:?}", x)
});
self.register_fn(FUNC_TO_STRING, |x: &mut Map| -> String {
format!("#{:?}", x)
});
self.register_fn(KEYWORD_DEBUG, |x: &mut Map| -> String {
format!("#{:?}", x)
});
2020-03-29 17:53:35 +02:00
}
}
2020-03-04 16:44:32 +01:00
// Register range function
fn reg_iterator<T: Any + Clone>(engine: &mut Engine)
where
Range<T>: Iterator<Item = T>,
{
engine.register_iterator::<Range<T>, _>(|a| {
Box::new(
a.downcast_ref::<Range<T>>()
.unwrap()
.clone()
.map(|n| n.into_dynamic()),
)
});
}
2020-03-04 16:44:32 +01:00
reg_iterator::<INT>(self);
self.register_fn("range", |i1: INT, i2: INT| (i1..i2));
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
macro_rules! reg_range {
2020-03-26 03:55:50 +01:00
($self:expr, $x:expr, $( $y:ty ),*) => (
$(
reg_iterator::<$y>(self);
2020-03-26 03:55:50 +01:00
$self.register_fn($x, (|x: $y, y: $y| x..y) as fn(x: $y, y: $y)->Range<$y>);
)*
)
}
2020-03-26 03:55:50 +01:00
reg_range!(self, "range", i8, u8, i16, u16, i32, i64, u32, u64);
}
2020-03-04 16:44:32 +01:00
}
}
macro_rules! reg_fn2x {
($self:expr, $x:expr, $op:expr, $v:ty, $r:ty, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $v, y: $y)->$r);
)*
)
}
macro_rules! reg_fn2y {
($self:expr, $x:expr, $op:expr, $v:ty, $r:ty, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(y: $y, x: $v)->$r);
)*
)
}
2020-03-04 16:44:32 +01:00
/// Register the built-in library.
impl Engine<'_> {
#[cfg(not(feature = "no_stdlib"))]
2020-03-04 16:44:32 +01:00
pub(crate) fn register_stdlib(&mut self) {
#[cfg(not(feature = "no_float"))]
{
// Advanced math functions
self.register_fn("sin", |x: FLOAT| x.to_radians().sin());
self.register_fn("cos", |x: FLOAT| x.to_radians().cos());
self.register_fn("tan", |x: FLOAT| x.to_radians().tan());
self.register_fn("sinh", |x: FLOAT| x.to_radians().sinh());
self.register_fn("cosh", |x: FLOAT| x.to_radians().cosh());
self.register_fn("tanh", |x: FLOAT| x.to_radians().tanh());
self.register_fn("asin", |x: FLOAT| x.asin().to_degrees());
self.register_fn("acos", |x: FLOAT| x.acos().to_degrees());
self.register_fn("atan", |x: FLOAT| x.atan().to_degrees());
self.register_fn("asinh", |x: FLOAT| x.asinh().to_degrees());
self.register_fn("acosh", |x: FLOAT| x.acosh().to_degrees());
self.register_fn("atanh", |x: FLOAT| x.atanh().to_degrees());
self.register_fn("sqrt", |x: FLOAT| x.sqrt());
self.register_fn("exp", |x: FLOAT| x.exp());
self.register_fn("ln", |x: FLOAT| x.ln());
self.register_fn("log", |x: FLOAT, base: FLOAT| x.log(base));
self.register_fn("log10", |x: FLOAT| x.log10());
self.register_fn("floor", |x: FLOAT| x.floor());
self.register_fn("ceiling", |x: FLOAT| x.ceil());
self.register_fn("round", |x: FLOAT| x.ceil());
self.register_fn("int", |x: FLOAT| x.trunc());
self.register_fn("fraction", |x: FLOAT| x.fract());
self.register_fn("is_nan", |x: FLOAT| x.is_nan());
self.register_fn("is_finite", |x: FLOAT| x.is_finite());
self.register_fn("is_infinite", |x: FLOAT| x.is_infinite());
// Register conversion functions
self.register_fn("to_float", |x: INT| x as FLOAT);
self.register_fn("to_float", |x: f32| x as FLOAT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
self.register_fn("to_float", |x: i8| x as FLOAT);
self.register_fn("to_float", |x: u8| x as FLOAT);
self.register_fn("to_float", |x: i16| x as FLOAT);
self.register_fn("to_float", |x: u16| x as FLOAT);
self.register_fn("to_float", |x: i32| x as FLOAT);
self.register_fn("to_float", |x: u32| x as FLOAT);
self.register_fn("to_float", |x: i64| x as FLOAT);
self.register_fn("to_float", |x: u64| x as FLOAT);
}
}
self.register_fn("to_int", |ch: char| ch as INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
self.register_fn("to_int", |x: i8| x as INT);
self.register_fn("to_int", |x: u8| x as INT);
self.register_fn("to_int", |x: i16| x as INT);
self.register_fn("to_int", |x: u16| x as INT);
}
#[cfg(not(feature = "only_i32"))]
{
self.register_fn("to_int", |x: i32| x as INT);
self.register_fn("to_int", |x: u64| x as INT);
#[cfg(feature = "only_i64")]
self.register_fn("to_int", |x: u32| x as INT);
}
#[cfg(not(feature = "no_float"))]
{
#[cfg(not(feature = "unchecked"))]
{
self.register_result_fn("to_int", |x: f32| {
if x > (i64::MAX as f32) {
return Err(EvalAltResult::ErrorArithmetic(
format!("Integer overflow: to_int({})", x),
Position::none(),
));
}
Ok(x.trunc() as INT)
});
self.register_result_fn("to_int", |x: FLOAT| {
if x > (i64::MAX as FLOAT) {
return Err(EvalAltResult::ErrorArithmetic(
format!("Integer overflow: to_int({})", x),
Position::none(),
));
}
Ok(x.trunc() as INT)
});
}
#[cfg(feature = "unchecked")]
{
self.register_fn("to_int", |x: f32| x as INT);
self.register_fn("to_int", |x: f64| x as INT);
}
}
#[cfg(not(feature = "no_index"))]
{
macro_rules! reg_fn3 {
($self:expr, $x:expr, $op:expr, $v:ty, $w:ty, $r:ty, $( $y:ty ),*) => (
$(
$self.register_fn($x, $op as fn(x: $v, y: $w, z: $y)->$r);
)*
)
}
// Register array utility functions
fn push<T: Any>(list: &mut Array, item: T) {
list.push(Box::new(item));
}
fn pad<T: Any + Clone>(list: &mut Array, len: INT, item: T) {
if len >= 0 {
while list.len() < len as usize {
push(list, item.clone());
}
}
}
reg_fn2x!(self, "push", push, &mut Array, (), INT, bool, char);
reg_fn2x!(self, "push", push, &mut Array, (), String, Array, ());
reg_fn3!(self, "pad", pad, &mut Array, INT, (), INT, bool, char);
reg_fn3!(self, "pad", pad, &mut Array, INT, (), String, Array, ());
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_fn2x!(self, "push", push, &mut Array, (), i8, u8, i16, u16);
reg_fn2x!(self, "push", push, &mut Array, (), i32, i64, u32, u64);
reg_fn3!(self, "pad", pad, &mut Array, INT, (), i8, u8, i16, u16);
reg_fn3!(self, "pad", pad, &mut Array, INT, (), i32, u32, i64, u64);
}
#[cfg(not(feature = "no_float"))]
{
reg_fn2x!(self, "push", push, &mut Array, (), f32, f64);
reg_fn3!(self, "pad", pad, &mut Array, INT, (), f32, f64);
}
self.register_dynamic_fn("pop", |list: &mut Array| {
list.pop().unwrap_or_else(|| ().into_dynamic())
});
2020-03-14 16:41:21 +01:00
self.register_dynamic_fn("shift", |list: &mut Array| {
if !list.is_empty() {
().into_dynamic()
} else {
list.remove(0)
}
});
self.register_fn("len", |list: &mut Array| list.len() as INT);
self.register_fn("clear", |list: &mut Array| list.clear());
self.register_fn("truncate", |list: &mut Array, len: INT| {
if len >= 0 {
list.truncate(len as usize);
}
});
}
2020-03-29 17:53:35 +02:00
// Register map functions
#[cfg(not(feature = "no_object"))]
{
self.register_fn("has", |map: &mut Map, prop: String| map.contains_key(&prop));
self.register_fn("len", |map: &mut Map| map.len() as INT);
self.register_fn("clear", |map: &mut Map| map.clear());
}
// Register string concatenate functions
fn prepend<T: Display>(x: T, y: String) -> String {
format!("{}{}", x, y)
}
fn append<T: Display>(x: String, y: T) -> String {
format!("{}{}", x, y)
}
reg_fn2x!(self, "+", append, String, String, INT, bool, char);
2020-03-24 09:57:35 +01:00
self.register_fn("+", |x: String, _: ()| x);
reg_fn2y!(self, "+", prepend, String, String, INT, bool, char);
2020-03-24 09:57:35 +01:00
self.register_fn("+", |_: (), y: String| y);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_fn2x!(self, "+", append, String, String, i8, u8, i16, u16, i32, i64, u32, u64);
reg_fn2y!(self, "+", prepend, String, String, i8, u8, i16, u16, i32, i64, u32, u64);
}
#[cfg(not(feature = "no_float"))]
{
reg_fn2x!(self, "+", append, String, String, f32, f64);
reg_fn2y!(self, "+", prepend, String, String, f32, f64);
}
#[cfg(not(feature = "no_index"))]
{
self.register_fn("+", |x: String, y: Array| format!("{}{:?}", x, y));
self.register_fn("+", |x: Array, y: String| format!("{:?}{}", x, y));
}
// Register string utility functions
self.register_fn("len", |s: &mut String| s.chars().count() as INT);
self.register_fn("contains", |s: &mut String, ch: char| s.contains(ch));
self.register_fn("contains", |s: &mut String, find: String| s.contains(&find));
self.register_fn("clear", |s: &mut String| s.clear());
2020-03-08 02:19:04 +01:00
self.register_fn("append", |s: &mut String, ch: char| s.push(ch));
self.register_fn("append", |s: &mut String, add: String| s.push_str(&add));
self.register_fn("truncate", |s: &mut String, len: INT| {
if len >= 0 {
let chars: Vec<_> = s.chars().take(len as usize).collect();
s.clear();
chars.iter().for_each(|&ch| s.push(ch));
} else {
s.clear();
}
});
self.register_fn("pad", |s: &mut String, len: INT, ch: char| {
for _ in 0..s.chars().count() - len as usize {
s.push(ch);
}
});
self.register_fn("replace", |s: &mut String, find: String, sub: String| {
let new_str = s.replace(&find, &sub);
s.clear();
s.push_str(&new_str);
});
self.register_fn("trim", |s: &mut String| {
let trimmed = s.trim();
if trimmed.len() < s.len() {
2020-03-26 03:55:50 +01:00
*s = trimmed.to_string();
}
});
}
}