rhai/doc/src/rust/register-raw.md

162 lines
7.0 KiB
Markdown
Raw Normal View History

2020-07-06 06:06:57 +02:00
Use the Low-Level API to Register a Rust Function
================================================
{{#include ../links.md}}
When a native Rust function is registered with an `Engine` using the `Engine::register_XXX` API,
Rhai transparently converts all function arguments from [`Dynamic`] into the correct types before
calling the function.
For more power and flexibility, there is a _low-level_ API to work directly with [`Dynamic`] values
without the conversions.
Raw Function Registration
-------------------------
The `Engine::register_raw_fn` method is marked _volatile_, meaning that it may be changed without warning.
If this is acceptable, then using this method to register a Rust function opens up more opportunities.
In particular, a reference to the current `Engine` instance is passed as an argument so the Rust function
can also use `Engine` facilities (like evaluating a script).
```rust
engine.register_raw_fn(
"increment_by", // function name
&[ // a slice containing parameter types
std::any::TypeId::of::<i64>(), // type of first parameter
std::any::TypeId::of::<i64>() // type of second parameter
],
|engine: &Engine, lib: &Module, args: &mut [&mut Dynamic]| { // fixed function signature
// Arguments are guaranteed to be correct in number and of the correct types.
// But remember this is Rust, so you can keep only one mutable reference at any one time!
// Therefore, get a '&mut' reference to the first argument _last_.
// Alternatively, use `args.split_at_mut(1)` etc. to split the slice first.
let y: i64 = *args[1].downcast_ref::<i64>() // get a reference to the second argument
.unwrap(); // then copying it because it is a primary type
let y: i64 = std::mem::take(args[1]).cast::<i64>(); // alternatively, directly 'consume' it
let x: &mut i64 = args[0].downcast_mut::<i64>() // get a '&mut' reference to the
.unwrap(); // first argument
*x += y; // perform the action
Ok(().into()) // must be 'Result<Dynamic, Box<EvalAltResult>>'
}
);
// The above is the same as (in fact, internally they are equivalent):
engine.register_fn("increment_by", |x: &mut i64, y: i64| x += y);
```
2020-07-26 12:17:55 +02:00
Function Signature
------------------
2020-07-06 06:06:57 +02:00
2020-07-26 12:17:55 +02:00
The function signature passed to `Engine::register_raw_fn` takes the following form:
2020-07-06 06:06:57 +02:00
2020-07-26 12:17:55 +02:00
> `Fn(engine: &Engine, lib: &Module, args: &mut [&mut Dynamic]) -> Result<T, Box<EvalAltResult>> + 'static`
2020-07-06 06:06:57 +02:00
where:
2020-07-08 03:48:25 +02:00
* `T : Variant + Clone` - return type of the function.
2020-07-06 06:06:57 +02:00
2020-07-08 03:48:25 +02:00
* `engine : &Engine` - the current [`Engine`], with all configurations and settings.
2020-07-06 06:06:57 +02:00
2020-07-08 03:48:25 +02:00
* `lib : &Module` - the current global library of script-defined functions, as a [`Module`].
This is sometimes useful for calling a script-defined function within the same evaluation context using [`Engine::call_fn`][`call_fn`].
* `args : &mut [&mut Dynamic]` - a slice containing `&mut` references to [`Dynamic`] values.
2020-07-06 06:06:57 +02:00
The slice is guaranteed to contain enough arguments _of the correct types_.
Remember, in Rhai, all arguments _except_ the _first_ one are always passed by _value_ (i.e. cloned).
Therefore, it is unnecessary to ever mutate any argument except the first one, as all mutations
will be on the cloned copy.
Extract Arguments
-----------------
To extract an argument from the `args` parameter (`&mut [&mut Dynamic]`), use the following:
| Argument type | Access (`n` = argument position) | Result |
| ------------------------------ | -------------------------------------- | ---------------------------------------------------------- |
| [Primary type][standard types] | `args[n].clone().cast::<T>()` | Copy of value. |
| Custom type | `args[n].downcast_ref::<T>().unwrap()` | Immutable reference to value. |
2020-07-08 03:48:25 +02:00
| Custom type (consumed) | `std::mem::take(args[n]).cast::<T>()` | The _consumed_ value.<br/>The original value becomes `()`. |
2020-07-06 06:06:57 +02:00
| `this` object | `args[0].downcast_mut::<T>().unwrap()` | Mutable reference to value. |
When there is a mutable reference to the `this` object (i.e. the first argument),
there can be no other immutable references to `args`, otherwise the Rust borrow checker will complain.
2020-07-08 03:48:25 +02:00
Example - Passing a Function Pointer to a Rust Function
------------------------------------------------------
2020-07-26 12:17:55 +02:00
The low-level API is useful when there is a need to interact with the scripting [`Engine`] within a function.
The following example registers a function that takes a [function pointer] as an argument,
then calls it within the same [`Engine`]. This way, a _callback_ function can be provided
to a native Rust function.
2020-07-08 03:48:25 +02:00
```rust
use rhai::{Engine, Module, Dynamic, FnPtr};
let mut engine = Engine::new();
// Register a Rust function
engine.register_raw_fn(
"bar",
&[
std::any::TypeId::of::<i64>(), // parameter types
std::any::TypeId::of::<FnPtr>(),
std::any::TypeId::of::<i64>(),
],
move |engine: &Engine, lib: &Module, args: &mut [&mut Dynamic]| {
// 'args' is guaranteed to contain enough arguments of the correct types
let fp = std::mem::take(args[1]).cast::<FnPtr>(); // 2nd argument - function pointer
let value = args[2].clone(); // 3rd argument - function argument
let this_ptr = args.get_mut(0).unwrap(); // 1st argument - this pointer
2020-07-26 12:17:55 +02:00
// Use 'FnPtr::call_dynamic' to call the function pointer.
// Beware, only script-defined functions are supported by 'FnPtr::call_dynamic'.
// If it is a native Rust function, directly call it here in Rust instead!
fp.call_dynamic(engine, lib, Some(this_ptr), [value])
2020-07-08 03:48:25 +02:00
},
);
let result = engine.eval::<i64>(r#"
fn foo(x) { this += x; } // script-defined function 'foo'
let x = 41; // object
x.bar(Fn("foo"), 1); // pass 'foo' as function pointer
x
"#)?;
```
2020-07-06 06:06:57 +02:00
Hold Multiple References
------------------------
In order to access a value argument that is expensive to clone _while_ holding a mutable reference
to the first argument, either _consume_ that argument via `mem::take` as above, or use `args.split_at`
to partition the slice:
```rust
// Partition the slice
let (first, rest) = args.split_at_mut(1);
// Mutable reference to the first parameter
let this_ptr = first[0].downcast_mut::<A>().unwrap();
// Immutable reference to the second value parameter
// This can be mutable but there is no point because the parameter is passed by value
let value = rest[0].downcast_ref::<B>().unwrap();
```